What is the difference between weakly and strongly stable linear multistep methods?

M.E. Mincsovics

9 November, 2017.

in the memory of I. Mezei Miklós Farkas Seminar

Linear multistep methods

IVP

$$\begin{cases} u(0) = u^0 \\ u'(t) = f(u(t)) \end{cases}$$

f Lipschitz

LMM

$$\begin{cases} u_{i} = c^{i}, & i = 0, \dots, k - 1 \\ \frac{1}{h} \sum_{j=0}^{k} \alpha_{j} u_{i-j} = \sum_{j=0}^{k} \beta_{j} f(u_{i-j}), & i = k, \dots, n + k - 1 \end{cases}$$

Characteristic polynomials

Characteristic polynomials

$$\varrho(x) = \sum_{j=0}^k \alpha_j x^{k-j}, \qquad \sigma(x) = \sum_{j=0}^k \beta_j x^{k-j}.$$

Consistency

$$\varrho(1) = 0$$
 and $\varrho'(1) = \sigma(1)$

Root-conditions

Definition

- An LMM is *strongly stable*: for every root $\xi_i \in \mathbb{C}$ of the first characteristic polynomial $|\xi_i| < 1$ holds except $\xi_1 = 1$, which is a simple root.
- A not strongly stable method is *weakly stable*: for every root $\xi_i \in \mathbb{C}$ of the first characteristic polynomial $|\xi_i| \leq 1$ holds and if $|\xi_i| = 1$ then it is a simple root, moreover $\xi_1 = 1$.

Why should we distinguish them?

Motivational example

Test-equation

$$\begin{cases} \dot{y}(t) = \lambda y(t) \\ y(0) = 1 \end{cases}$$

solution: $y(t) = e^{\lambda t}$

Midpoint vs. AB2

$$y_n = y_{n-2} + 2h f_{n-1}$$

(Midpoint method)

$$y_n = y_{n-1} + h\left(\frac{3}{2}f_{n-1} - \frac{1}{2}f_{n-2}\right)$$

(Adams-Bashforth 2)

$$\lambda < 0$$
, $|h\lambda| \ll 1$

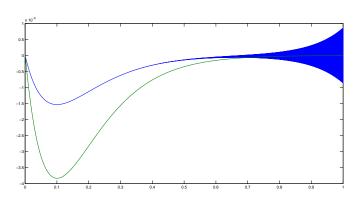


Figure 1: $h = 5 \cdot 10^{-4}$, T = 1, $\lambda = -10$. Errors: Midpoint method (blue), Adams-Bashforth 2 (green).

Error

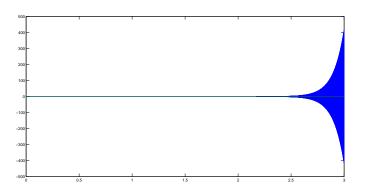


Figure 2: $h = 5 \cdot 10^{-4}$, T = 3, $\lambda = -10$. Errors: Midpoint method (blue), Adams-Bashforth 2 (green).

Why?

Midpoint method

$$y_n = c_1 \xi_1^n + c_2 \xi_2^n$$

where ξ_1, ξ_2 are the roots of $\xi^2 = 1 + 2h\lambda\xi$.

$$\xi_1 = e^{h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$$
 - principal root $\xi_2 = -e^{-h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$ - parasitic root

Error

$$|\xi_1| < 1 < |\xi_2|, \qquad \xi_2 < 0$$

Endpoint error:

$$c_2 e^{-\lambda T}$$

Fortunately $c_1=1+\delta$, $c_2=-\delta$, with $\delta=\mathcal{O}\left(h^3\lambda^3\right)$

AB₂

$$\xi_1 = e^{h\lambda} + \mathcal{O}\left(h^3\lambda^3\right)$$

$$\xi_2 = \frac{1}{2}\left(h\lambda - h^2\lambda^2\right) + \mathcal{O}\left(h^3\lambda^3\right)$$

Conclusion and questions

Midpoint method: growing oscillations

- Extension: general weakly stable case?!
- Extension: general (nonlinear) IVP?!

Lax-Stetter framework

Problem

$$F(u) = 0$$

 $\mathcal X$ and $\mathcal Y$ are normed spaces, $\mathcal D\subset\mathcal X$ and $F:\mathcal D\to\mathcal Y$ is a (nonlinear) operator. It is assumed that there exists a unique solution $\bar u$.

Numerical method

Sequence $(\mathcal{X}_n, \mathcal{Y}_n, F_n)_{n \in \mathbb{N}}$ which generates a sequence of problems

$$F_n(u_n) = 0$$
, $n = 1, 2, ...$,

where $\mathcal{X}_n, \mathcal{Y}_n$ are normed spaces, $\mathcal{D}_n \subset \mathcal{X}_n$ and $F_n : \mathcal{D}_n \to \mathcal{Y}_n$. If there exists a unique solution of the (approximating) problems, it will be denoted by \bar{u}_n .

