
Lund Institute of Technology/Lund University

An intrinsically adaptive formulation of
multistep methods

Carmen Arévalo
with G. Söderlind, F. Mohammadi, C. Führer

Lund University

Farkas Miklos Seminar of the Technical University Budapest
September 20, 2018

Lund Institute of Technology/Lund University

To approximate the solution of an IVP

dx

dt
= f (t, x), x(t0) = x0, t ∈ [t0, tf]

a k-step method uses k previous approximations
xn−i ≈ x(tn−i), i = 1 : k,

xn = αk−1xn−1 + · · ·+ α0xn−k + hn(βk fn + · · ·+ β0fn−k)

hi = ti − ti−1, fi = f (ti , xi)

Adaptivity: choose hn to attain prescribed accuracy.

Lund Institute of Technology/Lund University

Adaptivity

Why do we need adaptivity?

I accuracy

I efficiency

I stability

Adaptivity aims to control the error at each integration step

I estimate the local error

I choose hn to keep the error at an assigned value (tolerance)

Lund Institute of Technology/Lund University

Adaptivity

Why do we need adaptivity?

I accuracy

I efficiency

I stability

Adaptivity aims to control the error at each integration step

I estimate the local error

I choose hn to keep the error at an assigned value (tolerance)

Lund Institute of Technology/Lund University

Order of a multistep method

Approximation: xn ≈ x(tn) and x ′n ≈ f (tn, x(tn))

When is a method said to be of order q?

For any ODE whose solution x is a polynomial of degree q, the
method recovers the exact solution:

xn = x(tn)

Lower order methods → larger stability regions
Higher order methods → allow larger step-sizes

Lund Institute of Technology/Lund University

Order of a multistep method

Approximation: xn ≈ x(tn) and x ′n ≈ f (tn, x(tn))

When is a method said to be of order q?

For any ODE whose solution x is a polynomial of degree q, the
method recovers the exact solution:

xn = x(tn)

Lower order methods → larger stability regions
Higher order methods → allow larger step-sizes

Lund Institute of Technology/Lund University

Order of a multistep method

Approximation: xn ≈ x(tn) and x ′n ≈ f (tn, x(tn))

When is a method said to be of order q?

For any ODE whose solution x is a polynomial of degree q, the
method recovers the exact solution:

xn = x(tn)

Lower order methods → larger stability regions
Higher order methods → allow larger step-sizes

Lund Institute of Technology/Lund University

Polynomial of a method with k steps and order q

To advance a step of an order q method we construct a method
polynomial Pn ∈ Pq using previously calculated values and define

xn = Pn(tn)

The polynomial of a k-step method will depend on the last k
approximated solutions and their derivatives.

Lund Institute of Technology/Lund University

Maximal order multistep methods

Three types of high order k-step methods (Dahlquist 1st barrier):

type max order

implicit k + 1
explicit k

For Nonstiff problems:

I Ek : Explicit k-step, order q = k, e.g. Adams–Bashforth

I I+k : Implicit k-step, order q = k + 1, e.g. Adams–Moulton

For Stiff problems:

I Ik : Implicit k-step, order q = k , e.g. BDF methods

Lund Institute of Technology/Lund University

Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3

Lund Institute of Technology/Lund University

Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of AB3: x' = f(t,x)

P'(t
0
) = f(t

0
,x

0
)

P'(t
1
) = f(t

1
,x

1
)

P'(t
2
) = f(t

2
,x

2
)

P(t
2
) = x

2

Lund Institute of Technology/Lund University

Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of AB3: x' = f(t,x)

P'(t
0
) = f(t

0
,x

0
)

P'(t
1
) = f(t

1
,x

1
)

P'(t
2
) = f(t

2
,x

2
)

P(t
2
) = x

2

x
3
 = P(t

3
)

Lund Institute of Technology/Lund University

Method polynomial for an Ik type method

BDF-3: implicit, k = 3, order q = 3, Pn ∈ P3

Lund Institute of Technology/Lund University

Method polynomial for an Ik type method

BDF-3: implicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of BDF3: x' = f(t,x)

P'(t
3
) = f(t

3
, P(t

3
))

