# What is the difference between weakly and strongly stable linear multistep methods?

M.E. Mincsovics

9 November, 2017.

in the memory of I. Mezei Miklós Farkas Seminar



## Linear multistep methods

#### **IVP**

$$\begin{cases} u(0) = u^0 \\ u'(t) = f(u(t)) \end{cases}$$

f Lipschitz

#### LMM

$$\begin{cases} u_{i} = c^{i}, & i = 0, \dots, k - 1 \\ \frac{1}{h} \sum_{j=0}^{k} \alpha_{j} u_{i-j} = \sum_{j=0}^{k} \beta_{j} f(u_{i-j}), & i = k, \dots, n + k - 1 \end{cases}$$

## Characteristic polynomials

#### Characteristic polynomials

$$\varrho(x) = \sum_{j=0}^k \alpha_j x^{k-j}, \qquad \sigma(x) = \sum_{j=0}^k \beta_j x^{k-j}.$$

#### Consistency

$$\varrho(1) = 0$$
 and  $\varrho'(1) = \sigma(1)$ 

#### Root-conditions

#### Definition

- An LMM is *strongly stable*: for every root  $\xi_i \in \mathbb{C}$  of the first characteristic polynomial  $|\xi_i| < 1$  holds except  $\xi_1 = 1$ , which is a simple root.
- A not strongly stable method is *weakly stable*: for every root  $\xi_i \in \mathbb{C}$  of the first characteristic polynomial  $|\xi_i| \leq 1$  holds and if  $|\xi_i| = 1$  then it is a simple root, moreover  $\xi_1 = 1$ .

#### Why should we distinguish them?

## Motivational example

#### Test-equation

$$\begin{cases} \dot{y}(t) = \lambda y(t) \\ y(0) = 1 \end{cases}$$

solution:  $y(t) = e^{\lambda t}$ 

### Midpoint vs. AB2

$$y_n = y_{n-2} + 2h f_{n-1}$$

(Midpoint method)

$$y_n = y_{n-1} + h\left(\frac{3}{2}f_{n-1} - \frac{1}{2}f_{n-2}\right)$$

(Adams-Bashforth 2)

$$\lambda < 0$$
,  $|h\lambda| \ll 1$ 



Figure 1:  $h = 5 \cdot 10^{-4}$ , T = 1,  $\lambda = -10$ . Errors: Midpoint method (blue), Adams-Bashforth 2 (green).



#### Error



Figure 2:  $h = 5 \cdot 10^{-4}$ , T = 3,  $\lambda = -10$ . Errors: Midpoint method (blue), Adams-Bashforth 2 (green).



## Why?

#### Midpoint method

$$y_n = c_1 \xi_1^n + c_2 \xi_2^n$$

where  $\xi_1, \xi_2$  are the roots of  $\xi^2 = 1 + 2h\lambda\xi$ .

$$\xi_1 = e^{h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$$
 - principal root  $\xi_2 = -e^{-h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$  - parasitic root

#### Error

$$|\xi_1| < 1 < |\xi_2|, \qquad \xi_2 < 0$$

Endpoint error:

$$c_2 e^{-\lambda T}$$

Fortunately  $c_1=1+\delta$ ,  $c_2=-\delta$ , with  $\delta=\mathcal{O}\left(h^3\lambda^3\right)$ 

#### AB<sub>2</sub>

$$\xi_1 = e^{h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$$
  
$$\xi_2 = \frac{1}{2}\left(h\lambda - h^2\lambda^2\right) + \mathcal{O}\left(h^3\lambda^3\right)$$

#### Conclusion and questions

Midpoint method: growing oscillations

- Extension: general weakly stable case?!
- Extension: general (nonlinear) IVP?!

#### Lax-Stetter framework

#### Problem

$$F(u) = 0$$

 $\mathcal X$  and  $\mathcal Y$  are normed spaces,  $\mathcal D\subset\mathcal X$  and  $F:\mathcal D\to\mathcal Y$  is a (nonlinear) operator. It is assumed that there exists a unique solution  $\bar u$ .

#### Numerical method

Sequence  $(\mathcal{X}_n, \mathcal{Y}_n, F_n)_{n \in \mathbb{N}}$  which generates a sequence of problems

$$F_n(u_n) = 0$$
,  $n = 1, 2, ...$ ,

where  $\mathcal{X}_n, \mathcal{Y}_n$  are normed spaces,  $\mathcal{D}_n \subset \mathcal{X}_n$  and  $F_n : \mathcal{D}_n \to \mathcal{Y}_n$ . If there exists a unique solution of the (approximating) problems, it will be denoted by  $\bar{u}_n$ .

## Numerical methods



Figure 3: The general scheme of numerical methods.

