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Nonlinear two-point boundary value problem

Un T,
u' (x) = f(x,ulx),u' (x)),x € (a,b), ’ u(x)

u(a) = g, u(b) = u, (Dirichlet) thg [

f - nonlinear function of u and/or u’

v

We have also considered:
Neumann, general linear, nonlocal BCs and integral condition.



Shooting methods and relaxation methods (FDM)

(FDM)

* Numerical Recipes in C



The linearization methods as a basis to derive the FDMs and the shooting methods

Linearization method

S

A 4

Newton (QLM)

A 4

Picard

A

A
A 4

constant-slope

[1] S. M. Filipov, I. D. Gospodinov, I. Faragé (2017). Shooting-projection method for two-point boundary value problems.
Appl. Math. Lett. 72 (2017) 10-15



[terative linearization methods for nonlinear algebraic equations

F(x)

Fx) =0 © x=x—
N— 9 mJ
f(x)
x = f(x). Expand f(x) around x;:

,m+*0

x = fxp) + f Og)(x —x) + - (1)

We are going to drop terms in the rhs of (1) and replace x by its approximation xj, ;.
We consider the following three types of /inearization around x;,:

/ _ F(x)

B (i) Newton: Xre1 = f ) + ) (KXer1 — X)) = Xg1 = X — F s
(ii) Picard: Xea1 = () = sy = Xp — F(xy)
F(xx)

(iii) constant-slope: x,.; = f(x,) + f'(xg) (Xpoq — X)) = Xk41 = Xk —



Linearization methods for nonlinear TPBVPs

u''(x) = f(x,u(x),u’(x)),x € (a,b),

Expand f around (x, Uk (%), uék) (x)), drop terms higher than linear, and replace u(x)
by its approximation u 1) (x):

ué;c+1) (x) = fwo (x) + d(k) (x)(u(k+1) (x) —ug (x)) + Dk) (x) (u6k+1) (x) — ufk) (x))

U+1)(@) = Ug, U1y (D) = up, kK =0,1,...

where fy(x) = f(x, uge (), Uy (x)) and

B Newton (QLM) Picard constant-slope

Ao (x) = O,f (3, uge (%), ugy (X)) 0 02 f (2, u(o)y (%), Uy (X))
Pay(xX) = 031 (o, uge (X), Uy (%)) 0 O3 (x, u(oy (), ugey ()




Finite difference method

Discretize the ODE using the central finite difference approximation for u"’ (x):

Uitq — 2U; + Uj—q
hZ
U = Ug, Uy = Up

= f(x;,u;, Du;),i =23,...,N—1

where © € {D,, D_, Dy}, and

Uiy — U Ui —uUj—q1 Uiy —Uj—q
(D+ul- = n , (D_ul- = n , @Oui = o

This is a nonlinear system of Nequations for the Nunknowns u;,i = 1,2, ..., N.



Solving the nonlinear system

The nonlinear system can be written in the form: G(up) =0,

where u;, = [uq, Uy, ..., uy]’, and Gis N x 1 vector with components:
Gi=u; —ug, Gy = uy —Up, G; = Ujpq — 2u; +ujpq — K2 f (x5 uy, DUy),i = 2,3,...,N — 1

The nonlinear system can solved by the following iteration:

-1
ulD = ¢ (L(hk)) G (u%k)),k =01,.. L{)=11{, =1
(’)@ugk) a@ugk) a@ugk)
(k) _ (k) (k) _ (k) (k) (k) _ (k)
Li,i—l =1- thi a—(;{);Li,i =—2—h* i thi a—(lk)'l‘i,i+1 =1- thi 5 (Ilc)
Ui Ui Uit
B Newton Picard constant-slope
q(k) _ 9 f(x- 4, (Du(k)) 0 9 f(x- 4, © @u(O))
i 2 i» %4 i 2 |t A [

k k k 0 0
pl( ) — a3f (xi,ulg ),@U,l( )) 0 agf (xi'ulg ); (Dul( )) 3




Equivalence between NFDM (PFDM,CFDM) and QLM (PLM,CLM) with FDM

Let LM4, LM, € { MNewton, " Picard, " constant-slope} be two linearization
methods and let DM, DM, € {FDM ©_, FDM ©_, FDM @4} be two FDM discretization
schemes. If LM; = LM, and DM; = DM,, then LM; e DM; = DM, o LM,.

