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Step-size coefficients for boundedness of LMM:s

Context

¢ Presentation is based on the paper L. L., Exact optimal values of step-size coefficients_for boundedness
of linear multistep methods, Numerical Algorithms, 75 (2017)

¢ Numerical experiments and symbolic proofs have been carried out by using the Wolfram
Language (Mathematica)

¢ Consider an initial-value problem u' (£) = F(u(?)) for ¢ = 0 with «(0) = ug

¢ Approximate its solution by a linear multistep method (LMM):
Uy, = Zle aju,—j + At Zf:o bj F(u,_)) (for n = k)

¢ Basic assumptions on the LMM: consistency, zero-stability, irreducibility, by = 0

¢ Monotonicity or boundedness properties play an important role: 3 ? u = 1 such that
llunll = pp maxo<jcr-1 llujll (for n = k)

¢ How to guarantee the monotonicity or boundedness property?

¢ One possibility: impose some restrictions on the step size At
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Step-size coeflicients for boundedness of LMM:s

Restriction on the step size: SCB or SSP coeflicients

Definition 1.2. Suppose that some method coefficients a; € R (1 < j < k) and b; € R
(0 < j < k) satisfying are given. We say that v > 0 is a step-size coefficient for
boundedness (SCB) of the corresponding LMM, if 3 u > 1 such that

e for any vector space with seminorm (V.| -||),

o for any function F : V — 'V satisfying
Ir>0 YweV : [[v+7F©)] < v,
o for any At € (0,v7],
o and for any starting vectorsu; € V. 0<j<k—1),
the sequence u,, generated by has the property ||u,| < p - maxo<j<k—1 ||y ]| for all n > k.

¢ If u =1, the method is SSP (strong-stability preserving), and y > 0 is the SSP coeflicient.

¢ Clearly: larger y > 0 = larger step sizes = more efficient numerical method
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Step-size coefficients for boundedness of LMM:s

Fundamental questions

¢ Decide if 4 y>0 SCB or SSP coefhicient

¢ Decide if'a given y>0 1s an SCB or SSP coefficient

¢ Iind the maximum y>0 SCB or SSP coefhicient

¢ Clearly: 4 y>0 SSP coeflicient = 7y 1s an SCB as well

¢ ]t 1s easy to answer the above questions for SSP coefficients
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Step-size coefficients for boundedness of LMM:s

Existence and computation of SSP coetlicients

¢ There are simple (necessary and sufficient) conditions to check whether 4 an SSP coefficient
or to find the largest SSP coefficient for a given LMM:

¢ 4 SSP coefficient <

bg >0, aj >0, bj>0 (for1<j<k), and a;>0 forallie{l,2,..., k} with b; > 0.
¢ For a given y>0 to be an SSP coefficient, it is necessary and sufficient:

bo>0, and a;=>0, bj >0, ybi<aj (for1<j<k).

¢ However, for many practically relevant methods: 7 positive SSP coefficient, but 3 positive
SCB
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Existence and computation of SCB

¢ [t 1s more difficult to check whether 4 an SCB,
¢ or to determine if a given positive number 1s a SCB,
¢ or to compute the maximum SCB—even for a single LMM.

¢ In W. Hundsdorfer (1954-2017), A. Mozartova, M. N. Spijker, Stepsize restrictions for
boundedness and monotonicity of multistep methods, J. Sci. Comput. 50 (2012), 265-286, they define

0 for n <0,

k
by, — 7y bon (7 —I—Z — b)) pn—i(y) for 0 <n <k,
j=1

k
— v bopn (v +Z — b)) pon—i(7) for n > k.
j=1

¢ Notice that p,(y) 1s determined only by the coefficients of the LMM
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Step-size coefficients for boundedness of LMM:s

Determining if a given positive number 1s a SCB
¢ W. Hundsdorfer, A. Mozartova, M. N. Spijker:

Theorem 1.6 Suppose the LMM satisfies (5) and let y > 0 be given. Then y is a
SCB if and only if

—y eint(S), and pu,(y) = Oforalln € N*. (8)
¢ We need to check oo many sign conditions

¢ They typically checked these conditions for 1 <z < 10001t 3 positive SCB
¢ But what if A positive SCB?



