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To approximate the solution of an IVP

dx

dt
= f (t, x), x(t0) = x0, t ∈ [t0, tf ]

a k-step method uses k previous approximations
xn−i ≈ x(tn−i ), i = 1 : k,

xn = αk−1xn−1 + · · ·+ α0xn−k + hn(βk fn + · · ·+ β0fn−k)

hi = ti − ti−1, fi = f (ti , xi )

Adaptivity: choose hn to attain prescribed accuracy.
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Adaptivity

Why do we need adaptivity?

I accuracy

I efficiency

I stability

Adaptivity aims to control the error at each integration step

I estimate the local error

I choose hn to keep the error at an assigned value (tolerance)
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Order of a multistep method

Approximation: xn ≈ x(tn) and x ′n ≈ f (tn, x(tn))

When is a method said to be of order q?

For any ODE whose solution x is a polynomial of degree q, the
method recovers the exact solution:

xn = x(tn)

Lower order methods → larger stability regions
Higher order methods → allow larger step-sizes
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Polynomial of a method with k steps and order q

To advance a step of an order q method we construct a method
polynomial Pn ∈ Pq using previously calculated values and define

xn = Pn(tn)

The polynomial of a k-step method will depend on the last k
approximated solutions and their derivatives.
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Maximal order multistep methods

Three types of high order k-step methods (Dahlquist 1st barrier):

type max order

implicit k + 1
explicit k

For Nonstiff problems:

I Ek : Explicit k-step, order q = k, e.g. Adams–Bashforth

I I+k : Implicit k-step, order q = k + 1, e.g. Adams–Moulton

For Stiff problems:

I Ik : Implicit k-step, order q = k , e.g. BDF methods
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Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3



Lund Institute of Technology/Lund University

Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of AB3:  x' = f(t,x)

P'(t
0
) = f(t

0
,x

0
)

P'(t
1
) = f(t

1
,x

1
)

P'(t
2
) = f(t

2
,x

2
)

P(t
2
) = x

2



Lund Institute of Technology/Lund University

Method polynomial for an Ek type method

Adams-Bashforth-3: explicit, k = 3, order q = 3, Pn ∈ P3

t0 t1 t2 t3

Construction of AB3: x' = f(t,x)

P'(t
0
) = f(t

0
,x

0
)

P'(t
1
) = f(t

1
,x

1
)

P'(t
2
) = f(t

2
,x

2
)

P(t
2
) = x

2

x
3
 = P(t

3
)



Lund Institute of Technology/Lund University

Method polynomial for an Ik type method

BDF-3: implicit, k = 3, order q = 3, Pn ∈ P3
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Construction of Ek method of order q = k

Interpolation conditions:

P(tn−i ) = xn−i , i = 1, . . . , k

Collocation conditions:

Ṗ(tn−i ) = x ′n−i , i = 1, . . . , k

2k possible conditions to define P ∈ Pk : choose k + 1 conditions( 2k
k+1

)
= (2k)!

(k−1)!(k+1)! e.g . k = 3 ⇒ 15 possible methods

But there are infinitely many explicit k-step, order k methods!
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Pn for classical k-step formulas

ABk Pn(tn−1) = xn−1

Ṗn(tn−i ) = x ′n−i , i = 1, . . . , k

AMk Pn(tn−1) = xn−1

Ṗn(tn−i ) = x ′n−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))

BDFk Pn(tn−i ) = xn−i , i = 1, . . . , k

Ṗn(tn) = f (tn,Pn(tn))
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Solution: slack conditions

Do not insist on interpolation/collocation conditions; allow a slack:

sn−i = Pn(tn−i )− xn−i (state slack)

s ′n−i = Ṗn(tn−i )− x ′n−i (derivative slack)

and combine each slack pair into a slack balance condition:

a sn−i + b hn−i s
′
n−i = 0

simplified to

cos θ sn−i + sin θ hn−i s
′
n−i = 0, θ ∈ (−π/2, π/2]
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Each method type is characterized by its structural conditions

Ek

{
sn−1 = 0 (interpolation condition)
s ′n−1 = 0 (explicit collocation condition)

I+k

 Ṗn(tn) = f (tn,Pn(tn)) (implicit collocation condition)
sn−1 = 0 (interpolation condition)
s ′n−1 = 0 (explicit collocation condition)

Ik

 Ṗn(tn) = f (tn,Pn(tn)) (implicit collocation condition)
cos θ0 sn−1 + sin θ0hn−1 s

′
n−1 = 0 (slack balance condition)

θ0 ∈ (−π/2, π/2]
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To complete the number of required conditions we impose k − 1
additional slack balance conditions

cos θi sn−i−1 + sin θi hn−i−1s
′
n−i−1 = 0

with θi ∈ (−π/2, π/2], i = 1 : k − 1

Method parameters θi uniquely define a method.