Numerical methods

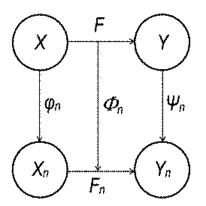


Figure 3: The general scheme of numerical methods.

Definition

A numerical method is

convergent if

$$\lim \|\varphi_n(\bar{u}) - \bar{u}_n\|_{\mathcal{X}_n} = 0$$

consistent if

$$\lim \|F_n(\varphi_n(\bar{u}))\|_{\mathcal{V}_n} = 0$$

• stable if there exist $S \in \mathbb{R}$, $R \in (0, \infty]$ such that $\forall (u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}$ which satisfy $u_n, v_n \in B_R(\varphi_n(\bar{u}))$

$$||u_n - v_n||_{\chi_n} \le S ||F_n(u_n) - F_n(v_n)||_{\chi_n}$$

Results

- + some natural assumption $\Rightarrow \exists \bar{u}_n \in B_R(\varphi_n(\bar{u}))$
- consistency + stability implies convergence:

$$\|\varphi_n(\bar{u}) - \bar{u}_n\|_{\mathcal{X}_n} \le S \|F_n(\varphi_n(\bar{u})) - F_n(\bar{u}_n)\|_{\mathcal{Y}_n} = S \|F_n(\varphi_n(\bar{u}))\|_{\mathcal{Y}_n} \to 0$$

LMMs in the Lax-Stetter framwork

$$F_n(\mathbf{u}_n) = \mathbf{A}_n \mathbf{u}_n - \mathbf{B}_n f(\mathbf{u}_n) - \mathbf{c}_n$$
, $\mathbf{A}_n = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{A}_{n,\partial} & \mathbf{A}_{n,0} \end{pmatrix}$, $\mathbf{B}_n = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{B}_{n,\partial} & \mathbf{B}_{n,0} \end{pmatrix}$

Example: Midpoint-method

$$(F_n(\mathbf{u}_n))_i = \begin{cases} u_0 - c_0, & i = 0 \\ u_1 - c_1, & i = 1 \\ \frac{u_i - u_{i-2}}{2h} - f_{i-1}, & i = 2, \dots, n \end{cases}$$

Example: Midpoint-method

$$F_{n}(\mathbf{u}_{n}) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ -\frac{1}{2h} & 0 & \frac{1}{2h} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & -\frac{1}{2h} & 0 & \frac{1}{2h} \end{pmatrix} \begin{pmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{N} \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{n+1} \end{pmatrix} - \begin{pmatrix} c_{0} \\ c_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Norms

 $k \in \mathbb{N}$ fixed, $\mathbf{u}_n \in \mathbb{R}^{k+n}$

• $k\infty$ norm:

$$\|\mathbf{u}_n\|_{k\infty} = \max_{0 \le i \le k-1} |u_i| + \max_{k \le i \le k+n-1} |u_i|$$

• *k*1 norm:

$$\|\mathbf{u}_n\|_{k1} = \max_{0 \le i \le k-1} |u_i| + h \sum_{i=k}^{k+n-1} |u_i|$$

• *k*–Spijker norm:

$$\|\mathbf{u}_n\|_{k\$} = \max_{0 \le i \le k-1} |u_i| + h \max_{k \le l \le k+n-1} \left| \sum_{i=k}^{l} u_i \right|$$

Norms

If **A** is a regular matrix and $\|\cdot\|_{\star}$ is a norm then $\|\mathbf{u}\|_{\mathbf{A},\star} = \|\mathbf{A}\mathbf{u}\|_{\star}$ defines a norm.

Norm pairs

Emphasizing the importance of the norms in the stability estimate: a numerical method is stable in the norm pair $(\|\cdot\|_{\chi_n}, \|\cdot\|_{\mathcal{V}_n})$ if

$$\|\mathbf{u}_n - \mathbf{v}_n\|_{\mathcal{X}_n} \leq S \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{\mathcal{Y}_n}$$

Stability results

Results

- Weakly stable methods are stable in the following norm pairs: $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\infty}), (\|\cdot\|_{k1}, \|\cdot\|_{k1})$ and $(\|\cdot\|_{k\infty}, \|\cdot\|_{k1})$.
- Strongly stable methods are stable in the $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$ norm pair, as well.

Spijker's example

The midpoint-method is not stable in the $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$ norm pair:

$$\|\mathbf{u}_{n} - \mathbf{v}_{n}\|_{k\infty} \le S \|F_{n}(\mathbf{u}_{n}) - F_{n}(\mathbf{v}_{n})\|_{k\$}$$

does not hold.

