
Stefan Filipov 1, Ivan Gospodinov 1, István Faragó 2

Numerical Solution of Nonlinear Two-Point Boundary Value Problems 

The linearization methods as a basis to derive the FDMs and the shooting methods. 
Successive application of the linear shooting method.

1 Department of Computer Science, Faculty of Chemical System Engineering, 
University of Chemical Technology and Metallurgy, Sofia, Bulgaria

Miklós Farkas
Seminar on Applied Analysis, Budapest, 18 Oct 2018 

2 Department of Applied Analysis and Computational Mathematics, Faculty of Science, MTA-ELTE Research Group,
Eötvös Loránd University, Budapest, Hungary



Nonlinear two-point boundary value problem

2

(Dirichlet)

We have also considered: 
Neumann, general linear, nonlocal BCs and integral condition.

𝑢′′ 𝑥 = 𝑓 𝑥, 𝑢 𝑥 , 𝑢′ 𝑥 , 𝑥 ∈ 𝑎, 𝑏 ,

𝑢 𝑎 = 𝑢𝑎 , 𝑢 𝑏 = 𝑢𝑏

𝑓 – nonlinear function of 𝑢 and/or 𝑢′

𝑢𝑏

𝑢𝑎

𝑎 𝑏 𝑥

𝑢(𝑥)



Shooting methods and relaxation methods (FDM) 

(FDM)

* Numerical Recipes in C 
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The linearization methods as a basis to derive the FDMs and the shooting methods
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Linearization method

Shooting-projection
procedure

Newton (QLM)

Picard

constant-slope

NFDM

PFDM

Shooting by Newton

[1]

Shooting by const. sl. CFDM

FDM
discretization

[1] S. M. Filipov, I. D. Gospodinov, I. Faragó (2017). Shooting-projection method for two-point boundary value problems. 
Appl. Math. Lett. 72 (2017) 10–15
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Iterative linearization methods for nonlinear algebraic equations

𝐹 𝑥 = 0 ⟺ 𝑥 = 𝑥 −
𝐹 𝑥

𝑚
𝑓(𝑥)

, 𝑚 ≠ 0

𝑥 = 𝑓 𝑥 . Expand 𝑓 𝑥 around 𝑥𝑘:

𝑥 = 𝑓 𝑥𝑘 + 𝑓′ 𝑥𝑘 𝑥 − 𝑥𝑘 + ⋯

We are going to drop terms in the rhs of (1) and replace 𝑥 by its approximation 𝑥𝑘+1.
We consider the following three types of linearization around 𝑥𝑘:

𝑥𝑘+1 = 𝑓 𝑥𝑘 + 𝑓′ 𝑥𝑘 𝑥𝑘+1 − 𝑥𝑘 ⟹

𝑥𝑘+1 = 𝑓 𝑥𝑘 ⟹

Newton:

Picard:

constant-slope: 𝑥𝑘+1 = 𝑓 𝑥𝑘 + 𝑓′ 𝑥0 𝑥𝑘+1 − 𝑥𝑘 ⟹

𝑥𝑘+1 = 𝑥𝑘 −
𝐹(𝑥𝑘)

𝐹′(𝑥𝑘)

𝑥𝑘+1 = 𝑥𝑘 −
𝐹(𝑥𝑘)

𝑚

𝑥𝑘+1 = 𝑥𝑘 −
𝐹(𝑥𝑘)

𝐹′(𝑥0)

(i)

(ii)

(iii)

(1)



Linearization methods for nonlinear TPBVPs

𝑢′′ 𝑥 = 𝑓 𝑥, 𝑢 𝑥 , 𝑢′ 𝑥 , 𝑥 ∈ 𝑎, 𝑏 ,

Expand 𝑓 around 𝑥, 𝑢 𝑘 (𝑥), 𝑢 𝑘
′ (𝑥) , drop terms higher than linear, and replace 𝑢 𝑥

by its approximation 𝑢 𝑘+1 (𝑥):

