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Equation for heat conduction or diffusion:
 Special case, 1D, homogeneous media

 Where                                                 is the concentration or temperature.

 General case, diffusivity has spatial dependence:

Then: 
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Diffusion-reaction equations
 Linear reaction: 

 Fisher:

 Huxley:  

 Nagumo: 
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Heat transfer equation

Convection Heat source
(Newton’s law of cooling)                                    depends on ambient T and sunshine

Radiation
(Stefan-Boltzmann Law)

, 0K σ ≥
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Numerical methods
 Explicit methods: easy to code, parallelize

one time step runs fast,
Conditionally stable

 Implicit methods :   a system of algebraic equations must be solved
harder to code (unless built-in functions are used), 
hard to parallelize
one time step is slower,
Unconditional stability is frequent
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Space Discretisation
 Central difference scheme:

 In a matrix form:

 Stiffness ratio from the eigenvalues of M: 

 CFL limit: 
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Discretisation of the time variable
 Uniform discretization:

 Mesh ratio:  

 The ODE system, considered inside one time step: 

 Simplification will be made about the time of the (*) term.
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The constant-neighbour (CNe) method
 The ODE system: 

We obtain

The simple analitical solution:

The CNe formula:

The order of accuracy is 1.
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The CpC method
 The structure is similar to the explicit midpoint-method: 

two stages, both with the CNe formula

 1. Predictor with halfed time step size

 2. Corrector with full time step size

 Order of accuracy: 2
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The linear-neighbour (LNe) method
 The ODE system: 

where is the slope, and

We need a predictor stage: CNe formula with full time step size.

The de-coupled ODE system:

It also has an analitical solution, based on which we get the LNe formula:

Order of accuracy: 2
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Iteration: multi-stage methods
The result of the LNe corrector step can be used to compute new
which yield a new : Iterations inside the actual time step.
This iteration converges, but not to the analitical solution.
The order of accuracy remains 2, but the error slightly decreases.

The optimal version is LNe3
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Third order 3-stage methods
 The order of accuracy can be increased only be fractional time steps

CCL method:
1. CNe formula 1/3 length time step
2. CNe formula 2/3 length time step
3. LNe formula full-length time step

CLL módszer:
1. CNe formula 2/3 length time step
2. LNe formula 2/3 length time step
3. LNe formula full-length time step
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The Quadratic-neighbour (CLQ) method
 The ODE system: 

We want a polynomial with degree 3: we need function values in 3 points:
In the beginning, the middle and the end of the time step. 
Half and full steps
Predictor steps: CNe and LNe formulas.
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The CLQ algorithm
 1. Full-length CNe:   where

 2. Full and half length LNe using

 3. The result: 

 Where

 Order of accuracy: 3
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Iteration: multi-stage CLQ(n) methods
 The result of the Q corrector step can be sed to calculate new
With this we can perform new corrector steps inside the time step. 
For this, we need to compute the solution in the middle of the time step:

 4 stage: CLQ2, Order of accuracy: 4
5 and 6 stage: CLQ3 and CLQ4: still fourth order

CLQ5 and above: no unconditional stability

If we omit the LNe phase, we obtain CQ(n) :
Little bit more accurate, but no unconditional stability.
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Pseudo-implicit approach
θ-formula:

For the heat equation:

Trick: the neighbours are treated fully explicitely, 

but the actual u is partialy implicitely (pseudo-implicit trick).

The new values can be explicitely expressed!  
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Pseudo-implicit approach

Example: θ=1/2

The denominator is positive and the mesh ratio r in the denominator helps stability
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Pseudo-implicit approach: UPFD method

Example: θ=0

Unconditionally Positive Finite Difference (UPFD) method

Designed for the linear diffusion-convection-reaction PDE by Chen-Charpentier and Kojouharov, 2013

 1 stage, order of accuracy: 1
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Pseudo-implicit method
2-stage version to reach order of accuracy: 2

First stage: θ=0, half time step

Second stage, θ=1/2, full time step:

20

 ( )1 1pred 2
1

n n n
i i i

i

ru u u
u

r
− ++ +

=
+

 ( ) ( )pred pred
1 11

1

1

n
i i in

i
r u r u u

u
r
− ++

− + +
=

+



Odd-even hopscotch methods
 Spatial domain is divided into odd-even cells

 First compute u for all odd cells, then for the even cells

 Always the latest values are used.
 Original version (OOEH):     

First stage: Explicit Euler
Second stage: Implicit Euler (made fully explicit)

Order of accuracy: 2

First we tried to change the formulas:
1.  Reverse the order (UPFD + Explicit Euler) Reversed hopscotch method
2. Use the CNe formula
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Odd-even hopscotch methods

 Idea: shift the odd and even compared to each other
 The latest neighbor values are used, optimal case: middle of the time step
 What formulas should be used?
We tried a large number (up to 100000) combination, obtained a few optimal case.
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The SH and ASH methods
Psedo-implicit approach, θ formula.
Shifted-hopscotch (SH):
 Stage 1: half length, θ=0

 Stages 2-3-4: full length, θ=1/2

 Last stage: half length, θ=1
Assymetric-hopscotch (ASH):
 Same, but two stages are omitted
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The Leapfrog-Hopscotch (LH) method
Psedo-implicit approach, θ formula.
 Stage 0: half length, θ=0