8 | FM_seminar_20180322.nb

Step-size coefficients for boundedness of LMM:s

Deciding whether 1 positive SCB

* M. N. Spijker, The existence of stepsize-coefficients_for boundedness of linear multistep methods, Appl.
Numer. Math. 63 (2013) 45-57:

0 for n < O,

k
bp+ )Y ajt,—j for 0 < n <k,

J=1

k
Y a;Th—j for n > k.
j=1

* An almost necessary and sufficient condition for 3 positive SCB: the strict positivity of 7,

¢ The above sequence 1s easier to study: no dependence on a parameter (y)

¢ The author analyzes the LMM families: Adams—Moulton (or implicit Adams), Adams—
Bashforth (or explicit Adams), BDF, extrapolated BDF (EBDF), Milne—Simpson, Nystrom
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Example (M. N. Spijker)

¢ Abbreviation here: SCM = step-size coeflicient for monotonicity = SSP coeflicient

Corollary 2.2 In the EBDF family

e 3ISCM > O0forthe I-step EBDF method;
e FASCM > 0bur3SCB > 0 for the k-step EBDF method with k € {2, 3,4, 5};
e ASCB > 0 for the 6-step EBDF method.
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Exact optimal value yg,, of SCB 1n the Adams—Bashforth family

¢ We effectively use the criterion with the parametric sequence: u,(y) = 0 for all » € N*

¢ In the AB family, u,(y) 1s a polynomial in y for each

Theorem 2.4 The optimal values of the step-size coefficients for boundedness in the
Adams—Bashforth family are given by the rational numbers below:

®  Yap,l = 1;

®  Ysup2 = 4/9 &~ 0.44444;

®  Yap3 = 84/529 ~ 0.15879;
* fork = 4,¥]SCB > 0.



FM_seminar_20180322.nb | 11
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Exact optimal values g, of SCB in the BDF family for £ = 1 and
k=2:
¢ We again use the criterion with the parametric sequence: u,(y) = 0 for all n € N*

¢ In the BDF family, u,(y) 1s a rational function in 7y for each 7, and it turns out that

Ysup,1 = -+ 00;
®  Ysup2 = 1/2;
¢ For k£ = 1 (implicit Euler method), the corresponding recursion is
Y + Dun(y) — tamr(y)=0  (@m=1)
with
m =—.
Ho(y) o
The explicit solution is ,(y) = 1/(y + 1)**t! > 0, so, due to Theorem 1.6, we
have that y is a SCB for any y > 0.

¢ For k = 2, the corresponding recursion is

Qy +3)un(y) —4in—1(¥) + tp—2(y) =0 (n>2)
with

mo(y) = .opi(y) =

2y +3 QQy +3)%°

Its characteristic polynomial P> (-, y) is quadratic for y > 0. This polynomial has

e two distinctreal roots for0 < y < 1/2;
e adouble real root fory = 1/2;
e  a pair of complex conjugate roots fory > 1/2.

For any fixed y > 1/2 we thus have

un(y) = lerI" m(y)(M) +ci(y) o)
lor()l ler(»)]

¢ Since the polynomial is quadratic, one can directly handle these expressions
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Computational details in the BDF family for £ = 3: an upper
bound

® For £ = 3, the corresponding recursion is
Oy + 1D (y) = 18ptn—1(y) +9n—2(y) = 2up—3(y) =0 (n = 3)
with

108 LG )
Gy +12 VT Te, )

. M) =

6
mo(y) = & 111

¢ A useful lemma involving a simple root of the function p,( - ):

Lemma 3.1 Suppose there exist some n € N and y* > 0 such that u,(y*) =0
and (1, (y*) € R\ {0}. Then yp < ¥*.

¢ [et us consider the 6th term

6 (5184y* — 539352y3 + 4277340y 2 — 7093698y + 3248425)
6y +11)7

Thee polynomial {5184, —539352, 4277340, —7093698, 3248425} in the numerator
has 4 real roots; let y* ~ 0.831264 denote its smallest root (the other three zeros
are located at &~ 1.22747, ~ 6.42689, and ~ 95.556). Then, due to Lemma 3.1, we

have Vsup,3 = ae

ne(y) =
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Computational details in the BDF family for £ = 3: a lower bound

¢ It is easily seen from the definition that

Ay > 0: pa(y0) 20 (Vn e N = yup > 0.