P(t
2
) = x

2

P(t
1
) = x

1

P(t
0
) = x

0

Lund Institute of Technology/Lund University

Method polynomial for an Ik type method

BDF-3: implicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of BDF3: x' = f(t,x)

P'(t
3
) = f(t

3
, P(t

3
))

P(t
2
) = x

2

P(t
1
) = x

1

P(t
0
) = x

0

x
3
 = P(t

3
)

Lund Institute of Technology/Lund University

Construction of Ek method of order q = k

Interpolation conditions:

P(tn−i) = xn−i , i = 1, . . . , k

Collocation conditions:

Ṗ(tn−i) = x ′n−i , i = 1, . . . , k

2k possible conditions to define P ∈ Pk : choose k + 1 conditions(2k
k+1

)
= (2k)!

(k−1)!(k+1)! e.g . k = 3 ⇒ 15 possible methods

But there are infinitely many explicit k-step, order k methods!

Lund Institute of Technology/Lund University

Construction of Ek method of order q = k

Interpolation conditions:

P(tn−i) = xn−i , i = 1, . . . , k

Collocation conditions:

Ṗ(tn−i) = x ′n−i , i = 1, . . . , k

2k possible conditions to define P ∈ Pk : choose k + 1 conditions(2k
k+1

)
= (2k)!

(k−1)!(k+1)! e.g . k = 3 ⇒ 15 possible methods

But there are infinitely many explicit k-step, order k methods!

Lund Institute of Technology/Lund University

Pn for classical k-step formulas

ABk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

AMk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

BDFk Pn(tn−i) = xn−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

Lund Institute of Technology/Lund University

Pn for classical k-step formulas

ABk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

AMk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

BDFk Pn(tn−i) = xn−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

Lund Institute of Technology/Lund University

Pn for classical k-step formulas

ABk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

AMk Pn(tn−1) = xn−1

Ṗn(tn−i) = x ′n−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

BDFk Pn(tn−i) = xn−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

Lund Institute of Technology/Lund University

Solution: slack conditions

Do not insist on interpolation/collocation conditions; allow a slack:

sn−i = Pn(tn−i)− xn−i (state slack)

s ′n−i = Ṗn(tn−i)− x ′n−i (derivative slack)

and combine each slack pair into a slack balance condition:

a sn−i + b hn−i s
′
n−i = 0

simplified to

cos θ sn−i + sin θ hn−i s
′
n−i = 0, θ ∈ (−π/2, π/2]

Lund Institute of Technology/Lund University

Solution: slack conditions

Do not insist on interpolation/collocation conditions; allow a slack:

sn−i = Pn(tn−i)− xn−i (state slack)

s ′n−i = Ṗn(tn−i)− x ′n−i (derivative slack)

and combine each slack pair into a slack balance condition:

a sn−i + b hn−i s
′
n−i = 0

simplified to

cos θ sn−i + sin θ hn−i s
′
n−i = 0, θ ∈ (−π/2, π/2]

Lund Institute of Technology/Lund University

Each method type is characterized by its structural conditions

Ek

{
sn−1 = 0 (interpolation condition)
s ′n−1 = 0 (explicit collocation condition)

I+k

 Ṗn(tn) = f (tn,Pn(tn)) (implicit collocation condition)
sn−1 = 0 (interpolation condition)
s ′n−1 = 0 (explicit collocation condition)

Ik

 Ṗn(tn) = f (tn,Pn(tn)) (implicit collocation condition)
cos θ0 sn−1 + sin θ0hn−1 s

′
n−1 = 0 (slack balance condition)

θ0 ∈ (−π/2, π/2]

Lund Institute of Technology/Lund University

To complete the number of required conditions we impose k − 1
additional slack balance conditions

cos θi sn−i−1 + sin θi hn−i−1s
′
n−i−1 = 0

with θi ∈ (−π/2, π/2], i = 1 : k − 1

Method parameters θi uniquely define a method.

The parameter set {θi} is grid independent.

Lund Institute of Technology/Lund University

To complete the number of required conditions we impose k − 1
additional slack balance conditions

cos θi sn−i−1 + sin θi hn−i−1s
′
n−i−1 = 0

with θi ∈ (−π/2, π/2], i = 1 : k − 1

Method parameters θi uniquely define a method.

The parameter set {θi} is grid independent.

