#### TURNED IVORY POLYHEDRA

T. Tarnai Budapest

#### Contents

- Chinese balls
- History
- Great carved ivory collections
- Identified polyhedra
- Covering the sphere with equal circles
- The roundest polyhedra
- Probable direct scientific influence
- Conclusions

#### CHINESE BALLS

#### **Contemporary Chinese balls**



Made of jade and sandalwood, with 12 and 14 holes

#### **Ivory Chinese balls**



14-layer ball, 19th century, British Museum, London

43-layer ball, 19th-20th century, Chen Family Temple, Guangzhou

#### HISTORY

#### China Cao Zhao, *Ge gu yao lun,* Nanjing, 1388



#### Title page of the 1938 edition

### China



Cao Zhao, *Ge gu yao lun* (Essential Criteria of Antiquities), Nanjing, 1388.

"I have seen a hollow-centred ivory ball, which had two concentric balls inside it, which can both revolve. It is called 'witch ball'. I was told that it was made for the Palaces of the Song dynasty."

- To our knowledge, there is no trace of "Devil's work ball" in the 15th, 16th and 17th centuries.
- In the 18th and 19th centuries, these balls were made in the Canton region for the European trade, after the first European lathe was imported in 1722 (Shih Ching-fei 2007).

#### Europe

- The method of making multi-layer spheres and polyhedra was developed in Southern Germany in the second half of the 16th century.
- Earliest works: Georg Wecker, 1581
   Giovanni Ambrogio Maggiore, 1582
   (invented contrefait sphere, 1574-77)
- Techniques: Joseph Moxon, Mechanick Excercises or the Doctrine of Handy-Works, London, 1678
   Charles Plumier, L'Art du Tourneur, Lyon, 1701



#### Turned Platonic solids

Bergeron, L.-E., *Manuel du Tourneur*, Paris, 1816.

### Gouges applied on a lathe for a multi-layer ball and dodecahedron



Hugo Knoppe, *Meistertechniken der Dechslerkunst*, Verlag Th. Schäfer, Hannover, 1986

### GREAT CARVED IVORY COLLECTIONS

#### Grünes Gewölbe Dresden





#### Kunsthistorisches Museum Vienna



Habsburg Kunstkammer Collection

#### Museo degli Argenti, Florence



#### **Royal Danish Collections**



#### Ashmolean Museum, Oxford



#### Tradescant Collection, 1656

#### Musée des Arts et Métiers, Paris



François Barreau (1731-1814)

#### IDENTIFIED POLYHEDRA

#### **Platonic solids**

#### Tetrahedron



Regular tetrahedron *F*=4 Contrefait sphere with 4 main openings, Egidius Lobenigk, ~1590 Grünes Gewölbe, Dresden Spiked tetrahedron François Barreau, ~1800 CNAM Paris

#### Cube



Regular hexahedron

Contrefait sphere with 6 circular openings, Grünes Gewölbe Dresden Spiked cube Probably Dresden, ~ 1600 Grünes Gewölbe Dresden

#### Octahedron



Regular octahedron

Contrefait sphere with 8 circular openings, Egidius Lobenigk, 1589 Grünes Gewölbe Dresden Spiked octahedron Probably Dresden, ~ 1600 Grünes Gewölbe Dresden

#### Dodecahedron



Nested contrefait sphere Spiked dodecahedron Regular dodecahedron *F*=12 with 12 circular openings, made in Nuremberg, 1600-1650, Royal Danish Collections, Copenhagen

Probably Dresden, ~ 1600 Grünes Gewölbe Dresden

#### Icosahedron



Regular icosahedron *F*=20 Contrefait sphere with 20 circular openings Egidius Lobenigk, 1591 Grünes Gewölbe Dresden Spiked icosahedron Probably Dresden, ~ 1600 Grünes Gewölbe Dresden

#### Archimedean solids

#### **Truncated octahedron**

|--|--|--|

Truncated octahedron *F*=14 Nested truncated octahedron with a circular opening on each face, German, around 1650, KHM Vienna Spike direction is the same as that for the cuboctahedron

