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tization in general

If an axiomatization works on class of games A, and
@ A C B, then it does not mean the axiomatization works on
class of games B,

o B C A, then it does not mean the axiomatization works on
class of games B,
and it also works on class of game B, then

@ it does not meant the axiomatization works on class of games
ANB,

o it implies the axiomatization works on AU B (!).

o Conclusion: we have to check (almost) all classes of games
one by one. CORVINUS
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Preliminaries

The Shapley value (Shapley, 1953) of Player i in game v is as
follows:

o= ¥ HHELA=m,
TCN\{i}

where v/(T) = v(T U {i}) — v(T) is Player i's marginal
contribution to coalition T in game v.
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o is Pareto optimal (or efficient), if 3.y ¢i(v) = v(N) for all
v EA

o satisfies the null player property, if ¢i(v) =0 for all v € A and
i€ NP(v);

o is anonymous, if ¢(v)om = ¢(vom), forall v € A and
permutation m on N such that vor € A;

o satisfies the equal treatment property, if ¢;(v) = ¢;(v) for all
v € A and symmetric (v;(S) = v/(S), if S C N\ {i,j})
players i,j in v;

@ is covariant under strategic equivalence, if
dlav® B) = ap(v)+ B, forall ve A, a>0and B € RN corvmus
such that av @ 5 € A;
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o satisfies marginality, if ¢i(v) = ¢i(w), for all v,w € A and
i € N such that v/(T) = w/(T) forall T C N;

o satisfies coalitional strategic equivalence, if
¢i(v) = ¢i(v+aur), forallve A, ie N, T C N\ {i} and
« > 0 such that v + aur € A;

o satisfies fairness, if ¢i(v + w) — ¢i(v) = ¢;(v + w) — ¢j(v) for
all viw € Aand i,j € N such that i, j are symmetric in w and
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Preliminaries

Let AC Gy = UTQNQT be a class of games, ¢ be a solution on A,
and forall ve A, TC N, T # 0, such that v3YM\T) ¢ A let

vr6(S) = v(SUNT))— > (v M) forall SC T, S £ 0,
iEN\T

and vr 4(0) = 0. Then vy € GT is called the ¢-reduced game of
v on coalition T. Solution ¢ defined on AC G

o is HM-consistent (Hart and Mas-Colell, 1989), briefly
consistent, if forall TC N, ve ANGT and SC T, S #0,
such that vs 4 € A, it holds that ¢;i(vs 4) = #i(v) for all i € S5 ivus
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From the literature it follows that the Shapley value is the unique
solution on GV that satisfies the following sets of axioms:

o Pareto optimality, the null player property, the equal
treatment property and additivity (Shapley, 1953);

o Pareto optimality, the equal treatment property and strong
monotonicity (Young, 1985);

o Pareto optimality, the equal treatment property and
marginality (also by Young (1985));

o Pareto optimality, the equal treatment property and
coalitional strategic equivalence (Chun, 1991);

o Pareto optimality, the null player property and fairness (van
den Brink, 2001).

René van den Brink and Miklés Pintér
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Further, it is the unique solution on Gy that satisfies

o Pareto optimality, covariance, the equal treatment property
and consistency (Hart and Mas-Colell, 1989).
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Negative results

rivial remark

If [BU S| = 2, then solution ¢ on GB° satisfies Pareto optimality
and the equal treatment property if and only if it is the Shapley
value.
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Preliminaries

Let OR(N) be the set of all (linear) orderings on set N. Consider
the following two solutions for assignment games with buyer and
seller sets B and S. First, let

ORg ={r€ OR(BUS) | 7(i) < |B|=i¢€ B},

be the orders where the buyers come first, and let

ORs ={r € OR(BUS) | 7(i) < |S|=i€ S},
be the orders where the sellers come first.
Now, for all v e GBS and i€ BUS, let

08) = omi( X (€ BUSIG) < 7))

TEORp
vl € BUS| () <r(i})) . copms
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be the average marginal contribution of buyer or seller i over all
orders where the buyers come first, and

602 i (2 (e BUSI7G) < 7))

T7EORs
—wﬂeBu5|ﬂn<ran

be the average marginal contribution of buyer or seller i over all
orders where the sellers come first. Then, for all v € GBS, let

B.sy o $°(V) +¢°(v)
¢%°(v) = 5

be the average of these two solutions.

