▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

On the parabolic Cauchy problem for quantum graphs with vertex noise

Eszter Sikolya¹ joint work with Mihály Kovács²

¹Eötvös Loránd University, Budapest ²Pázmány Péter Catholic University and Budapest University of Technology and Economics

May 8, 2025

E. Sikolva

Outline

1 Functions on graphs with vertex conditions

2 Deterministic linear parabolic problem on a network

3 Vertex noise perturbation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

E. Sikolva

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Continuity in vertex v

Berkolaiko, Kuchment (2013): quantum graphs

 $\mathsf{G}=(\mathsf{V},\mathsf{E})$ a simple graph with finite vertex set V and edge set E

 $e \cong [0,\ell_e], \quad e \in \mathsf{E}, \ \ell_e > 0$

u is a function on G if $u = (u_e)_{e \in E}$, $u_e \colon [0, \ell_e] \to \mathbb{R}$

 $E_\nu :$ the set of edges incident to $\nu,$ let

$$u_{\mathsf{e}}(\mathsf{v}) = u_{\mathsf{e}}(\mathsf{0}) \text{ or } u_{\mathsf{e}}(\mathsf{v}) = u_{\mathsf{e}}(\ell_{\mathsf{e}}) \text{ for } \mathsf{e} \in \mathsf{E}_{\mathsf{v}}$$

Definition

 $\begin{array}{l} u \text{ is continuous in vertex } v \text{ if } u_e(v) \text{ is the same value for each } e \in E_v, \\ notation: u(v). \\ u \text{ is continuous on } G, \text{ if it is continuous in each vertex.} \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kirchhoff–Neumann-condition in vertex v

If the one-sided derivatives of u_e exist at the endpoints of $e \cong [0, \ell_e]$, let

$$u'_{\mathsf{e}}(\mathsf{v}) = u'_{\mathsf{e}}(\mathsf{0}) ext{ or } u'_{\mathsf{e}}(\mathsf{v}) = -u'_{\mathsf{e}}(\ell_{\mathsf{e}}) ext{ for } \mathsf{e} \in \mathsf{E}_{\mathsf{v}}.$$

For some $(c_e(v))_{e \in E_v}$

Definition

Kirchhoff(-Neumann)-condition is satisfied in v if

$$\sum_{\mathsf{e}\in\mathsf{E}_\mathsf{v}}c_\mathsf{e}(\mathsf{v})\cdot u_\mathsf{e}'(\mathsf{v})=0.$$

E. Sikolya

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Diffusion problem on G

$$\begin{cases} \dot{u}_{e}(t,x) = (c_{e}u'_{e})'(t,x) - p_{e}(x)u_{e}(t,x), & x \in (0,\ell_{e}), \ t > 0, \ e \in \mathsf{E}, \ (a) \\ u(t,\cdot) \text{ is continuous on G}, & t > 0, & (b) \\ 0 = \sum_{e \in \mathsf{E}_{v}} c_{e}(v) \cdot u'_{e}(t,v), & t > 0, \ v \in \mathsf{V}, \ (c) \\ u_{e}(0,x) = u_{0,e}(x), & x \in [0,\ell_{e}], \ e \in \mathsf{E}, \ (d) \end{cases}$$

$$c_{\mathsf{e}} \in C[0,\ell_{\mathsf{e}}], \quad 0 < c_0 \leq c_{\mathsf{e}}(x), \quad x \in [0,\ell_{\mathsf{e}}], \ \mathsf{e} \in \mathsf{E}$$

$$0 \leq p_{\mathsf{e}} \in L^{\infty}(0, \ell_{\mathsf{e}}), \quad \mathsf{e} \in \mathsf{E}$$

notice: $2 \cdot |\mathsf{E}|$ boundary conditions!

Spaces and operators

state space of the edges:

$$\mathfrak{H} := \prod_{\mathsf{e} \in \mathsf{E}} L^2(\mathsf{0}, \ell_\mathsf{e}) \,, \ \mathfrak{H}^2 := \prod_{\mathsf{e} \in \mathsf{E}} H^2(\mathsf{0}, \ell_\mathsf{e})$$

boundary space of the vertices: \mathbb{R}^n with |V| = n"feedback" operator $C : \mathcal{D}(C) \subset \mathcal{H} \to \mathbb{R}^n$,

$$\mathcal{D}(C) = \left\{ u \in \mathcal{H}^2 : u \text{ is continuous on } \mathsf{G} \right\};$$
$$Cu = \left(\sum_{\mathsf{e} \in \mathsf{E}_v} c_\mathsf{e}(\mathsf{v}) \cdot u_\mathsf{e}'(\mathsf{v}) \right)_{\mathsf{v} \in \mathsf{V}} \in \mathbb{R}^n$$

