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Outline of the talk 

• Online algorithms 

• Online bin packing and covering 

• Cardinality constraints 

• Class constrained versions 



Online problems 

• The input is given part by part and the 

algorithm has to make the decisions 

without any information on the further 

parts. 

• The performance of an algorithm is 

measured by the competitive analysis or 

by an average case analysis. 

 



Online algorithms 

• An algorithm is c-competitive if its cost is 
at most c - times more than the optimal 
cost, or if the optimal profit is at most C-
times the optimal profit. 

• The first analysis for an online scheduling 
algorithm  was done by Graham in 1966. 

• Since 1980 many results have been 
achieved and several areas have been 
developed.  



Asymptotic ratios  

• In minimization problem the asymptotic 

ratio of an algorithm is RA where 

     -  RA(k)=max{A(L)/k : OPT(L)=k} 

     -  RA=limsup RA(k) 

• In maximization problem the asymptotic 

ratio of an algorithm is RA where 

     -  RA(k)=max{k/A(L) : OPT(L)=k} 

     -  RA=limsup RA(k) 

 



Bin packing 

• Items of size at most 1 are given and the 

goal is to pack the elements into the 

minimum number of bins of size 1. 

• In the online model the items arrive one by 

one and the decision maker must decide 

where to pack the item without any 

information on the further items. 



Bin packing 

• The best known algorithm is 1,58889 –

competitive (Seiden 2002). 

• It is known that no algorithm exists with 

smaller competitive ratio than 1.54037 

(Balogh et al 2012). 

• There exists an APTAS (Vega and Lueker 

1981) and also an AFPTAS (Karmarkar 

and Karp 1982) for the problem. 

 



Bin covering (dual bin packing)  

• Items of size at most 1 are given and the 
goal is to cover the maximum number of 
bins of size 1 with these elements. 

• DNF packs the next element into the bin if 
the bin is not covered otherwise opens a 
new bin. 

• RDNF=2 (Assman et al 84) 

• No online algorithm with smaller asymp-
totic ratio exists (Csirik, Totik 88) 

 



Bin covering 

• Approximation algorithms with ratio 3/2 

and ratio 4/3 (Assman et al 84) 

• Simpler algorithms with the same ratios 

(Csirik et al 97) 

• Asymptotic approximation scheme (Csirik 

et al 2001) 

• Fully polinomial approximation scheme 

(Jansen et al 2005) 

 

 



Bin packing with cardinality 

constraints 

• In this model there is an extra assumption 
that each bin can contain at most k items. 

• Online algorithm with ratio 2.7, offline with 
ratio 2 (Krause et al 75) 

• APTAS (Kellerer, Pferschy 99) 

• Online with ratio 2,  and R=1.447, k=2, 
R=1.8, k=3  (Babel et al 04) 

• Optimal online bounded space algorithms, 
the ratio tends to 2.69 (Epstein 05) 



Vector covering 

• The items are d-dimensional vectors one 

bin is covered if the sum of the elements is 

at least 1 in all components (Alon et al 98) 

• Online algorithm with ratio which can be 

arbitrarily close to 2d. 

• For d=2 offline approximation with ratio 2. 



Bin covering with cardinality 

constraints 

• Each bin must contain at least k items. 

• If we use the vectors (1/k,si) instead of the 

original items then we obtain an equivalent 

vector covering problem, therefore the 

algorithms can be used and the results are 

true from two dimensional vector covering. 

• If k=2 then the problem is equivalent with 

the classical bin covering problem. 



Algorithm Next Fit 

• If the total size of the items in the bin is 
less than 1 or the number of the items is 
less than k, then pack the item into the bin, 
otherwise open a new one. 

• RNF=k 

   - The total size of the items in each bin is 
at most k. 

   - List: n times size 1-a, (k-1)n times a/(k-1) 
for a very small a.   



An improved  online algorithm 

• Let 0<x<1, for each r we define class Cr which 
contains the items with size in the interval  

     (xr,xr-1]. 

• If an item arrives then 

1) if the number of the arrived elements in the 
class of the item gives 1 mod 3 then pack the 
item into the first bin where the number of 
elements is less than k, 

2) otherwise pack it into the first bin where the 
total size is less than 1. 
 



Analysis of the algorithm 

• 3 ≤RIOA≤2+1/x 

• The number of items is at most 3 times 

more than the number of elements packed 

in step 1. 

• The total size of the items is at most 

C+(1+1/(2x))S(2) where S(2) is the total 

size of the items packed in step 2, and C 

is a constant which depends on x. 