¢ So to finish the proof of yg,, = y* ~ 0.831264 (an algebraic number of degree 4), we verify
that w,(y*) = 0 for eachn e N
¢ In this case, the explicit form of w,(y*) is

pn(y*) = cio} + c205 + @2 (22)" (n >0,

where

e 01 =~ 0.500518 is the largest real root of the polynomial

Pppr31 = {34012224, —85030560, 108650160, —91171656, 55033668,
—25076142, 8777889, —2366334, 486000, —75816, 10080, —1152, 64};

* 0y = 0.312678 + 0.390087i is the root of Pgpr3; with the largest real part;
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Computational details in the BDF family for £ = 3: final steps of

the proof of yy,, = ¥* = 0.831264 (an algebraic number of degree

4)

¢ We take into account that ¢; ~ 0.50155509, and p; ~ 0.500518, and | p2 | ~ 0.499935
(exact algebraic numbers)

¢ p; and p9 are close to each other

Now, clearly, i, (y*) = of [c1 + ¢2 (02/01)" + T2 (02/01)"]. and we have

(az>” _<_Q2)n 2777 < 9989 )
aol—) + | — .
01 01

ol 9989
On the other hand,

01

= 2l " 70000

10000

2777 ( 9989 \" 50155
——) < < C1
10000 \ 10000 100000
forn > 93, therefore u, (y*) > 0 forn > 93.

Finally, one checks that u,(y*) > 0 forn € {0,1,..., 92} \ {6} (recall that
ue(y™) = 0), so the proof is complete.

Remark 3.9 We have o> (y*) ~ 1.585176 - 1028,
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Computational details in the BDF family for £ = 4

¢ For k = 4, the recursion is

2y +25) pn(y) = 48pn—1(y) 4+ 36pn—2(y) — 160y —3(y) + 3pp—a(y) =0 (n = 4)

with
2 576 1296(—4y + 13)
po(y) = 12, 125" ni(y) = 2y + 257 m2(y) = 12y 1257
192 (144y% — 1992y + 2137)
u3(y) = 12y + 25)°

¢ This time it turns out that
Youp,4 ~ 0.486220284043 is the unique real root of the fifth-degree polynomial

{147456, —4065024, 97751296, —178921248, 146499984, —39945535};
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Computational details in the BDF family for £ = 4: harder to
analyze

¢ Recall Lemma 3.1: a simple root of the function u,(-) for some z is an upper bound on Yy

Remark 3.4 Obtaining the exact value of ysup4 ~ 0.48622 proved to be signifi-
cantly harder than determining that of Ysup,3, because we could not apply Lemma 3.1
to bound Ysup.4 from above. The value of Ysup,4 was found via a series of numerical
experiments. For example, to see ysup 4 < 0.48625, one checks that the sequence fiy,
in Theorem 1.6 for 1 < n < 27000 satisfies

1, (48625/100000) < 0 <= n € {26814, 26875, 26886, 26936, 26947, 26997}.

To find all these six indices, we used 16000 digits of precision to evaluate the terms of
the recursion [, (48625/100000)—15000 digits would be insufficient. In fact, these
experiments led to the formulation of Lemma 3.2.
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Computational details in the BDF family for £ = 4

¢ A dominant root of the characteristic polynomial = a root with maximum modulus

¢ A new observation: if a positive dominant root loses its dominant property at a certain value
of the parameter y*, then yy,, < y*. More precisely we have the following elementary lemma.

The following lemma will be applied to bound yg,, from above when the char-
acteristic polynomial has a unique pair of complex conjugate roots that are
dominant.

Lemma 3.2 Suppose that z € C\ R with |z] = 1, w € C\ {0}, and a real
sequence v, — 0 (n — +o00) are given. Then wz" + w(z)" + v, < 0 for
infinitely many n € N,

¢ The situation becomes much harder to analyze, if there are e.g. 4 dominant complex roots.
Many unsolved questions in this area, related to deep theorems in Diophantine
approximation. Some recent progress:

11. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In: reachability
problems, 6th International Workshop, RP 2012, Bordeaux, France, September 17-19 (2012).
doi:10.1007/978-3-642-33512-9_3

12. Quaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence sequences. In:
proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (2014).
doi:10.1137/1.9781611973402.27

13. Quaknine, J., Worrell, J.: Automata, languages, and programming. Part II: on the positivity problem
for simple linear recurrence Sequences, pp. 318-329. Springer, Heidelberg (2014)

14. Ouaknine, J., Worrell, J.: Ultimate positivity is decidable for simple linear recurrence sequences,
pp. 330-341. Springer, Heidelberg (2014)



18 | FM_seminar_20180322.nb

Step-size coefficients for boundedness of LMM:s

Computational details in the BDF family for £ = 4: final steps of
Ysup = ¥ =~ 0.48622 (a degree 5 algebraic number)

®lTork=4and0<y< % ~ 0.5833, the characteristic polynomial has 2 positive real (019)
and 2 conjugate complex roots (p3,4), and 0 < pg < pi
¢ Moreover we have
le3(¥)| = lea(¥)l < e1(y) for 0 < y < y*
l03(y ) = leay ") = e1(y*) fory = y*
* o1(y) <les)l = lea(y)lfory* <y <7/12.