system operator $A \colon \mathcal{D}(A) \subset \mathcal{H} \to \mathcal{H}$,

 $\mathcal{D}(A) := \{ u \in \mathcal{H}^2 : u \text{ is continuous on } \mathsf{G} \text{ and } Cu = 0_{\mathbb{R}^n} \};$ $A := \operatorname{diag} \left(\frac{d}{dx} \left(c_{\mathsf{e}} \frac{d}{dx} \right) - p_{\mathsf{e}} \right)_{\mathsf{e} \in \mathsf{E}}$

E. Sikolya

Diffusion problem – (ACP)

diffusion problem on $\mathsf{G} \Longleftrightarrow$

$$\begin{cases} \dot{u}(t) = A u(t), & t > 0, \\ u(0) = u_0, \end{cases}$$
(ACP)

 $u_0 = (u_{0,e})_{e \in E} \in \mathcal{H}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

E. Sikolva

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Operator semigroups

Engel, Nagel (2000); Arendt, Batty, Hieber, Neubrander (2011)

Let *E* be a Banach space, $\mathcal{L}(E)$ the bounded linear operators on *E*.

Definition

The function $S: [0, \infty) \to \mathcal{L}(E)$ is called strongly continuous semigroup or C_0 -semigroup on E if

1 $S(t+s) = S(t)S(s), s, t \ge 0, S(0) = Id_E;$

2 $[0,\infty) \ni t \mapsto S(t)x \in E$ is continuous for all $x \in E$.

Notation: $(S(t))_{t\geq 0}$.

Operator semigroups

Definition

It can be seen that each C_0 -semigroup S admits a unique generator $(A, \mathcal{D}(A))$ that is a densely defined and closed linear operator with

$$Ax = \lim_{t\downarrow 0} rac{S(t)x - x}{t}, \quad \mathcal{D}(A) = \left\{x \in E : \exists \lim_{t\downarrow 0} rac{S(t)x - x}{t}
ight\}.$$

Proposition

For each C_0 -semigroup $(S(t))_{t\geq 0} \exists M \geq 1$ and $\exists w \in \mathbb{R}$ s.t.

 $\|S(t)\| \leq M \cdot e^{wt}, \quad t \geq 0$

and

 $\{\lambda : \operatorname{Re} \lambda > w\} \subset \rho(A).$

E. Sikolya

Operator semigroups

Let A be a closed linear operator, define the abstract Cauchy problem

$$\begin{cases} \dot{u}(t) = A u(t), t > 0, \\ u(0) = x \in E. \end{cases}$$
 (ACP)

A mild solution of (ACP) is a function $u \in C(\mathbb{R}_+, E)$ with

$$\int_0^t u(s)\,ds\in \mathbb{D}(A) ext{ and }A\int_0^t u(s)\,ds=u(t)-x,\;t>0.$$

Theorem

T.f.a.e.

(i) For all $x \in E$ there exists a unique mild solution to (ACP);

(ii) The operator $(A, \mathcal{D}(A))$ generates a C_0 -semigroup $(S(t))_{t\geq 0}$ on E. In this case, the mild solution is given by $u(t) = S(t)x, t \geq 0$.

Operator semigroups

Definition

The semigroup S is called bounded analytic if $\exists \theta \in (0, \frac{\pi}{2}]$ s.t. S has a holomorphic extension to the sector

$$\Sigma_{\theta} \coloneqq \{ z \in \mathbb{C} \setminus \{ 0 \} \colon | \arg z | < \theta \}$$

which is bounded on $\Sigma_{\theta'}$ for each $\theta' \in (0, \theta)$. An analytic semigroup is contractive if S(t) is a contraction for each t > 0.