#### Definition

A numerical method is

convergent if

$$\lim \|\varphi_n(\bar{u}) - \bar{u}_n\|_{\mathcal{X}_n} = 0$$

consistent if

$$\lim \|F_n(\varphi_n(\bar{u}))\|_{\mathcal{V}_n} = 0$$

• stable if there exist  $S \in \mathbb{R}$ ,  $R \in (0, \infty]$  such that  $\forall (u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}$  which satisfy  $u_n, v_n \in B_R(\varphi_n(\bar{u}))$ 

$$||u_n - v_n||_{\chi_n} \le S ||F_n(u_n) - F_n(v_n)||_{\chi_n}$$

#### Results

- + some natural assumption  $\Rightarrow \exists \bar{u}_n \in B_R(\varphi_n(\bar{u}))$
- consistency + stability implies convergence:

$$\|\varphi_n(\bar{u}) - \bar{u}_n\|_{\mathcal{X}_n} \le S \|F_n(\varphi_n(\bar{u})) - F_n(\bar{u}_n)\|_{\mathcal{Y}_n} = S \|F_n(\varphi_n(\bar{u}))\|_{\mathcal{Y}_n} \to 0$$

#### LMMs in the Lax-Stetter framwork

$$F_n(\mathbf{u}_n) = \mathbf{A}_n \mathbf{u}_n - \mathbf{B}_n f(\mathbf{u}_n) - \mathbf{c}_n$$
,  $\mathbf{A}_n = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{A}_{n,\partial} & \mathbf{A}_{n,0} \end{pmatrix}$ ,  $\mathbf{B}_n = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{B}_{n,\partial} & \mathbf{B}_{n,0} \end{pmatrix}$ 

#### Example: Midpoint-method

$$(F_n(\mathbf{u}_n))_i = \begin{cases} u_0 - c_0, & i = 0 \\ u_1 - c_1, & i = 1 \\ \frac{u_i - u_{i-2}}{2h} - f_{i-1}, & i = 2, \dots, n \end{cases}$$

#### Example: Midpoint-method

$$F_{n}(\mathbf{u}_{n}) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ -\frac{1}{2h} & 0 & \frac{1}{2h} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & -\frac{1}{2h} & 0 & \frac{1}{2h} \end{pmatrix} \begin{pmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{N} \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{n+1} \end{pmatrix} - \begin{pmatrix} c_{0} \\ c_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

#### Norms

 $k \in \mathbb{N}$  fixed,  $\mathbf{u}_n \in \mathbb{R}^{k+n}$ 

•  $k\infty$  norm:

$$\|\mathbf{u}_n\|_{k\infty} = \max_{0 \le i \le k-1} |u_i| + \max_{k \le i \le k+n-1} |u_i|$$

• *k*1 norm:

$$\|\mathbf{u}_n\|_{k1} = \max_{0 \le i \le k-1} |u_i| + h \sum_{i=k}^{k+n-1} |u_i|$$

• *k*–Spijker norm:

$$\|\mathbf{u}_n\|_{k\$} = \max_{0 \le i \le k-1} |u_i| + h \max_{k \le l \le k+n-1} \left| \sum_{i=k}^{l} u_i \right|$$

#### Norms

If **A** is a regular matrix and  $\|\cdot\|_{\star}$  is a norm then  $\|\mathbf{u}\|_{\mathbf{A},\star} = \|\mathbf{A}\mathbf{u}\|_{\star}$  defines a norm.

#### Norm pairs

Emphasizing the importance of the norms in the stability estimate: a numerical method is stable in the norm pair  $(\|\cdot\|_{\chi_n}, \|\cdot\|_{\mathcal{V}_n})$  if

$$\|\mathbf{u}_n - \mathbf{v}_n\|_{\mathcal{X}_n} \leq S \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{\mathcal{Y}_n}$$

## Stability results

#### Results

- Weakly stable methods are stable in the following norm pairs:  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\infty}), (\|\cdot\|_{k1}, \|\cdot\|_{k1})$  and  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k1})$ .
- Strongly stable methods are stable in the  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$  norm pair, as well.

## Spijker's example

The midpoint-method is not stable in the  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$  norm pair:

$$\|\mathbf{u}_{n} - \mathbf{v}_{n}\|_{k\infty} \le S \|F_{n}(\mathbf{u}_{n}) - F_{n}(\mathbf{v}_{n})\|_{k\$}$$

does not hold.