The parameter set {θi} is grid independent.
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Theorem: Each linear multistep method of type Ek , Ik , or I+k can
be represented by a single polynomial in [tn−1, tn], with k − 1, k,
and k − 1 parameters, respectively.

We can implement every maximal order method by constructing its
method polynomial, Pn, advancing the integration at each step:
xn = Pn(tn).

The solver (MODES) includes every possible multistep method of
maximal order, stiff and non-stiff, implicit and explicit.
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Parametric formulation of 0-stable multistep methods

Method Order Ik method parameters tan(θj), j = 0 : k − 1
BDFk k ≤ 6 {0}0:k−1

Kregel 3 154/543 -11/78 0
Rockswold 3 73/350 71/200 ∞
Method Order I+k method parameters cot(θj), j = 1 : k − 1
AMk k + 1 {0}1:k−1

dcBDFk k + 1 {(k + 1)/(j + 1)}1:k−1

Milne2 4 3
Milne4 5 15/4 0 0
IDC23 4 6/7 0
IDC24 5 15/26 0 0
IDC34 5 5/4 20/33 0
IDC45 6 45/28 10/11 15/32 0
IDC56 7 84/43 7/6 21/29 21/55 0

Method Order Ek method parameters cot(θj), j = 1 : k − 1
ABk k {0}1:k−1

EDFk k {1/(j + 1)}1:k−1

Explicit Euler 1
Midpoint 2 ∞
Nyström3 3 -3/2 0
Nyström4 4 -3/5 0 0
Nyström5 5 -45/133 0 0 0
EDC22 3 3/14 0
EDC23 4 6/49 0 0
EDC33 4 2/7 4/39 0
EDC24 5 90/1121 0 0 0
EDC34 5 10/53 10/219 0 0
EDC45 6 45/193 10/121 15/692 0 0
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Experimental software platform, MODES offers:

I Any multistep method of type Ek , Ik or I+k

I Constant or variable step-sizes

I Constant or variable order

I Initial step-size and starters (classical Gear, Runge-Kutta)

I Error per step or error per unit step

I Step-size controllers (several PI and low pass digital filters)

I Upper and lower bounds for step-size ratios
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Results for the Oregonator problem solved with MODES-BDF5
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Compare different methods under exact same conditions: AM3 vs.
another I+3 method. The second method is twice as accurate.
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State-of-the-art error control: Matlab BDF1-5 vs. MODES
BDF1-5 implementation
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Accuracy/Work proportionality for MODES and Matlab’s ode15s.
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Van der Pol with variable order BDF
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Various step-size ratio bounds: none, 160%, 10% and 0.05%.

The controller in MODES keeps the step-size ratios in check to
maintain stability.

0 100 200 300 400 500 600 700 800 900 1000
10-4

10-3

10-2

10-1

100

101

102
Van der Pol: step-sizes with different step-size ratio bounds

VOSS BDF3
Matlab BDF3



Lund Institute of Technology/Lund University

An application to SSP multistep methods

Strong stability preserving methods avoid instabilities when solving
ODEs arising from the semi-discretization of hyperbolic PDEs.

ẏ = F (y), y(t0) = y0, t ∈ [t0, tf ]

with the property

‖y + hF (y)‖ ≤ ‖y‖ for all y and h ≤ h∗

solved by explicit multistep method

yn =
k∑

i=1

(αiyn−i + hβiF (yn−i )), with αi , βi ≥ 0

SSP if ‖yn‖ ≤ max{‖yn−1‖, . . . , ‖yn−k‖} for 0 < h ≤ Ch∗
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Explicit SSP multistep methods

I αi , βi ≥ 0

I 0 < h ≤ Ch∗

I SSP constant: C = min
i
{αi/βi}

I q < k

I Zero coefficients of fixed step-size formula should be preserved
by variable step-size extension

Adaptive explicit SSP multistep methods: formulation for lower
order methods that preserves pattern of zero coefficients
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Hadjimichael et al. (2016): first variable step-size optimal SSP
methods of orders 2 and 3
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Formulation of optimal SSP methods