Lund Institute of Technology/Lund University

To complete the number of required conditions we impose k − 1
additional slack balance conditions

cos θi sn−i−1 + sin θi hn−i−1s
′
n−i−1 = 0

with θi ∈ (−π/2, π/2], i = 1 : k − 1

Method parameters θi uniquely define a method.

The parameter set {θi} is grid independent.

Lund Institute of Technology/Lund University

Theorem: Each linear multistep method of type Ek , Ik , or I+k can
be represented by a single polynomial in [tn−1, tn], with k − 1, k,
and k − 1 parameters, respectively.

We can implement every maximal order method by constructing its
method polynomial, Pn, advancing the integration at each step:
xn = Pn(tn).

The solver (MODES) includes every possible multistep method of
maximal order, stiff and non-stiff, implicit and explicit.

Lund Institute of Technology/Lund University

Theorem: Each linear multistep method of type Ek , Ik , or I+k can
be represented by a single polynomial in [tn−1, tn], with k − 1, k,
and k − 1 parameters, respectively.

We can implement every maximal order method by constructing its
method polynomial, Pn, advancing the integration at each step:
xn = Pn(tn).

The solver (MODES) includes every possible multistep method of
maximal order, stiff and non-stiff, implicit and explicit.

Lund Institute of Technology/Lund University

Theorem: Each linear multistep method of type Ek , Ik , or I+k can
be represented by a single polynomial in [tn−1, tn], with k − 1, k,
and k − 1 parameters, respectively.

We can implement every maximal order method by constructing its
method polynomial, Pn, advancing the integration at each step:
xn = Pn(tn).

The solver (MODES) includes every possible multistep method of
maximal order, stiff and non-stiff, implicit and explicit.

Lund Institute of Technology/Lund University

Parametric formulation of 0-stable multistep methods

Method Order Ik method parameters tan(θj), j = 0 : k − 1
BDFk k ≤ 6 {0}0:k−1

Kregel 3 154/543 -11/78 0
Rockswold 3 73/350 71/200 ∞
Method Order I+k method parameters cot(θj), j = 1 : k − 1
AMk k + 1 {0}1:k−1

dcBDFk k + 1 {(k + 1)/(j + 1)}1:k−1

Milne2 4 3
Milne4 5 15/4 0 0
IDC23 4 6/7 0
IDC24 5 15/26 0 0
IDC34 5 5/4 20/33 0
IDC45 6 45/28 10/11 15/32 0
IDC56 7 84/43 7/6 21/29 21/55 0

Method Order Ek method parameters cot(θj), j = 1 : k − 1
ABk k {0}1:k−1

EDFk k {1/(j + 1)}1:k−1

Explicit Euler 1
Midpoint 2 ∞
Nyström3 3 -3/2 0
Nyström4 4 -3/5 0 0
Nyström5 5 -45/133 0 0 0
EDC22 3 3/14 0
EDC23 4 6/49 0 0
EDC33 4 2/7 4/39 0
EDC24 5 90/1121 0 0 0
EDC34 5 10/53 10/219 0 0
EDC45 6 45/193 10/121 15/692 0 0

Lund Institute of Technology/Lund University

Experimental software platform, MODES offers:

I Any multistep method of type Ek , Ik or I+k

I Constant or variable step-sizes

I Constant or variable order

I Initial step-size and starters (classical Gear, Runge-Kutta)

I Error per step or error per unit step

I Step-size controllers (several PI and low pass digital filters)

I Upper and lower bounds for step-size ratios

Lund Institute of Technology/Lund University

Results for the Oregonator problem solved with MODES-BDF5

0 200 400 600
10−3

100

103

Solution, x(t)

0 200 400 600

−6

−4

−2

0

·104
Stiffness, s(t)

0 200 400 600

10−4

10−3

10−2

10−1

100

t

Step-size, h(t)

0 200 400 600

0.8

1

1.2

t

Step-size ratio, r(t)

Lund Institute of Technology/Lund University

Compare different methods under exact same conditions: AM3 vs.
another I+3 method. The second method is twice as accurate.