𝑢(𝑘+1)
′′ 𝑥 = 𝑓 𝑘 𝑥 + 𝑞 𝑘 𝑥 𝑢(𝑘+1)(𝑥) − 𝑢 𝑘 (𝑥) + 𝑝 𝑘 𝑥 𝑢 𝑘+1

′ (𝑥) − 𝑢 𝑘
′ (𝑥)

where 𝑓 𝑘 𝑥 = 𝑓 𝑥, 𝑢 𝑘 (𝑥), 𝑢 𝑘
′ (𝑥) and

𝑢(𝑘+1) 𝑎 = 𝑢𝑎, 𝑢(𝑘+1) 𝑏 = 𝑢𝑏,   𝑘 = 0,1, …

Newton (QLM) Picard constant-slope

𝑞 𝑘 𝑥 = 𝜕2𝑓 𝑥, 𝑢 𝑘 (𝑥), 𝑢 𝑘
′ (𝑥) 0 𝜕2𝑓 𝑥, 𝑢 0 (𝑥), 𝑢 0

′ (𝑥)

𝑝 𝑘 𝑥 = 𝜕3𝑓 𝑥, 𝑢 𝑘 (𝑥), 𝑢 𝑘
′ (𝑥) 0 𝜕3𝑓 𝑥, 𝑢 0 (𝑥), 𝑢 0

′ (𝑥)
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Finite difference method

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2
= 𝑓 𝑥𝑖 , 𝑢𝑖 ,D𝑢𝑖 , 𝑖 = 2,3, … , 𝑁 − 1

Discretize the ODE using the central finite difference approximation for 𝑢′′ 𝑥 : 

𝑢1 = 𝑢𝑎, 𝑢𝑁 = 𝑢𝑏

where D ∈ D+,D−,D0 , and

D+𝑢𝑖 =
𝑢𝑖+1 − 𝑢𝑖

ℎ
, D−𝑢𝑖 =

𝑢𝑖 − 𝑢𝑖−1

ℎ
, D0𝑢𝑖 =

𝑢𝑖+1 − 𝑢𝑖−1

2ℎ
.

This is a nonlinear system of N equations for the N unknowns 𝑢𝑖 , 𝑖 = 1,2, … , 𝑁.

7



Solving the nonlinear system

𝐆 𝐮ℎ = 0,

where 𝐮ℎ = 𝑢1, 𝑢2, … , 𝑢𝑁
𝑇 , and 𝐆 is 𝑁 × 1 vector with components: 

The nonlinear system can be written in the form: 

𝐺1 = 𝑢1 − 𝑢𝑎, 𝐺𝑁 = 𝑢𝑁 − 𝑢𝑏, 𝐺𝑖 = 𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖+1 − ℎ2𝑓 𝑥𝑖 , 𝑢𝑖 ,D𝑢𝑖 , 𝑖 = 2,3, … , 𝑁 − 1

The nonlinear system can solved by the following iteration: 

𝐮ℎ
(𝑘+1)

= 𝐮ℎ
(𝑘)

− 𝐋ℎ
𝑘

−1
𝐆 𝐮ℎ

𝑘
, 𝑘 = 0,1, …

𝐿𝑖,𝑖−1
(𝑘)

= 1 − ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖−1
𝑘

, 𝐿𝑖,𝑖
𝑘

= −2 − ℎ2𝑞𝑖
𝑘

− ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖
𝑘

, 𝐿𝑖,𝑖+1
(𝑘)

= 1 − ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖+1
𝑘

Newton Picard constant-slope

𝑞𝑖
(𝑘)

= 𝜕2𝑓 𝑥𝑖 , 𝑢𝑖
(𝑘)

,D𝑢𝑖
(𝑘) 0 𝜕2𝑓 𝑥𝑖 , 𝑢𝑖

(0)
,D𝑢𝑖

(0)

𝑝𝑖
(𝑘)

= 𝜕3𝑓 𝑥𝑖 , 𝑢𝑖
(𝑘)

,D𝑢𝑖
(𝑘) 0 𝜕3𝑓 𝑥𝑖 , 𝑢𝑖

(0)
,D𝑢𝑖

(0)

𝐿1,1
(𝑘)

= 1, 𝐿𝑁,𝑁
(𝑘)

= 1
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Equivalence between NFDM (PFDM,CFDM) and QLM (PLM,CLM) with FDM

Theorem: Let LM1, LM2 ∈ {     Newton,      Picard,      constant-slope} be two linearization 
methods and let DM1, DM2 ∈ {FDM D+, FDM D−, FDM D0} be two FDM discretization 
schemes. If LM1 = LM2 and DM1 = DM2, then LM1 ∘ DM1 = DM2 ∘ LM2.