 



Further improvement 

• We can use different ratio than 1/3, 2/3 for 

the elements of step 1 and 3. 

• Choosing suitable values we can define an  

(3k-2)/k-competitive algorithm. 

 



Lower bound 

• Theorem: For k>3 no online algorithm can 

have smaller competitive ratio than (5k-

4)/2k. 

• Consider an arbitrary deterministic online 

algorithm and suppose that it is R(k)-

competitive (with respect to asymptotic 

performance), for a given value of k. We 

prove a lower bound on R. 



Lower bound 

• The input consists of a first phase, which is 

possibly followed by one out of two additional 

phases. 

• Let N be a  large integer. Let ε>0 be a small  

number and δ >0 a much smaller number. 

• The first phase consists of 2kN items of size  

    1- ε. The second phase, if exists, can be either 

2k(k-1)N items of size ε or k(k-2)N items of size 

δ. 

 



• We will use such small elements that if all 

items of size ε are used, they cannot cover 

a bin without an item of the first phase. 

Moreover the total size of all items of size 

δ should be less than ε. Thus in order to 

cover a bin, they must be combined with at 

least two items of the first phase. 



• Determine the optimal profits for the three cases, 
which are denoted by opt(i) for i=1,2,3.  

• opt(1)=2N, since every bin must contain at least 
k items, 

• opt(2)=2kN, since we can cover each bin using 
one item of the first phase and k-1 items of the 
second phase  

• opt(3)=kN since we can cover each bin using 
two items of the first phase and k-2 items of the 
second phase. 



• We can suppose that all bins of the online 

algorithm contains k, 2 or 1 items after the 

first phase.  

• Let X(j) be the number of bins of the 

algorithm, each of which contains j items 

at the end of the first phase. And let A(i) 

be the cost of the algorithm for the 

possible inputs. 

 



• X(1)+2X(2)+kX(k)=2kN 

• A(1)=X(k) 

• A(2) = X(1)+X(2)+X(k) 

• A(3) = X(2)+X(k) 

• (k-2)A(1)+A(2)+A(3)=2kN 

• (k-2)OPT(1)+opt(2)+opt(3)=2N(k-2)+ 

2kN+kN=N(5k-4) 

 



Further results 

• There exists a fully polinomial asymptotic 

approximation scheme for the problem. 

• For nondecreasing list of elements there 

exists a 2-competitive algorithm. 

• No online algorithm can have smaller 

competitive ratio than 2 for nondecreasing 

list of elements.  



Class constrained bin packing 

• In this model each item has a size and a 

color. 

• A bin is feasible if it contains items of at 

most k color classes and the total size of 

elements is at most 1. 

• If no two items arrive with the same color 

we receive the cardinality constrained 

problem.  

 



Color Sets First Fit (CSFF) 

• In this variant, color classes are partitioned 

online into sets of k colors (where the first k 

colors that ever appear are the first color set, the 

next k colors that ever appear are the second 

color set, and so forth), and each such color set 

has its own dedicated bins.  

• When a new item arrives we apply FF, 

considering only the bins of the color set that 

contains the color of the new item. 



Class constrained bin packing 

• Shachnai and Tamir (2004) proved that 

the competitive ratio of CSFF is  2 for 

identical items. 

• Xavier and Miyazawa (2008) proved that 

the competitive ratio of CSFF is at most 3. 

And they also presented a 2.75-

competitive algorithm. 



New results for the online version 

• We analyzed CSFF further and show that its 

competitive ratio is at most 3 – 1/k . 

• We have shown a general reduction to online 

(classical) bin packing algorithms under some 

conditions on these algorithms, that allows to 

convert such an algorithm into an algorithm for 

CCBP, with a loss of at most 1 in the competitive 

ratio. This gives  improved algorithms for all 

values of k, giving an overall upper bound of 

2.63492. 



New results on the offline version 

• We designed and  AFPTAS if q is 

considered as a constant (an APTAS was 

known by Xavier and Miyazawa 2008) 

• We proved that if q is part of the input no 

algorithm exists with better approximation 

ratio than 1+1/10k unless P=NP. 

  



The idea of the lower bound 

• We have a reduction from partition. 

• Consider a partition input with items a1,..., 

an of total size 1. 

• Define a bin packing input as follows. The 

size of bins is k-1/2. We have 2n(k-1) color 

classes containing 1 item of size 1. And n 

color classes containing items defined in 

the partition problem. 