Procedure to construct optimal SSP(k , q) method

I Take sn−1 = 0 and s ′n−1 = 0

I Take sn−i + hn−i
βi
αi
s ′n−i = 0 whenever αi 6= 0, 1 < i < k

I Take sn−k = 0

I If q is odd, also add s ′n−k = 0

The method parameters are τi = βi/αi
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Example of optimal explicit 8-step SSP method of order 5

Its nonzero coefficients:

α1 =
1360

4363
, α4 =

233

2112
, α5 =

2323

10831
, α8 =

896

2465

β1 =
275

128
, β4 =

1044

1373
, β5 =

6661

4506
, β8 =

1781

5144

sn−1 = 0

s ′n−1 = 0

sn−4 + hn−4τ4s
′
n−4 = 0

sn−5 + hn−5τ5s
′
n−5 = 0

sn−8 = 0

s ′n−8 = 0

τ4 = β4/α4, τ5 = β5/α5
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An application to differential-algebraic systems

DAEs are differential equations coupled with algebraic constraints

ẋ = f (x , λ)

0 = g(x , λ)

λ is called the algebraic variable

The index characterizes the difficulty of a DAE.

Index 2 Euler-Lagrange DAE in multibody dynamics:

ẋ = f (x)− G (x)Tλ

0 = g(x)

with G (x) = ∂g/∂x ,G (x)G (x)T invertible
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Generating polynomials of a multistep method: ρ, σ
k∑

j=0

αk−jxn−j = h
k∑

j=0

βk−j fn−j

As difference operators

ρxn =
k∑

i=0

αk−ixn−i , σfn =
k∑

i=0

βk−i fn−i

As generating polynomials:

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j

Requirement for convergence:
I ODE methods: roots of ρ(ζ) on or within the unit circle;

those on the unit circle are simple

I methods for index 2 DAEs: roots of σ(ζ) inside the unit circle
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Consequence of σ not satisfying the strict root condition?

Instability in algebraic variables

Implicit methods with roots of σ(ζ) inside the unit circle

I e.g. BDF (k-step, order k)

I no implicit k-step method of order k + 1 (e.g.
Adams-Moulton)

Solution: β-blocking

I Modify σ to move roots into unit circle

I New operator σ + τ , with roots inside unit circle, should only
affect algebraic variables

I τ should disturb order as little as possible
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Construction of β-blocker operator

I Reduce order as little as possible by taking τ = c∇k

I Keep σ for differential variables

I σ + τ for algebraic variables

Order:
k + 1 for differential variable, k for algebraic variable
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β-blocking published 1997–2000 as fixed step-size technique
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Standard formulation of index-2 Euler-Lagrange DAE

Pn ∈ Pk+1

P ′n(tn) = f (Pn(tn))− G (Pn(tn))Tλn

Pn(tn−1) = xn−1

P ′n(tn−1) = f (xn−1)− G (xn−1)Tλn−1

cos θj−1sn−j + hn−j sin θj−1(s ′n−j + G (xn−j)
Tλn−j) = 0

g(Pn(tn)) = 0

for j = 2 : k .

Then xn := Pn(tn).
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β-blocked formulation of index-2 Euler-Lagrange DAE

Pn ∈ Pk+1 and Qn ∈ Pk

P ′n(tn) = f (Pn(tn))− G (Pn(tn))T(Qn(tn) + ĉ hkn−1Q
(k)
n (tn))

Pn(tn−1) = xn−1

P ′n(tn−1) = f (xn−1)− G (xn−1)TQn(tn−1)

Qn(tn−j) = λn−j

cos θj−1sn−j + hn−j sin θj−1(s ′n−j) + G (xn−j)
Tλn−j) = 0

g(Pn(tn)) = 0

for j = 2 : k , ĉ = c β−1k .

Set xn := Pn(tn) and λn := Qn(tn).
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β−blocked AM2

Effect of standard PI controller
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β−blocked AM2

Effect of low-pass digital filter controller
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4−step β−blocked Adams-Moulton for nonlinear pendulum

Low-pass filter controller: error-tolerance proportionality
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Results

A unified variable step-size formulation for all explicit and
implicit (stiff and nonstiff) methods of maximal order

A unified variable step-size formulation for explicit SSP
multistep methods In particular, a straightforward procedure for
the construction of optimal SSP methods

A unified variable step-size formulation of β-blocked methods
for index 2 Euler-Lagrange DAEs

MODES: a comprehensive multistep solver that uses these new
formulations; this allows experimentation with adaptive multistep
methods.
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