#### Rhombicuboctahedron



Rhombicuboctahedron *F*=26

Contrefait sphere with 26 circular openings, François Barreau, ~1800 CNAM Paris Sphere with 26 spikes (Spire star, Reformed church, Frangepán Str, Budapest)

#### Great rhombicuboctahedron



Great rhombicuboctahedron *F*=26

#### Nested contrefait sphere

with 26 circular openings, German, 1600-1650, Tradescant Collection, Ashmolean Museum Oxford **Respective spikes** 

#### Icosidodecahedron



Icosidodecahedron *F*=32 Contrefait sphere with 32 circular openings, François Barreau, ~1800, CNAM Paris Spiked icosidodecahedron around 1600, Grünes Gewölbe Dresden

#### **Truncated** icosahedron



Truncated icosahedronContrefait sphereF=32with 32 circular openings,<br/>made in Nuremberg ~1650<br/>Royal Danish Collections,<br/>Copenhagen

Spiked truncated icosahedron François Barreau, ~1800 CNAM Paris

#### Great rhombicosidodecahedron



Great rhombicosidodecahedron *F*=62



Contrefait sphere with 62 circular openings, François Barreau, ~1800 CNAM Paris

#### Catalan solids

#### Deltoidal icositetrahedron



Deltoidal icositetrahedron *F*=24



Nested contrefait sphere with 24 circular openings Historisches Museum Frankfurt, cca 1580?

#### Pentagonal dipyramid



Pentagonal dipyramid

Truncated pentagonal dipyramid *F*=17 Nested truncated pentagonal dipyramid German, 17th century, Museo degli Argenti, Florence

#### **Rhombic dodecahedron**



Rhombic dodecahedron

Truncated rhombic dodecahedron *F*=18

Contrefait sphere with 18 circular openings, C. Zick, Nuremberg, 1685? Danish Royal Collections, Copenhagen

#### Rhombic triacontahedron



Rhombic triacontahedron

Truncated rhombic triacontahedron *F*=42

Contrefait sphere with 42 circular openings, 17th century, Museo degli Argenti, Florence

### COVERING THE SPHERE WITH EQUAL CIRCLES

#### The covering problem

How must the sphere be covered by *n* equal circles (spherical caps) without interstices so that the angular radius of the circles will be as small as possible?

## Circle covering of nested ivory spheres



Sideway cuts (wooden model) (From the Internet) 14 equal holes with O<sub>h</sub> symmetry (only the external shell)

## Circle covering of a layer of a nested ivory sphere



Sideway cuts form a covering of the sphere by 14 equal circles (with octahedral symmetry constraint)

#### Proven solutions (circle centres at the vertices of)

- *n* = 2
- n = 3 equilateral triangle,
- n = 4 regular tetrahedron,
- n = 5 trigonal bipyramid,
- n = 6 regular octahedron,
- n = 7 pentagonal bipyramid,
- n = 10 bicapped square antiprism,
- n = 12 regular icosahedron,
- n = 14 bicapped hexagonal antiprism

#### **Conjectural solutions**

Up to n = 20 and some sporadic values of n:

T.T., Gáspár, Zs., *Math. Proc. Cambridge Philos. Soc.* **110**, 71-89 (1991).

#### Up to *n* = 130:

Hardin, R.H., Sloane, N.J.A., Smith, W.D., Tables of spherical coverings (~2000), http://neilsloane.com/coverings/index.html

# Conjectural solutions for up to n = 20

Polyhedra formed by the Dirichlet cells of circles of the best coverings



T.T., Gáspár, Zs., Math. Proc. Cambridge Philos. Soc. 110, 71-89 (1991).

#### Examples of the best coverings



*n* = 16

*n* = 20

#### THE ROUNDEST POLYHEDRA

## The isoperimetric problem for polyhedra

Among the polyhedra with a given surface area and given number of faces *n*, which has the maximum volume?