Proposition

The C_0 -semigroup $(S(t))_{t\geq 0}$ is bounded analytic iff its generator $(A, \mathcal{D}(A))$ is sectorial, that is, $\exists \theta \in (0, \frac{\pi}{2}]$ s.t.

$$\Sigma_{rac{\pi}{2}+ heta}\subset
ho(A)$$
 and $\sup_{\lambda\in\Sigma_{rac{\pi}{2}+ heta-arepsilon}}\|\lambda R(\lambda,A)\|<\infty$ for all $arepsilon>0.$

Back to the network problem

$$A := \operatorname{diag} \left(\frac{d}{dx} \left(c_{\mathsf{e}} \frac{d}{dx} \right) - p_{\mathsf{e}} \right)_{\mathsf{e} \in \mathsf{E}}$$
$$\mathcal{D}(A) := \{ u \in \mathcal{H}^2 \colon u \text{ is continuous on } \mathsf{G} \text{ and } Cu = 0_{\mathbb{R}^n} \}$$
$$\text{on } \mathcal{H} = \prod_{\mathsf{e} \in \mathsf{E}} L^2(0, \ell_{\mathsf{e}}) \text{ with } C \colon \mathcal{H}^2 \to \mathbb{R}^n, \ Cu = \left(\sum_{\mathsf{e} \in \mathsf{E}_v} c_{\mathsf{e}}(\mathsf{v}) \cdot u'_{\mathsf{e}}(\mathsf{v}) \right)_{\mathsf{v} \in \mathsf{V}}.$$

Proposition (Mugnolo '07, Kovács, S. '21)

- **1** $(A, \mathcal{D}(A))$ generates a C_0 -semigroup on \mathcal{H} , that is, for all $u_0 \in \mathcal{H}$ there exists a unique mild solution to (ACP) hence, for the diffusion problem on G;
- **2** Moreover, $(A, \mathcal{D}(A))$ is dissipative, sectorial and self-adjoint, $(0, +\infty) \subset \rho(A)$. Thus the C_0 -semigroup $(S(t))_{t\geq 0}$ generated by $(A, \mathcal{D}(A))$ is analytic, positive and contractive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Noise in the Kirchhoff-Neumann-condition

$$\begin{cases} \dot{u}_{e}(t,x) = (c_{e}u'_{e})'(t,x) - p_{e}(x)u_{e}(t,x), & x \in (0,\ell_{e}), \ t \in (0,T], \ e \in E, \ (a) \\ u(t,\cdot) \text{ is continuous on } G, & t \in (0,T], \ (b) \\ \dot{\beta}_{v}(t) = \sum_{e \in E_{v}} c_{e}(v) \cdot u'_{e}(t,v), & t \in (0,T], \ v \in V, \ (c) \\ u_{e}(0,x) = u_{0,e}(x), & x \in [0,\ell_{e}], \ e \in E, \ (d) \end{cases}$$

 $(\Omega, \mathscr{F}, \mathbb{P})$ complete probability space, $(\mathscr{F}_t)_{t \in [0, T]}$ right continuous filtration,

$$(\beta(t))_{t\in[0,T]} = \left(\left(\beta_{\mathsf{v}}(t)\right)_{t\in[0,T]} \right)_{\mathsf{v}\in\mathsf{V}},$$

 \mathbb{R}^{n} -valued Brownian-motion (Wiener-process) with covariance matrix

$$Q \in \mathbb{R}^{n \times n}$$

Mild solution

 $X(\cdot) \in C([0, T], L^2(\Omega, \mathcal{H}))$ is a mild solution to the problem if $\{X(t)\}_{t \in [0, T]}$ is $(\mathscr{F}_t)_{t \in [0, T]}$ -adapted and for all $t \in [0, T]$

$$X(t) = X(t, u_0) = S(t)u_0 + \int_0^t (1 - A)S(t - s)D\,d\beta(s), \quad t \in [0, T]$$

 \mathbb{P} -a.e. where $D \coloneqq D_{C,1}$ is the Dirichlet-operator

Greiner (87) \Rightarrow for all $\lambda \in \rho(A)$ exists the Dirichlet-operator

$$D_{C,\lambda} = \left(C \mid_{\operatorname{Ker}(\lambda - A_{\max})}\right)^{-1} \in \mathcal{L}(\mathbb{R}^{n}; \mathcal{H}) \text{ with}$$
$$A_{\max} \coloneqq \operatorname{diag}\left(\frac{d}{dx}\left(c_{e}\frac{d}{dx}\right) - p_{e}\right)_{e \in \mathsf{E}}$$
$$\mathcal{D}(A_{\max}) \coloneqq \left\{u \in \mathcal{H}^{2} \colon u \text{ is continuous on } \mathsf{G}\right\}$$

Existence and uniqueness of the mild solution

A generates a contractive, analytic semigroup \Rightarrow for $\alpha \in (0, 1)$ we can define the fractional domain spaces of A as

 $\mathfrak{H}_{\alpha} := \mathfrak{D}((1-A)^{\alpha}), \quad \|u\|_{\alpha} := \|(1-A)^{\alpha}u\|, \quad u \in \mathfrak{D}((1-A)^{\alpha})$

Theorem (Kovács, S. '24)

For $\alpha < \frac{1}{4}$ and $u_0 \in \mathcal{H}_{\alpha}$, there exists a unique mild solution to the vertex noise problem, and it has a continuous version in \mathcal{H}_{α} .