non-lnear TPEVE LIIJE sequence of near TPEVEs

I}I'I,II DM 5

! Y

systern of non-linear LM final tteration formula
algebraic equations




Proof of the equivalence theorem - part 1

The QLM equation is discretized using the central difference approximation for ué;{ +1) (20

u(k+1) U (k+1)_|_ (k+1)

L1 h2 Biva — pF oyt U ) — 0 — 23 N —1 (2)
Wherer f(k) (k) (k) pl(k) U. Euler’s theorem on homogenous functions:
k+1 k+1) (k+1)
o (D o (kD) 0Du; )+ (1) ODU; Ly kD) 9D (3)
i Ui1 33,0+ D Ui 33,0+ D Uite I (k+1)
Uiq U; Uits

Using property (3) and 6(Du(k+1)/6 (et1) 6(Du§k)/6u]§k), we write equation (2) as:

l

(1 _ thl(k) ) (k‘l'l) + ( 2 — hqu(k) thl(k) '(k+1) +11-= thl(k) L ul(_’r_‘;l) h2 (k)

or, in a matrix form: L(k) glkﬂ) = Rglk) ( glk)) with Rglk) (uglk)) = [ua, hzrl(k), hzrz(k), ...,ub]



Proof of the equivalence theorem - part 2

Now, we rearrange the rhs of L(hk)uglkﬂ) = Rglk) (uglk)) : (4)

Using property (3) for (Dulgk), we can write: RE{‘) (uﬁl")) = L(hk)uglk) -G (uﬁl")) : ()
JEE : : k) (k+1) _ y(k) . (k) (k)

Substituting (5) into (4) we get: Lyt = [y _ G(uh ) (6)

Finally, multiplying both sides of (6) by the inverse of L(hk) we obtain:

uglk+1) _ ul(zk) _ (L(hk))—l G (uglk)) QED

11



Replacing NFDM (PFDM,CFDM) by successive application of the LSM

Why is this result useful?

We can substitute DM, by some alternative method (AM). Then, the method AM o LM,
will produce, at each iteration step k, the same result (up to numerical accuracy) as the
method LM, o DM;. We propose the linear shooting method (LSM) as AM. Hence, we
can replace NFDM (PFDM,CFDM) by successive application of the LSM.

non-inear TPBEVE LM-E N secquence of inear TPEVPs

DM ! I‘M—z

¥ y

systemn of non-lnear LM final iteration formula
algebraic equations L

This substitution reduces the number of operations from O(N?3) to only O(N). 12



QLM (PLM, CLM) with linear shooting method

We apply the linear shooting method (LSM) to solve the sequence of linear sub-
problems arising from M Newton (QLM), 7 Picard, or | constant-slope linearization.
We refer to this approach as , , Or , respectively.

Let i1(x) and u(x) be solutions to the following IVPs (Cauchy problems), respectively:

u"(x) = pay (U’ (x) + gy ()u(x) + ry(x), where vy = fio) — QuoUk) — PaoVk)
t(a) =uy u'(a) =0, (7)

u" (x) = puo)u’(x) + g ()ulx),

u(a) =0,u'(a) =1. (8)

The LSM gives the solution as:

—u(b
Ue+1) () = u(x) + <ubﬁ(;t)( )> u(x) (9)
13




Choosing a numerical method for the I[VPs

To compare numerically the NFDM with the NLSM we choose an I[VP method with the
same discretization as the FDM. Let ® = ©_ and let v;_; = (u;—u;_1)/h. Then, the FDM
discrete equation (page 7) can be written as:

U = Uj—1 + hv_q,

(10)
Vi =V + hf(xl-,ui, Vi1 ), [ = 2,3, ,N

The method (10) is but with x;, u; instead of x;_, u;_1 in f. We call it
Uy = uy, v, = 0 (initial conditions) u, = 0,v, = 1 (initial conditions)
ﬂi=ﬁi_1+hﬁl 1 l=23 N ﬁizﬁ' +h§l 17 l=23 N
— — k = = =
V; = Vj_q +h(pl( )vl 1 +q( )ul +r( )), V; = Vj_q +h(pl( )vl 1 +q( ) )

k+1 Up —UN\ =

uy " = h+< = )uh, (11)

Uy

. (1Y 6 (g
At each step k, we can use (11), instead of FDM (page 8), avoiding \ bn Uy, ). 14



B Numerical comparison between NFDM and NLSM

For the solution of the IVPs, we choose EE . For the FDM, we choose ® = ©_. Consider:

3uu

u = —

!