### Isoperimetric quotient (Pólya)

Solutions to this problem are those polyhedra which have the maximum value of the isoperimetric quotient  $0 \le IQ \le 1$ 

$$IQ = 36\pi \frac{V^2}{A^3}$$

*V* and *A* are the volume and the surface area of the polyhedron with *n* faces.

The solutions are the roundest polyhedra.

#### The Lindelöf theorem (1869)

A necessary condition for a polyhedron to maximize the volume is that the faces of the polyhedron are tangent to a sphere at the centroid of the faces. For polyhedra satisfying Lindelöf's necessary condition and where the radius of the sphere is the unity:

$$IQ = \frac{4\pi}{3} \frac{1}{V} = 4\pi \frac{1}{A}$$

Thus, *IQ* is a maximum if *A* or *V* is a minimum.

## Equivalent formulation of the isoperimetric problem

Determine those polyhedra of minimum surface area (or volume) that can be circumscribed about the unit sphere and have *n* faces.

#### Roundest turned ivory polyhedra



n = 4
Regular tetrahedron
Egidius Lobenigk, 1588
Grünes Gewölbe Dresden

n = 6Regular hexahedronAround 1600Grünes Gewölbe Dresden

n = 12Regular dodecahedronAround 1600,Grünes Gewölbe Dresden

## Solution under octahedral symmetry constraint, n = 14



**Royal Danish Collection** 

#### Further examples for n = 14





Spiked core of a sphere 1st half of the 17th century Inv. No. II 284 Grünes Gewölbe Dresden Wooden die Unified Silla, 7th-9th century, National Museum Gyeongju Korea

#### Solutions for n = 14





With symmetry constraint IQ = 0.78163...

With no symmetry constraint IQ = 0.78569...

## Solution under icosahedral symmetry constraint, n = 32





Minimum circle covering

Around 1600, Dresden, Grünes Gewölbe Dresden

#### Application for n = 32





Grünes Gewölbe Dresden "Hyperball" the roundest ball prior to inflation

#### **Proven solutions**

- n = 4 regular tetrahedron,
- n = 5 trigonal prism,
- n = 6 cube,
- n = 12 regular dodecahedron.

All these solutions are identical to the duals of the respective minimum circle coverings.

#### **Conjectural solutions**



Schoen, A., Proc. 2nd ACM Symp. Comp. Geometry, 1986, pp. 159-168.

#### **Conjectural solutions**



Schoen, A., Proc. 2nd ACM Symp. Comp. Geometry, 1986, pp. 159-168.

#### New conjectural solutions





*n* = 50



T. T., Gáspár, Zs., Lengyel, A., Phil. Mag. 93 Nos. 31-33, 3970-3982 (2013)

### PROBABLE DIRECT SCIENTIFIC INFLUENCE

#### Early nested polyhedra



Georg Wecker, 1581 (SKD Online)

#### J. Kepler, *Mysterium cosmographicum*, TABVIA III OR BIVM<sup>TPLANE TAR VM DIMENSIONES, ET DISTANTIAS PER GVINGVE 1596</sup>





Nested Platonic polyhedra for explanation of the solar system

#### Snelson's atom model



"Fly's eye" dome is based on K. Snelson's idea of atom in the 1960's.

#### Geodesic spheres (triangulation)



#### Inspiration for discrete geometry





#### Circle packing

Circle covering

### CONCLUSIONS

- A survey of turned single- and multi-layer ivory spheres and polyhedra has been given.
- The 5 Platonic solids, 7 Archimedean solids, 4 Catalan solids have been identified.
- Turned ivory spheres and polyhedra have given inspiration to study problems of discrete geometry and to apply their results in practice.

#### Acknowledgements

I thank Dr. H. Almegaard, Prof. A. Florian, Dr. K. Hincz, Mr. S. Kabai, Ms. B. Kresling, Dr. A. Lengyel, Ms. M. Tupputi Mr. D. Weber Dr. T. Wehli, Dr. Zhong You for repeated help in preparation of this paper.

Supported by OTKA grant K81146.