0 2 4 6 8 10 12 14 16 18 20
10-12

10-11

10-10

10-9

10-8

10-7
Invariant Lotka-Volterra

Adams-Moulton-3

I
3
+([: :])

Lund Institute of Technology/Lund University

State-of-the-art error control: Matlab BDF1-5 vs. MODES
BDF1-5 implementation

-3

-2

-1

0

1

2
Van der Pol 7 = 1200: solution

0 200 400 600 800 1000 1200

10-5

100

105
Step-size sequence

VOSS
Matlab

Lund Institute of Technology/Lund University

Accuracy/Work proportionality for MODES and Matlab’s ode15s.

140 160 180 200 220 240 260 280 300

number of steps

10-8

10-7

10-6

10-5

gl
ob

al
 e

rr
or

Van der Pol with 7=500

Matlab BDF (ode15s)
VOSS variable order BDF

Lund Institute of Technology/Lund University

Van der Pol with variable order BDF

10−7

10−3

101

h

 Step-sizes

TOL = 10−4

TOL = 10−7

TOL = 10−10

10−10

100

er
ro
r

Absolute errors (measured by ‖ · ‖)

TOL = 10−4

TOL = 10−7

TOL = 10−10

0 100 200 300 400

1

3

5

t

or
d
er

Orders

TOL = 10−4

TOL = 10−7

TOL = 10−10

Lund Institute of Technology/Lund University

Various step-size ratio bounds: none, 160%, 10% and 0.05%.

The controller in MODES keeps the step-size ratios in check to
maintain stability.

0 100 200 300 400 500 600 700 800 900 1000
10-4

10-3

10-2

10-1

100

101

102
Van der Pol: step-sizes with different step-size ratio bounds

VOSS BDF3
Matlab BDF3

Lund Institute of Technology/Lund University

An application to SSP multistep methods

Strong stability preserving methods avoid instabilities when solving
ODEs arising from the semi-discretization of hyperbolic PDEs.

ẏ = F (y), y(t0) = y0, t ∈ [t0, tf]

with the property

‖y + hF (y)‖ ≤ ‖y‖ for all y and h ≤ h∗

solved by explicit multistep method

yn =
k∑

i=1

(αiyn−i + hβiF (yn−i)), with αi , βi ≥ 0

SSP if ‖yn‖ ≤ max{‖yn−1‖, . . . , ‖yn−k‖} for 0 < h ≤ Ch∗

Lund Institute of Technology/Lund University

Explicit SSP multistep methods

I αi , βi ≥ 0

I 0 < h ≤ Ch∗

I SSP constant: C = min
i
{αi/βi}

I q < k

I Zero coefficients of fixed step-size formula should be preserved
by variable step-size extension

Adaptive explicit SSP multistep methods: formulation for lower
order methods that preserves pattern of zero coefficients

Lund Institute of Technology/Lund University

Hadjimichael et al. (2016): first variable step-size optimal SSP
methods of orders 2 and 3

Lund Institute of Technology/Lund University

Formulation of optimal SSP methods

Procedure to construct optimal SSP(k , q) method

I Take sn−1 = 0 and s ′n−1 = 0

I Take sn−i + hn−i
βi
αi
s ′n−i = 0 whenever αi 6= 0, 1 < i < k

I Take sn−k = 0

I If q is odd, also add s ′n−k = 0

The method parameters are τi = βi/αi

Lund Institute of Technology/Lund University

Example of optimal explicit 8-step SSP method of order 5

Its nonzero coefficients:

α1 =
1360

4363
, α4 =

233

2112
, α5 =

2323

10831
, α8 =

896

2465

β1 =
275

128
, β4 =

1044

1373
, β5 =

6661

4506
, β8 =

1781

5144

sn−1 = 0

s ′n−1 = 0

sn−4 + hn−4τ4s
′
n−4 = 0

sn−5 + hn−5τ5s
′
n−5 = 0

sn−8 = 0

s ′n−8 = 0

τ4 = β4/α4, τ5 = β5/α5

Lund Institute of Technology/Lund University

An application to differential-algebraic systems

DAEs are differential equations coupled with algebraic constraints

ẋ = f (x , λ)

0 = g(x , λ)

λ is called the algebraic variable

The index characterizes the difficulty of a DAE.