#### Idea

Growing oscillation

$$\begin{cases} u'(t) = 0 \\ u(0) = 0 \end{cases}$$

$$\mathbf{u}_n = (0, 0, 1, -2, 3, -4, \dots)^T, \mathbf{v}_n = \mathbf{0}$$

## Spijker's example

$$\mathbf{u}_{n} = (0, 0, 1, -2, 3, -4, \dots)^{T}, \ \mathbf{v}_{n} = \mathbf{0}$$
 
$$\|F_{n}(\mathbf{u}_{n}) - F_{n}(\mathbf{v}_{n})\|_{k\$} = \|\mathbf{A}_{n,0}\mathbf{u}_{n,0}\|_{\$}$$
 
$$\|\mathbf{u}_{n} - \mathbf{v}_{n}\|_{k\infty} = \|\mathbf{u}_{n,0}\|_{\infty}.$$

We can calculate

$$\mathbf{A}_{n,0}\mathbf{u}_{n,0} = \left(\frac{1}{2h}, -\frac{1}{h}, \frac{1}{h}, -\frac{1}{h}, \frac{1}{h}, \ldots\right)^T$$

thus

$$\|\mathbf{A}_{n,0}\mathbf{u}_{n,0}\|_{\$} = \frac{1}{2} \quad \text{while} \quad \|\mathbf{u}_{n,0}\|_{\infty} = n.$$

#### Extention

#### Theorem

Weakly stable methods are not stable in the  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$  norm pair.

#### Idea of the proof

A different growing oscillation: using the root at the boundary.

#### Why should we upgrade it?

Problems with Spijker's approach: stability in  $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$  also leads to convergence in the norm  $\|\cdot\|_{k\infty}$ .

#### Tricky example

$$(F_n(\mathbf{u}_n))_i = \begin{cases} u_0 - c_0 & \text{, if } i = 0, \\ \frac{u_i - u_{i-1}}{h} - f_{i-1} & \text{, if } 1 \le i \le n \text{ odd,} \\ \frac{u_i - u_{i-1}}{h} - f_i & \text{, if } 2 \le i \le n \text{ even.} \end{cases}$$

Consistent of order 2 with respect to the k\$ norm, while seemingly it is consistent of order 1 with respect to the  $k\infty$  or k1 norms.

## Upgrading

$$F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n) = \mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n) - \mathbf{B}_n(f(\mathbf{u}_n) - f(\mathbf{v}_n))$$

taking absolute value

$$|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)| = |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n) - \mathbf{B}_n(f(\mathbf{u}_n) - f(\mathbf{v}_n))| \ge |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)| - |\mathbf{B}_n||f(\mathbf{u}_n) - f(\mathbf{v}_n)| \ge |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)| - L|\mathbf{B}_n||\mathbf{u}_n - \mathbf{v}_n|$$

taking norms

$$\|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k_1} \ge \|\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)\|_{k_1} - L \||\mathbf{B}_n|\|_{k_1} \|\mathbf{u}_n - \mathbf{v}_n\|_{k_1}$$

using the stability estimate

$$S \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k_1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{k_1}$$

we get

$$C_1 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_n, k1}$$

$$C_1 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_n, k1}$$

or similarly

$$C_2 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k\infty} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_{n,k\infty}}.$$

Meaning:...

#### What is the difference between strongly and weakly stable methods?

#### <u>I</u>dea

Avoiding each type of growing oscillations.

#### Definition

An LMM is discrete  $C^1$  stable if it is stable in every  $\left(\|\cdot\|_{\mathbf{L}_n,k\infty},\|\cdot\|_{k\infty}\right)$  norm pair, where  $\mathbf{L}_n$  represents a k-step differentiation formula.

#### **Theorem**

An LMM is discrete  $C^1$  stable if and only if it is stable in the  $\left(\|\cdot\|_{\mathbf{E}_n,k\infty},\|\cdot\|_{k\infty}\right)$  norm pair, where  $\mathbf{E}_n$  represents the explicit Euler method

$$\mathbf{E}_{n} = \begin{pmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & \ddots & 0 & \dots & \dots & 0 \\ 0 & \dots & 1 & 0 & \dots & 0 \\ \dots & 0 & -\frac{1}{h} & \frac{1}{h} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & -\frac{1}{h} & \frac{1}{h} \end{pmatrix}$$

#### Theorem

Strongly stable LMMs are discrete  $C^1$  stable, while weakly stable LMMs are not.

- Faragó, I., Mincsovics, M. E., Fekete, I.: Notes on the Basic Notions in Nonlinear Numerical Analysis. E. J. of Qualitative Theory of Differential Equations, Proc. 9'th Coll. QTDE, 2011, No. 6, 1–22 (2012)
- Mincsovics, M. E.: Stability of one-step and linear multistep methods a matrix technique approach. Proc. 10th Coll. Qualitative Theory of Diff. Equ. 2016, No. 15, 1–10; doi: 10.14232/ejqtde.2016.8.15
- Mincsovics, M. E.: Note on the Stability of Strongly Stable Linear Multistep Methods. AIP Conference Proceedings 1895, 110006 (2017) doi: 10.1063/1.5007412
- Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer, Berlin, (1973)

## Thank you for your attention!