The idea of lower bound 

• Lemma: If the partition instance is feasible, 

then the optimal solution to the instance of 

the packing problem has costs at most 2n, 

whereas if the partition instance is 

infeasible, then the cost of the optimal 

solution to packing is at least 2n+n/5k. 

 



Class constrained bin covering 

• In this model each item has a size and a 

color. 

• A bin is covered if it contains items of at 

least k color classes and the total size of 

elements is at least 1. 

• If no two items arrive with the same color 

we receive the cardinality constrained 

problem.  



Unit size items 

• We suppose that each item has the same 
size 1/B. 

• Then the bin is covered if it contains at 
least B items of at least k color classes. 
(We suppose that B is at least k.) 

•  Algorithm NF is not competitive. 

• We first have N(B − k + 1) items, all of 
color class 1, next, for   i=2,…,k there are 
N items of color class i. 



Algorithm FF(1) 

• When a new item of color c arrives, we 

allocate it to the first uncovered bin that 

either contains less than B items, or 

contains at least B items, but does not 

contain an item of color c. If no such bin 

exists, we pack it in a new bin. 

• The competitive ratio of FF(1) is exactly  

    B+k−1 for all values of k such that k>1. 



Upper bound 

• By definition, a bin can receive additional 

items after it has B items only if it receives 

an item of a new color that this bin does 

not have, and this can only happen k − 1 

times. Therefore, no bin contains more 

than B + k − 1 items. 



proof 

• If all created bins are covered and there 

are j bins, then there are at most j(B + k − 

1) < 2jB items (using k < B), and the 

competitive ratio is at most 2. 

• Otherwise, let j  be the index of the first bin 

(in the order in which bins were opened) 

that was created but is not covered. 



proof 

• If bin j contains less than B items, then by 
definition of FF(1), bin j + 1 does not exist, this 
case is similar to the previous. 

• In the case that bin j has at least B items, and 
since it is uncovered, it has items of at most k − 
1 distinct colors. Denote the set of colors in bin j 
by S. Any later bin,  can only have items of 
colors from S. Thus, since any bin of an optimal 
solution must have items of at least k colors, it 
must have at least one item from bins 1, . . . , j − 
1 of FF(1). 



Algorithm FF(2) 

• For a bin that contains at least one item, we define the 
notion of being useful for adding an item of color c to the 
bin as follows.  

• If the bin is covered, that is, it contains at least B items of 
at least k colors, then clearly adding an additional item is 
not useful.  

• If the bin contains items of at most k − t colors, for some 
1 < t < k, and c is one of these colors, then adding the 
new item is useful if the number of items is no larger 
than B − t − 1, and otherwise, not useful.  

• In any other case (an uncovered bin that does not 
contain an item of color c, or an uncovered bin that 
already contains items of k different colors), the packing 
is useful.  



Algorithm FF(2) 

•  When a new item of color c arrives, we 

allocate it to the first bin for which adding 

the new item would be useful. If no such 

bin exists, we pack it into a new bin. 

• The competitive ratio of FF(2) is exactly B 

for all values of k such that k >1. 



Algorithm CNS 

• CNS is based on an online partition of the items 

into color items, also called C-items, and to the 

remaining items, there are called size items or 

S-items. 

• Afterwards we pack the items using the First-Fit 

algorithm into a joint set of bins, but the two 

types of items are packed independently of each 

other and even obliviously of the contents of the 

bins with respect to the other type of items. 



Algorithm CNS 

• For S-items, the  algorithm packs an item in the 

first bin which contains less than B S-items. If no 

such bin exists, a new bin is opened. 

• The algorithm packs a C-item into the first bin 

that has C-items of at most k − 1 different colors, 

provided that the color of the current item is 

different from all the colors of C-items that the 

bin contains. If no such bin exists, a new bin is 

opened. 



• Algorithm COLOR&SIZE (CNS) has an integer 
parameter p.  

•  The i-th color of any item that is ever seen by 
the algorithm is called color i. Assume now that 
a new item that arrives is the j-th item of color i.  

• If i mod p ≠ 0 and j mod p ≠ 0 then the item is a 
C-item.  

• Otherwise, if i mod p = 0 and j mod p ≠ 1 then 
the item is (also) a C-item.  

• Otherwise, the item is an S-item.  



Results 

• The algorithm CNS has competitive ratio 

of O(k) for a suitable value of p. 

• The competitive ratio of any online 

algorithm is at least 1+Hk−1 = Ω(log k).  



Open problems 

• Decreasing gaps 

• General sized items in class contrained 

 bin packing 
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