Index 2 Euler-Lagrange DAE in multibody dynamics:

ẋ = f (x)− G (x)Tλ

0 = g(x)

with G (x) = ∂g/∂x ,G (x)G (x)T invertible

Lund Institute of Technology/Lund University

An application to differential-algebraic systems

DAEs are differential equations coupled with algebraic constraints

ẋ = f (x , λ)

0 = g(x , λ)

λ is called the algebraic variable

The index characterizes the difficulty of a DAE.

Index 2 Euler-Lagrange DAE in multibody dynamics:

ẋ = f (x)− G (x)Tλ

0 = g(x)

with G (x) = ∂g/∂x ,G (x)G (x)T invertible

Lund Institute of Technology/Lund University

Generating polynomials of a multistep method: ρ, σ
k∑

j=0

αk−jxn−j = h
k∑

j=0

βk−j fn−j

As difference operators

ρxn =
k∑

i=0

αk−ixn−i , σfn =
k∑

i=0

βk−i fn−i

As generating polynomials:

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j

Requirement for convergence:
I ODE methods: roots of ρ(ζ) on or within the unit circle;

those on the unit circle are simple

I methods for index 2 DAEs: roots of σ(ζ) inside the unit circle

Lund Institute of Technology/Lund University

Generating polynomials of a multistep method: ρ, σ
k∑

j=0

αk−jxn−j = h
k∑

j=0

βk−j fn−j

As difference operators

ρxn =
k∑

i=0

αk−ixn−i , σfn =
k∑

i=0

βk−i fn−i

As generating polynomials:

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j

Requirement for convergence:
I ODE methods: roots of ρ(ζ) on or within the unit circle;

those on the unit circle are simple

I methods for index 2 DAEs: roots of σ(ζ) inside the unit circle

Lund Institute of Technology/Lund University

Generating polynomials of a multistep method: ρ, σ
k∑

j=0

αk−jxn−j = h
k∑

j=0

βk−j fn−j

As difference operators

ρxn =
k∑

i=0

αk−ixn−i , σfn =
k∑

i=0

βk−i fn−i

As generating polynomials:

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j

Requirement for convergence:
I ODE methods: roots of ρ(ζ) on or within the unit circle;

those on the unit circle are simple

I methods for index 2 DAEs: roots of σ(ζ) inside the unit circle

Lund Institute of Technology/Lund University

Consequence of σ not satisfying the strict root condition?

Instability in algebraic variables

Implicit methods with roots of σ(ζ) inside the unit circle

I e.g. BDF (k-step, order k)

I no implicit k-step method of order k + 1 (e.g.
Adams-Moulton)

Solution: β-blocking

I Modify σ to move roots into unit circle

I New operator σ + τ , with roots inside unit circle, should only
affect algebraic variables

I τ should disturb order as little as possible

Lund Institute of Technology/Lund University

Consequence of σ not satisfying the strict root condition?

Instability in algebraic variables

Implicit methods with roots of σ(ζ) inside the unit circle

I e.g. BDF (k-step, order k)

I no implicit k-step method of order k + 1 (e.g.
Adams-Moulton)

Solution: β-blocking

I Modify σ to move roots into unit circle

I New operator σ + τ , with roots inside unit circle, should only
affect algebraic variables

I τ should disturb order as little as possible

Lund Institute of Technology/Lund University

Consequence of σ not satisfying the strict root condition?

Instability in algebraic variables

Implicit methods with roots of σ(ζ) inside the unit circle

I e.g. BDF (k-step, order k)

I no implicit k-step method of order k + 1 (e.g.
Adams-Moulton)

Solution: β-blocking

I Modify σ to move roots into unit circle

I New operator σ + τ , with roots inside unit circle, should only
affect algebraic variables

I τ should disturb order as little as possible

Lund Institute of Technology/Lund University

Construction of β-blocker operator

I Reduce order as little as possible by taking τ = c∇k

I Keep σ for differential variables

I σ + τ for algebraic variables

Order:
k + 1 for differential variable, k for algebraic variable

Lund Institute of Technology/Lund University

β-blocking published 1997–2000 as fixed step-size technique

Lund Institute of Technology/Lund University

Standard formulation of index-2 Euler-Lagrange DAE

Pn ∈ Pk+1

P ′n(tn) = f (Pn(tn))− G (Pn(tn))Tλn

Pn(tn−1) = xn−1

P ′n(tn−1) = f (xn−1)− G (xn−1)Tλn−1

cos θj−1sn−j + hn−j sin θj−1(s ′n−j + G (xn−j)
Tλn−j) = 0

g(Pn(tn)) = 0

for j = 2 : k .