Exact solution: u(x) = x/v1 + x2.

Table 1. ¢(®) = ”u%kﬂ) —ul® ”L2

,x € (1,2),u(l) =

e(®) NFDM _

e(®) NLSM EE_

WK RO | R

1.257774292959600e-01
5.908388441300371e-03
7.827639094112682e-06
1.207704920791167e-11

1.257774292959598e-01
5.908388441300540e-03
7.827639094064679e-06
1.207704131132550e-11

1 2
ﬁ, u(2) = ﬁ (12)
0.9- o o
0.85 /,ﬁfﬂi#
g
- 08 iﬁfﬁf’/
j.f.
0.75 #ﬁ{
e
0. 7Ett b bbb e
1 1.5 2

x NFDM_, + NLSM EE_,X—exact solution
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Numerical comparison between PFDM and PLSM

We solve the TPBVP (12) using PFDM and PLSM. Again, we choose ® = ©®_ and EE_.

Table 2. €(®) = ”ug”l) — uglk) ”L2

e(®) PFDM _

e(®) PLSM EE_

1.121969507867195e-01
2.213503602145248e-02
3.057696505976492e-03
5.647562667135585e-04
1.806427862599132e-04
2.463853234546461e-05
8.371405221603600e-06
1.771619590213677e-06
3.078247434095909e-07
1.062797393253808e-07
10 1.552916954477012e-08
11 4.739721265430622e-09
12 1.114973121540600e-09
13 1.736426690506943e-10
14 6.326895982029898e-11

O OO UTA WN R O

1.121969507867196e-01
2.213503602145243e-02
3.057696505976490e-03
5.647562667136228e-04
1.806427862598797e-04
2.463853234551921e-05
8.371405221586881e-06
1.771619590120436e-06
3.078247434000902e-07
1.062797392684467e-07
1.552916953923758e-08
4.739721250544968e-09
1.114973108446678e-09
1.736426723812498e-10
6.326885861115776e-11

0.9¢

*
0.85/ P

0.8 f{{ L
: *
0.75 *

Hok
0 7jf+-+-+-+-+-+-+-+++—+—+-+-+-+-+-+-++

1.5 2
X

x PFDM_, + PLSM EE_,
——exact solution
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Numerical comparison between CFDM and CLSM

We solve the TPBVP (12) using CFDM and CLSM. Again, we choose ® = ©®_ and EE_.

Table 3. € = ”ug‘“) — uglk) ”L2

e(®) CFDM _

e(®) CLSM EE_

OO UTA WN R O |

1.257774292959600e-01
5.659109740927136e-03
3.008316690785012e-04
1.210372256400646e-05
1.303905575804010e-06
6.240213217768302e-08
4.576333624407518e-09
3.699691119783297e-10
1.547497895480243e-11

1.257774292959598e-01
5.659109740927313e-03
3.008316690785886e-04
1.210372256404309e-05
1.303905575772519e-06
6.240213222206902e-08
4.576333693878961e-09
3.699691065145836e-10
1.547502506938748e-11

0.9r
0.85¢
0.8¢
0.75

0.7
1

/
#

Gttt e b et oo oo

1.5 2
X

x CFDM_, + CLSM EE_,
——exact solution
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Comparing the time-efficiency of NFDM and NLSM

For NFDM we use the MATLAB backslash operator: L\G. It is faster than 1nv(L)*G.

NFDM- \ B NLSM EE-
0,12

NFDM_

0,1
] 0,08

Time
[seconds] oos

0,04

0,02

0 — - | [ ]

500 1000 1500 2000 2500

NLSM EE_

Number of mesh-points N

The NLSM is O(N) operations and is much faster than NFDM. The Thomas method is
also O(N) but cannot be applied directly for all BCs.

18



Using higher-order IVP methods with the proposed NLSM

We apply the proposed NLSM with the

Table 2. en = ”uexact - uh”LZ

(which is RK2 method).

N h en e>n/én

21 0.05 1.4332e-05
41  0.025 3.5150e-06 4.0775
81 0.0125 8.7042e-07 4.0382
161 0.00625 2.1658e-07 4.0190
321 5.4017e-08 4.0094
641 1.3488e-08 4.0047
1281 3.3701e-09 4.0024
2561 8.4228e-10 4.0012
5121 2.1054e-10 4.0006

The method is the required 0(h?).