Idea

Growing oscillation

$$\begin{cases} u'(t) = 0 \\ u(0) = 0 \end{cases}$$

$$\mathbf{u}_n = (0, 0, 1, -2, 3, -4, \dots)^T, \mathbf{v}_n = \mathbf{0}$$

Spijker's example

$$\mathbf{u}_{n} = (0, 0, 1, -2, 3, -4, \dots)^{T}, \ \mathbf{v}_{n} = \mathbf{0}$$

$$\|F_{n}(\mathbf{u}_{n}) - F_{n}(\mathbf{v}_{n})\|_{k\$} = \|\mathbf{A}_{n,0}\mathbf{u}_{n,0}\|_{\$}$$

$$\|\mathbf{u}_{n} - \mathbf{v}_{n}\|_{k\infty} = \|\mathbf{u}_{n,0}\|_{\infty}.$$

We can calculate

$$\mathbf{A}_{n,0}\mathbf{u}_{n,0} = \left(\frac{1}{2h}, -\frac{1}{h}, \frac{1}{h}, -\frac{1}{h}, \frac{1}{h}, \ldots\right)^T$$

thus

$$\|\mathbf{A}_{n,0}\mathbf{u}_{n,0}\|_{\$} = \frac{1}{2} \quad \text{while} \quad \|\mathbf{u}_{n,0}\|_{\infty} = n.$$

Extention

Theorem

Weakly stable methods are not stable in the $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$ norm pair.

Idea of the proof

A different growing oscillation: using the root at the boundary.

Why should we upgrade it?

Problems with Spijker's approach: stability in $(\|\cdot\|_{k\infty}, \|\cdot\|_{k\$})$ also leads to convergence in the norm $\|\cdot\|_{k\infty}$.

Tricky example

$$(F_n(\mathbf{u}_n))_i = \begin{cases} u_0 - c_0 & \text{, if } i = 0, \\ \frac{u_i - u_{i-1}}{h} - f_{i-1} & \text{, if } 1 \le i \le n \text{ odd,} \\ \frac{u_i - u_{i-1}}{h} - f_i & \text{, if } 2 \le i \le n \text{ even.} \end{cases}$$

Consistent of order 2 with respect to the k\$ norm, while seemingly it is consistent of order 1 with respect to the $k\infty$ or k1 norms.

Upgrading

$$F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n) = \mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n) - \mathbf{B}_n(f(\mathbf{u}_n) - f(\mathbf{v}_n))$$

taking absolute value

$$|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)| = |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n) - \mathbf{B}_n(f(\mathbf{u}_n) - f(\mathbf{v}_n))| \ge |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)| - |\mathbf{B}_n||f(\mathbf{u}_n) - f(\mathbf{v}_n)| \ge |\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)| - L|\mathbf{B}_n||\mathbf{u}_n - \mathbf{v}_n|$$

taking norms

$$\|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k_1} \ge \|\mathbf{A}_n(\mathbf{u}_n - \mathbf{v}_n)\|_{k_1} - L \||\mathbf{B}_n|\|_{k_1} \|\mathbf{u}_n - \mathbf{v}_n\|_{k_1}$$

using the stability estimate

$$S \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k_1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{k_1}$$

we get

$$C_1 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_n, k1}$$

$$C_1 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k1} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_n, k1}$$

or similarly

$$C_2 \|F_n(\mathbf{u}_n) - F_n(\mathbf{v}_n)\|_{k\infty} \ge \|\mathbf{u}_n - \mathbf{v}_n\|_{\mathbf{A}_{n,k\infty}}.$$

Meaning:...

What is the difference between strongly and weakly stable methods?

<u>I</u>dea

Avoiding each type of growing oscillations.

Definition

An LMM is discrete C^1 stable if it is stable in every $\left(\|\cdot\|_{\mathbf{L}_n,k\infty},\|\cdot\|_{k\infty}\right)$ norm pair, where \mathbf{L}_n represents a k-step differentiation formula.

Theorem

An LMM is discrete C^1 stable if and only if it is stable in the $\left(\|\cdot\|_{\mathbf{E}_n,k\infty},\|\cdot\|_{k\infty}\right)$ norm pair, where \mathbf{E}_n represents the explicit Euler method

$$\mathbf{E}_{n} = \begin{pmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & \ddots & 0 & \dots & \dots & 0 \\ 0 & \dots & 1 & 0 & \dots & 0 \\ \dots & 0 & -\frac{1}{h} & \frac{1}{h} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & -\frac{1}{h} & \frac{1}{h} \end{pmatrix}$$

Theorem

Strongly stable LMMs are discrete C^1 stable, while weakly stable LMMs are not.

- Faragó, I., Mincsovics, M. E., Fekete, I.: Notes on the Basic Notions in Nonlinear Numerical Analysis. E. J. of Qualitative Theory of Differential Equations, Proc. 9'th Coll. QTDE, 2011, No. 6, 1–22 (2012)
- Mincsovics, M. E.: Stability of one-step and linear multistep methods a matrix technique approach. Proc. 10th Coll. Qualitative Theory of Diff. Equ. 2016, No. 15, 1–10; doi: 10.14232/ejqtde.2016.8.15
- Mincsovics, M. E.: Note on the Stability of Strongly Stable Linear Multistep Methods. AIP Conference Proceedings 1895, 110006 (2017) doi: 10.1063/1.5007412
- Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer, Berlin, (1973)

Thank you for your attention!