Then xn := Pn(tn).

Lund Institute of Technology/Lund University

β-blocked formulation of index-2 Euler-Lagrange DAE

Pn ∈ Pk+1 and Qn ∈ Pk

P ′n(tn) = f (Pn(tn))− G (Pn(tn))T(Qn(tn) + ĉ hkn−1Q
(k)
n (tn))

Pn(tn−1) = xn−1

P ′n(tn−1) = f (xn−1)− G (xn−1)TQn(tn−1)

Qn(tn−j) = λn−j

cos θj−1sn−j + hn−j sin θj−1(s ′n−j) + G (xn−j)
Tλn−j) = 0

g(Pn(tn)) = 0

for j = 2 : k , ĉ = c β−1k .

Set xn := Pn(tn) and λn := Qn(tn).

Lund Institute of Technology/Lund University

β−blocked AM2

Effect of standard PI controller

0 5 10 15 20 25

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
te

p
-s

iz
e 0 5 10 15 20 25

t

0

0.5

1

1.5

2

x
0 5 10 15 20 25

t

0

0.5

1

1.5

2

Lund Institute of Technology/Lund University

β−blocked AM2

Effect of low-pass digital filter controller

0 5 10 15 20 25

t

0

0.2

0.4

0.6

0.8

1

1.2

s
te

p
-s

iz
e 0 5 10 15 20 25

t

0

0.5

1

1.5

2

x
0 5 10 15 20 25

t

0

0.5

1

1.5

2

Lund Institute of Technology/Lund University

4−step β−blocked Adams-Moulton for nonlinear pendulum

Low-pass filter controller: error-tolerance proportionality

0 1 2 3 4 5

t

0

0.005

0.01

0.015

0.02

0.025

0.03

s
te

p
-s

iz
e

10
-8

10
-7

10
-6

10
-5

10
-4

Tol

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

A
b

s
o

lu
te

 e
rr

o
r

Lund Institute of Technology/Lund University

Results

A unified variable step-size formulation for all explicit and
implicit (stiff and nonstiff) methods of maximal order

A unified variable step-size formulation for explicit SSP
multistep methods In particular, a straightforward procedure for
the construction of optimal SSP methods

A unified variable step-size formulation of β-blocked methods
for index 2 Euler-Lagrange DAEs

MODES: a comprehensive multistep solver that uses these new
formulations; this allows experimentation with adaptive multistep
methods.

Lund Institute of Technology/Lund University

Results

A unified variable step-size formulation for all explicit and
implicit (stiff and nonstiff) methods of maximal order

A unified variable step-size formulation for explicit SSP
multistep methods In particular, a straightforward procedure for
the construction of optimal SSP methods

A unified variable step-size formulation of β-blocked methods
for index 2 Euler-Lagrange DAEs

MODES: a comprehensive multistep solver that uses these new
formulations; this allows experimentation with adaptive multistep
methods.

Lund Institute of Technology/Lund University

Results

A unified variable step-size formulation for all explicit and
implicit (stiff and nonstiff) methods of maximal order

A unified variable step-size formulation for explicit SSP
multistep methods In particular, a straightforward procedure for
the construction of optimal SSP methods

A unified variable step-size formulation of β-blocked methods
for index 2 Euler-Lagrange DAEs

MODES: a comprehensive multistep solver that uses these new
formulations; this allows experimentation with adaptive multistep
methods.

Lund Institute of Technology/Lund University

Results

A unified variable step-size formulation for all explicit and
implicit (stiff and nonstiff) methods of maximal order

A unified variable step-size formulation for explicit SSP
multistep methods In particular, a straightforward procedure for
the construction of optimal SSP methods

A unified variable step-size formulation of β-blocked methods
for index 2 Euler-Lagrange DAEs

MODES: a comprehensive multistep solver that uses these new
formulations; this allows experimentation with adaptive multistep
methods.

Lund Institute of Technology/Lund University

	Motivation and Goals
	Results
	Conclusions