9



Proof of the equivalence theorem – part 1

The QLM equation is discretized using the central difference approximation for 𝑢(𝑘+1)
′′ 𝑥 :  

𝑢𝑖−1
(𝑘+1)

− 2𝑢𝑖
(𝑘+1)

+ 𝑢𝑖+1
(𝑘+1)

ℎ2
− 𝑝𝑖

𝑘
D𝑢𝑖

𝑘+1
− 𝑞𝑖

𝑘
𝑢𝑖

𝑘+1
= 𝑟𝑖

𝑘
, 𝑖 = 2,3, … , 𝑁 − 1

where 𝑟𝑖
𝑘

= 𝑓𝑖
𝑘

− 𝑞𝑖
𝑘

𝑢𝑖
𝑘

− 𝑝𝑖
𝑘
D𝑢𝑖

𝑘
. Euler’s theorem on homogenous functions:   

D𝑢𝑖
𝑘+1

= 𝑢𝑖−1
𝑘+1 𝜕D𝑢𝑖

𝑘+1

𝜕𝑢𝑖−1
𝑘+1

+ 𝑢𝑖
𝑘+1 𝜕D𝑢𝑖

𝑘+1

𝜕𝑢𝑖
𝑘+1

+ 𝑢𝑖+1
𝑘+1 𝜕D𝑢𝑖

𝑘+1

𝜕𝑢𝑖+1
𝑘+1

Using property (3) and 𝜕D𝑢𝑖
𝑘+1

/𝜕𝑢𝑗
𝑘+1

= 𝜕D𝑢𝑖
𝑘

/𝜕𝑢𝑗
𝑘

, we write equation (2) as: 

1 − ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖−1
𝑘

𝑢𝑖−1
(𝑘+1)

+ −2 − ℎ2𝑞𝑖
𝑘

− ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖
𝑘

𝑢𝑖
(𝑘+1)

+ 1 − ℎ2𝑝𝑖
𝑘 𝜕D𝑢𝑖

𝑘

𝜕𝑢𝑖+1
𝑘

𝑢𝑖+1
(𝑘+1)

= ℎ2𝑟𝑖
𝑘

or, in a matrix form: 𝐋ℎ
𝑘

𝐮ℎ
𝑘+1

= 𝐑ℎ
𝑘

𝐮ℎ
𝑘

, with 𝐑ℎ
𝑘

𝐮ℎ
𝑘

= 𝑢𝑎, ℎ2𝑟1
𝑘

, ℎ2𝑟2
𝑘

, … , 𝑢𝑏

𝑇

(2)

(3)
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Proof of the equivalence theorem – part 2

Now, we rearrange the rhs of  𝐋ℎ
𝑘

𝐮ℎ
𝑘+1

= 𝐑ℎ
𝑘

𝐮ℎ
𝑘

.

Using property (3) for D𝑢𝑖
𝑘

, we can write:  𝐑ℎ
𝑘

𝐮ℎ
𝑘

= 𝐋ℎ
𝑘

𝐮ℎ
𝑘

− 𝐆 𝐮ℎ
𝑘

.

Substituting (5) into  (4) we get:

(5)

(4)

𝐋ℎ
𝑘

𝐮ℎ
𝑘+1

= 𝐋ℎ
𝑘

𝐮ℎ
𝑘

− 𝐆 𝐮ℎ
𝑘

.