 Further stages: full length, θ=1/2

 Last stage: half length, θ=1/2
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A Leapfrog-Hopscotch-CNe (LH-CNe) method
The Constant-neighbour formula is used in each stage.
First half, then a lot of integer, 
then finally a half time step
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Already known explicit stable methods
 UPFD
 Original odd-even hopscotch (OOEH)
 Dufort-Frankel
 Alternating Direction Explicit (ADE)
 Rational Runge-Kuta (RRK)
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Generalization: resistance-capacitance model

 If the material properties are space-dependent,
 and/or the geometry is more complicated.
Cell-capacity: Resistance: 

ODE system: 

Lumped parameter thermal network (LPTN)

In a matrix form: 
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Generalization: RC model

Example: The general version of the CNe formula:

where .
Contains only the matrix-elements: 

the methods can be applied to other ODE systems
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Analytical results: convex combination property
 We proved that when the CNe, LNe(n), CpC, LH-CNe methods are applied

to the general equation

Then the new values are the convex combination of the old ones
(thus the initial ones). 
 The same is proven for the CLQ - CLQ(n), n<5 methods, if they are applied

for the simplest equation

This implies unconditional stability and the Second Law of Thermodynamics.
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Analytical results: unconditional stability

 We proved that the CCL, CLL, PI and LH methods are unconditionally
stable when applied to the simple diffusion equation

Proof: von-Neumann method for the PI, CCL and CLL, 
The eigenvalues of the matrix of two stages for the LH.
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Analytical results: accuracy for ODEs
 We proved that if applied to the

Initial value problem, the orders of temporal convergence are the following: 
1   CNe 
2 LNe(n), CpC
3   CCL, CLL, CLQ
4   CLQ2, CLQ3 and CLQ4 

This implies the order of convergence in the time step size for the spatially
discretized diffusion equation in arbitrary dimensions and mesh type/size
(for the Lumped parameter thermal network LPTN) 
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Analytical results: accuracy for special ODEs
We proved that if applied to the ODE system or initial value problem

obtained by the spatial discretization of the diffusion equation, the order of
temporal convergence is 2 for the PI, LH and LH-CNe methods. 

Proof: Calculation of the local errors for the ODE system

PI: generalized to the case with the linear convection term
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Analytical results: local truncation errors
We calculated the local truncation errors for Eq. 

Examples:

Terms reflect inconsistency

33
2

2

u u
t x

α∂ ∂
=

∂ ∂

3
2 2 2

2 2 2 2
(2 ) (4 ) (6 ) (2 ) (4 ) (6 )2

3

42
3

360
7 2 89 ...

12 3 18 540CNe CDF x x x x x x
t t tu u t u x t u u u t

x x x
α ατ τ α α α α∆ ∆ ∆

= + + ∆ + ∆ ∆ − − + ∆ +
∆ ∆ ∆

2
2

LH CDF (4 ) 6

3 3

( )2 ...
4 24x x

tu u t
x

α ατ τ ∆
+ + ∆ +=

∆



Nonlinear equations: Fisher and Huxley
Operator-splitting: 
The method handling the diffusion term gives a „predictor” 
Then the increment due to the nonlinear term is taken into account in
the corrector-step.

Fisher Huxley

Substitution:

These can be combined with Strang-splitting.
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Analytical results: dynamical consistency
 We proved that if the formulas above are combined with the

previously mentioned convex combination methods, the obtained
operator-splitting methods are dynamically consistent for the Fisher
and Huxley euqations, thus the solution remains in the [0,1] interval if
the initial function has values in this [0,1] interval.

 Similar statement is proven in a wide parameter region for the
Nagumo-equation.

 This guarantees stability for arbitrary time step size and nonlinear
coefficient.
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1. Numerical case study
 Linear diffusion-equation
 The diffusion coefficient depend on space:

which means

The analytical solution:

M: Kummer-function
RC model, space-dependent R-s
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1. Numerical case study
 ( ) mx xα α= EE 8

MAX  = 6.3 10h −⇒ ×320 299 2 10m , N , x −= = ∆ = ⋅

If N is increased to :                              ,  RK methods do not work.799N = EE 14
MAX  =  5.6 10h −×
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Can non-physical oscillations emerge?
Convex combination methods: never for the linear heat equation

Example: very stiff system, 
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2. Numerical case study
 Linear diffusion-equation
 The diffusion coefficient depend on space and time:

which means

The analytical solution:

W: Whittaker-function
RC model, space and time-dependent R-s
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2. Numerical case study
47 2 5 10m . , x −= ∆ = ⋅
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2. Numerical case study 41
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3. Numerical case study: Fisher-equation
Analitical solution:  2
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4. Numerical case study: Huxley-equation
Analitical solution:1 7,α = β = 2

2
exact ( , )  where 
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5. Numerical case study: Huxley-equation
2D 
RC model, 
random R and C values, 

Numerical reference solution
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6. Numerical case study
Heat conduction with random initial conditions and 
moving and pulsing heat source, 2D, 
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7. Numerical case study: Wall with a thermal bridge
2D heat transfer with material inhomogeneity
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8. Numerical case study: 3D solar panel
heat transfer with several types of heat source
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Conclusions
The methods have been applied to several problems. 
Based on a large number of numerical case studies, 
 the proposed algorithms are competitive compared to the traditional

algorithms in the case of low or medium accuracy requirements. 
 Their advantage compared to the standard explicit methods increases

with the inhomogeneity of the media or the irregularity of the spatial mesh.
 Their advantage compared to the standard implicit methods increases

with the size of the spatial mesh.
 The LH is almost always the most efficient (less inconsistent terms in the

truncation error)
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