19



Shooting-projection procedure

Let u(x; v¥) be a solution to the following IVP (Cauchy problem):
u'(x;vk)=f (x,u(x; vi), u'(x; valf)),x € (a,b), (13)

u(a; v¥) = ug, uw'(a; vk) = vk (14)
The function u(x; v[) is called a

(1) Use u(x; v¥) as Uk (x) and find a TPBVP approximation u 1) (x) using:

B Newton (QLM), " Picard, or | constant-slope linearization (page 6).

The function u1y(x) satisfies the BCs, and satisfies approximately the ODE. It is
called relaxation-trajectory or :

(2) Use v+l = uékﬂ) (a) as a next initial condition and find u(x; v¥*1).

(3) Repeat the procedure.

If we could find v**! = function(vc’f), then we have an iteration formula!

20



Shooting-projection iteration formulae (results)

[t turns out that it is possible to find v*+1 = function(vé‘) for all three cases.
Results:
B Newton Picard constant-slope
kY kY . A
Pil ke u(b, va) Up ka1 u(b, va) Up  rs1 ok u(b, va) Up
% =V, — % =V, — % =V, —
* o ou(bvk) * b—a ‘ © dub;vd)
y Va ) A
0
vk vy
(shooting by Newton method) (shooting-projection method [1]) (shooting by constant-slope method)

[1] S. M. Filipov, L. D. Gospodinov, I. Farag6 (2017). Shooting-projection method for two-point boundary value problems.
Appl. Math. Lett. 72 (2017) 10-15
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Derivation of the shooting-projection iteration formula (" Picard case)

The Picard linearization method gives:

UGy (X) = f (x,u(x; vi), ' (x; vc’{)),x € (a,b), (15)

Uk+1) (@) = ug, Uk+1) (b) = up. (16)
Since u(x; vc’f) is a solution to the Cauchy problem (13), (14), eqn. (15) gives:

Uy (X) = u'(x;vF),x € (a,b), (17)
Integrating (17) on [a, x], and then integrating the result on [a, b], we get:

Uks1) (D) = Uger1) (@) — Uy 1y (@D — @) = u(b; vf) —u(a; ve) —u'(a; vE) (b — a) (18)

Finally, denoting u;,1y(a) = vX¥*1 and using the BCs (16) and the ICs (14), we get:

u(b; v¥) —
b—a

vt = vl -

22



Derivation of the shooting by Newton iteration formula (lll Newton case)

Let y(x) = uggq1)(x) — u(x; vc’f) Since u(x; vc’f) satisfies (13), the QLM (page 6) gives:

y"'(x) = quo()y(x) + puoy(x)y'(x),x € (a,b), (19)

y(a) = 0,y(b) = up — u(b; vk¥). (20)
Let us denote ug,, 1y(a) = vf**, and replace the BCs (20) by the ICs:

y(a) = 0,y'(a) = vi+t1 — vk, (21)
Now, we introduce z(x) such that y(x) = (v&*? — v¥)z(x). Then, (19) and (21) yield:

z"(x) = quy(x)z(x) + py(x)z'(x), x € (a,b), (22)

z(a) =0,z (a) = 1. (23)

However, differentiating (13), (14) wrt v gives (22), (23). = z(x) = du(x; vk)/ovk.

Atx = b, we have: y(b) = (vE*1 —v¥)z(b) = u(b; vk) —w,
ou(b; v¥)

vk 23

vt = vk -




Conclusions

The Newton, Picard, and constant-slope linearization methods can be used to derive
the respective:

(i) FDMs (relaxation methods)
(ii) shooting-methods

Based on results (i), we have proposed a replacement of the finite-difference
methods for nonlinear TPBVPs (the relaxation methods) by respective successive
application of the linear shooting method. The approach removes the necessity of
working with matrices altogether. Instead, it achieves the same result by solving one or
two IVPs. It reduces the number of computational operations from O(N?3) to only O(N).

Based on results (ii), we have ‘discovered’ the shooting by Picard method
(recently proposed by the authors as shooting-projection method). It has some
advantages over the other shooting methods and the FDMs, e.g. greater stability in
certain situations. 24



Thank you!