¢ So Lemma 3.2 becomes applicable, and the rest of the proof is similar to the final steps of
the proof in the previous £ = 3 case



FM_seminar_20180322.nb | 19

Step-size coefficients for boundedness of LMM:s

Computational details for £ = 5

60y + 137)pun(y) — 300in—1(y) + 3001, —2(y) — 200, —3(y)+
T5pn-a(y) —12uy-5(y) =0

60y + 137’ 60y + 137)%"

12000 (3600y % — 37560y + 30469)

(n=5)

ma(y) =

18000(—60y + 163)

60y + 137)3

60y + 137)4
4500 (—216000y* + 8600400y % — 22146420y + 10021847) .

’

with
60
mo(y) =
ma(y) =
En(y)

0.004 -

0.002 -

-0.002}

-0.004 -

60y + 137)

Fig. 1 The functions y + p,(y) for1 < n < 21 corresponding to the BDF5 method are shown (the
curves with indices n € {1, 2,5, 6, 10, 11} are not visible in this plot window). The red dot is placed at

Y = Yap.s ~ 0.30421
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Computational details for £ = 5
®  Yap,5 ~ 0.304213712525 is the smaller real root of the tenth-degree polynomial

{9183300480000000000, 85812841152000000000, 11922800956027200000000,
—158236459797931200000000,  1300372831455671124000000, —3469598208824475416400000,
5222219230639370911710000, —4938342912266137089480000, 2829602902356809601352800,
—897140360120473365541380,  113406532200497326720157};
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Computational details for £ = 6

320y +49) n(y) — 360u,—1(y) + 450pn—2(y) — 400, —3(y) + 2251p—a(y)—

T2up—s5(y) + 10u,—6(y) =0 (n >6)

with
2400

20
20y +49° (20y + 49)%’
3000(—20y + 47) 8000 (400y% — 3440y + 2131)
20y + 49 - 3(20y + 49)*
500 (—24000y3 + 695600y 2 — 1343380y + 474833)
(20y +49)°
160 (480000y* — 53296000y 3 + 283987200y — 212499240y + 84071653)
(20y + 49)6

mo(y) = ui(y) =

u2(y) =

’

na(y) =

9

us(y) =
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Computational details for £ = 6
®  Yap6 ~ 0.131359487166 is the smaller real root of the 18th-degree polynomial

{301499153838045275528311603200000000, 122639585534504839818945201438720000000
384963168041618344234237602954215424000000, 27549570033081885223128023207444584857600000,
688321830171904949334479202088109368934400000, —3841469418723966761157769983211793789485056000,

114843588487750902323103668249803599786305126400, —1006269459507863531788997342497299304467812843520,
5587246198359348966734174906666273788289332150272, —17429944795858965010882996868073155329514839408640,
35959114141443095864886240750517884787497897431040, —53357827225132542443145327442029250536098863687680,
58779078470720235677143648519968524504336318905600, —48117131040654192740877887801688549303578668712064,
28809153195856173726312967696976168633917662024240, —12158530101520566099221248226347019432756062262240,
3383327891741061214240426918034255832010259451480,  —541370800878125712591610585145194659522378896880,
33328092641186254550760247661168148768262937067}.
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Computational details: £ = 6

Im
1.0

Un(y™)
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Summary for the BDF and AB families

We have identified two types of conditions that characterize yg,p in these multistep
families:

(1) a positive real dominant root of the characteristic polynomial corresponding to
the recursion ju, () loses its dominant property at y = Ysup, OF

(ii) there is an index no € N such that ygyp is a simple root of the function /i, (-).
It turns out that ygyp is determined

by condition (i) for the BDF methods with k € {2, 4, 5, 6} steps;

e by condition (ii) with ng = 6 for the 3-step BDF method;

® by condition (ii) with ng = 2 for the Adams—Bashforth methods with
k € {1, 2, 3} steps.