Proof: Da Prato, Zabczyk (93) \Rightarrow we have to show that for $\alpha < \frac{1}{4}$ there exists $\gamma > 0$ s. t.

$$\int_0^T t^{-\gamma} \left\| (1-\mathcal{A}) \mathcal{S}(t) \mathcal{D}_{\mathcal{C},1} \mathcal{Q}^{rac{1}{2}}
ight\|_{\mathsf{HS}(\mathbb{R}^n,\mathcal{H}_lpha)}^2 \, dt < +\infty.$$

By a recent result of Bolin, Kovács, Kumar and Simas (2024) for $\alpha < \frac{1}{4}$ and $\varepsilon > 0$ small enough, $(1 - A)^{\frac{1}{2} + \alpha + \varepsilon} D_{C,1}$ is a bounded operator from \mathbb{R}^n to \mathcal{H} .

Vertex noise perturbation

Existence and uniqueness of the mild solution

Proof (continued):

$$\begin{split} &\int_0^T t^{-\gamma} \left\| (1-A)S(t)D_{\mathcal{C},1}Q^{\frac{1}{2}} \right\|_{\mathsf{HS}(\mathbb{R}^n,\mathcal{H}_\alpha)}^2 dt = \\ &\int_0^T t^{-\gamma} \left\| (1-A)^{\frac{1}{2}-\varepsilon}S(t)(1-A)^{\alpha+\varepsilon-\frac{1}{2}}(1-A)D_{\mathcal{C},1}Q^{\frac{1}{2}} \right\|_{\mathsf{HS}(\mathbb{R}^n,\mathcal{H})}^2 dt \\ &\leq \int_0^T t^{-\gamma} \left\| (1-A)^{\frac{1}{2}-\varepsilon}S(t) \right\|^2 dt \cdot \left\| (1-A)^{\alpha+\varepsilon+\frac{1}{2}}D_{\mathcal{C},1} \right\|_{\mathsf{HS}(\mathbb{R}^n,\mathcal{H})}^2 \cdot \mathsf{Tr}(Q) \\ &\leq c_T \cdot \int_0^T t^{-\gamma} \cdot \frac{1}{t^{1-2\varepsilon}} dt, \end{split}$$

 $\gamma < 2 \varepsilon \Longrightarrow$ the last integral is finite.

Vertex noise perturbation 0000000

Strong Feller property of the transition semigroup

Definition

The transition semigroup of the solutions $X(t) = X(t, u_0)$ is defined as

 $(\mathfrak{P}_t\phi)(u_0) := \mathbb{E}\left(\phi(X(t,u_0))\right), \qquad t \in [0,T], \ \phi \in \mathfrak{B}_b(\mathfrak{H}).$

 $(\mathcal{P}_t)_{t\geq 0}$ is said to be strong Feller at time T>0 if

for any $\phi \in \mathcal{B}_b(\mathcal{H})$, $\mathcal{P}_T \phi \in C_b(\mathcal{H})$ holds.

Theorem (Fkirine, Kovács, S. '25)

Let G be a tree, $c_e = 1$, $p_e = 0$, $e \in E$; that is, A is the Laplacian on G. If the covariance matrix $Q = \operatorname{diag}(q_v)_{v \in V}$ of the Kirchhoff noise is diagonal, and $q_v \neq 0$ for all terminal vertices except for, possibly, one of them, then the transition semigroup \mathcal{P}_t is strong Feller at any time T > 0.

References

- Gregory Berkolaiko and Peter Kuchment, *Introduction to quantum graphs*, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013.
- Giuseppe Da Prato and Jerzy Zabczyk, *Evolution equations with white-noise boundary conditions*, Stochastics Stochastics Rep. **42** (1993), no. 3-4, 167–182.
- Klaus-Jochen Engel and Marjeta Kramar Fijavž, Waves and diffusion on metric graphs with general vertex conditions, Evol. Equ. Control Theory 8 (2019), no. 3, 633–661.
- M. Kovács and E. Sikolya, On the parabolic Cauchy problem for quantum graphs with vertex noise, Electron. J. Probab., 28 (2023), 1–20.
 - M. Fkirine, M. Kovács and E. Sikolya, On the strong Feller property of the heat equation on quantum graphs with Kirchhoff noise, submitted

E. Sikolva

Thank you for your attention!

E. Sikolya