René van den Brink and Miklés Pintér
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Negative results

ults on ¢5>(v)

Solution ¢B>° is a convex combination of random order values and
satisfies anonymity, the equal treatment property, covariance,
additivity, and strong monotonicity on GB°.
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Negative results

Consider B = {1,2}, S = {3}, and v € GB* determined by
ai3 = 1and a3 = 2, that is,

v({1,3}) =1, v({2,3}) = v({ 2,3})=2and v(T)=0
otherwise. Then ¢Z(v) = (0, ) ¢°(v) = (3,3,0), and thus
B3 (v) = (3,3,1). However (v):(% % 5)

CORVINUS

René van den Brink and Miklés Pintér



Negative results

ative results

Corollary

On the class GB> of assignment games, the following
axiomatizations of the Shapley value do not work:

o Shapley's axiomatization (Pareto optimality, the null player
property, the equal treatment property (anonymity) and
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Corollary

On the class GB> of assignment games, the following
axiomatizations of the Shapley value do not work:

o Shapley's axiomatization (Pareto optimality, the null player
property, the equal treatment property (anonymity) and
additivity),

o Young's axiomatization (Pareto optimality, the equal
treatment property and strong monotonicity (marginality)),

o Chun'’s axiomatization (Pareto optimality, the equal treatment
property and coalitional strategic equivalence),

@ van den Brink's axiomatization (Pareto optimality, the null
player property and fairness).

René van den Brink and Miklés Pintér
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Negative results

Definition

Let A C Gp. For every function P: A— R, TC N, T # (), and
forallve GT NAand i€ T suchthat [T|=1or v\ € A let

1oy | P(v), if [T[=1
Fil) = { P(v) — P(vT\l1})  otherwise. )

Y Pi(v)=v(T),

€T
for all v € GT N A such that either | T| =1 or vT\l'} € A for all
i € T, then P is called a potential on A.

René van den Brink and Miklés Pintér
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Negative results

Definition

A collection A C G is subgame closed, if vIMit e Aforall TC N
with |[T| > 1, i€ T and v € GT such that v € A.

Theorem

| A\

Let A C Gy be a subgame closed set of games. Then function P
on G is a potential, if and only if P/(v) = ¢;(v) for all T C N,
T#0,veG'NnAandieT.

CORVINUS

René van den Brink and Miklés Pintér On axiomatizations of the Shapley value for assignment games



Negative results

mi-)Negative result on the potential

On the class of assignment games there is a potential P such that
there exists an assignment game v and a player i such that

Pi(v) # ¢i(v).
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Negative results

First, let G, be the collection of all assignment games, that is,
Ga={v € Gy | there exist B,S C N,
B#0,S+#0, BNS=0, BUS =N such that v € G&°}.
Moreover, let solution ¢ on G, for each v € G, N GBS be given by
v(BUYS) -
= . , if i ¢ NP(v
3:(v) = TBUS)\NP(V) A

0 otherwise.

It is worth noticing that for any assignment game v and player
i ¢ NP(v), ¢;(v) > 0.
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Negative results

sgative result on HM-consistency

Solution ¢ satisfies Pareto optimality, anonymity, the equal
treatment property, covariance and consistency on G,.
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The positive result

Definition

Let A € ABS be an assignment situation. Then B’ U S’, B’ C B,
S'CS, B US #0, is a submarket of A if a; j = 0 for all
(i,J) € (B" < (S\S)u((B\B')xS').
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The positive result

Definition

Solution f on AB-> satisfies

o submarket efficiency, if for all A € AB-S and for all submarkets
(B',S") of A, it holds that ), g/, fi(v) = va(B'US),

o valuation fairness, if for every buyer i € B, every seller j € S
and every pair of assignment situations A, A € A8 such that
a;j = 0and ag , = ag p for all
(g,h) € (B\{i}) xS)U (B x(S\{j})) it holds that
fi(A) — fi(A) = fi(A) — f(A).

v
CORVINUS
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The positive result

e positive result (& la Myerson (1977))

The Shapley value ¢ is the unique solution for assignment
situations that satisfies submarket efficiency and valuation fairness.

and a further result (compare it to Solymosi, Brugueras and
Raghavan (2017))

Consider assignment situations A, A € AB>> such that for some

I € B,j €5 it holds that a;j > a;j, and ag n = ag,p for all

(g,h) € ((B\{i}) x S)U(B x (S \ {j})). Then ¢:(A) = ¢:(A)

and ¢j(A) > ¢j(A). INUS

René van den Brink and Miklés Pintér
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Some interesting results

On the class of assignment games

@ axioms anonymity and the equal treatment property are not
related,

o coalitional strategic equivalence is strictly weaker than
marginality,

o marginality is strictly weaker than strong monotonicity.
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Thank you for your attention!
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