Finally, multiplying both sides of (6) by the inverse of 𝐋ℎ
𝑘

we obtain: 

𝐮ℎ
(𝑘+1)

= 𝐮ℎ
(𝑘)

− 𝐋ℎ
𝑘

−1
𝐆 𝐮ℎ

𝑘 QED

(6)
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Replacing NFDM (PFDM,CFDM) by successive application of the LSM

Why is this result useful?

We can substitute DM2 by some  alternative method (AM). Then, the method AM ∘ LM2

will produce, at each iteration step 𝑘, the same result (up to numerical accuracy) as the 
method LM1 ∘ DM1. We propose the  linear shooting method (LSM) as AM. Hence, we 
can replace NFDM (PFDM,CFDM) by successive application of the LSM.

This substitution reduces the number of operations from 𝑂 𝑁3 to only 𝑂 𝑁 .

LSM
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QLM (PLM, CLM) with linear shooting method

We apply the linear shooting method (LSM) to solve the sequence of linear sub-
problems arising from      Newton (QLM),      Picard, or      constant-slope  linearization. 
We refer to this approach as NLSM, PLSM, or CLSM, respectively.

ത𝑢′′ 𝑥 = 𝑝 𝑘 𝑥 ത𝑢′ 𝑥 + 𝑞 𝑘 𝑥 ത𝑢 𝑥 + 𝑟 𝑘 𝑥 , where 𝑟 𝑘 = 𝑓 𝑘 − 𝑞 𝑘 𝑢 𝑘 − 𝑝 𝑘 𝑣 𝑘

ത𝑢 𝑎 = 𝑢𝑎, ത𝑢′ 𝑎 = 0,

Let ത𝑢 𝑥 and ധ𝑢 𝑥 be solutions to the following IVPs (Cauchy problems), respectively:

ധ𝑢′′ 𝑥 = 𝑝 𝑘 𝑥 ധ𝑢′ 𝑥 + 𝑞 𝑘 𝑥 ധ𝑢 𝑥 ,

ധ𝑢 𝑎 = 0, ധ𝑢′ 𝑎 = 1.

The LSM gives the solution as:

𝑢 𝑘+1 (𝑥) = ത𝑢 𝑥 +
𝑢𝑏 − ത𝑢 𝑏

ധ𝑢 𝑏
ധ𝑢 𝑥

(7)

(8)

(9)
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Choosing a numerical method for the IVPs 

To compare numerically the NFDM with the NLSM we choose an IVP method with the 
same discretization as the FDM. Let D = D− and let 𝑣𝑖−1 = (𝑢𝑖−𝑢𝑖−1)/ℎ. Then, the FDM 
discrete equation (page 7) can be written as:  

𝑢𝑖 = 𝑢𝑖−1 + ℎ𝑣𝑖−1,

𝑣𝑖 = 𝑣𝑖−1 + ℎ𝑓 𝑥𝑖 , 𝑢𝑖 , 𝑣𝑖−1 , 𝑖 = 2,3, … , 𝑁.

The method (10) is explicit Euler but with 𝑥𝑖 , 𝑢𝑖 instead of 𝑥𝑖−1, 𝑢𝑖−1 in 𝑓. We call it EE_. 

ത𝑢𝑖 = ത𝑢𝑖−1 + ℎ ҧ𝑣𝑖−1,

ҧ𝑣𝑖 = ҧ𝑣𝑖−1 + ℎ 𝑝𝑖
𝑘

ҧ𝑣𝑖−1 + 𝑞𝑖
𝑘

ത𝑢𝑖 + 𝑟𝑖
𝑘

,

𝑖 = 2,3, … , 𝑁

ത𝑢1 = 𝑢𝑎, ҧ𝑣1 = 0 (initial conditions) ധ𝑢1 = 0, Ӗ𝑣1 = 1 (initial conditions)

ധ𝑢𝑖 = ധ𝑢𝑖−1 + ℎ Ӗ𝑣𝑖−1,

Ӗ𝑣𝑖 = Ӗ𝑣𝑖−1 + ℎ 𝑝𝑖
𝑘

Ӗ𝑣𝑖−1 + 𝑞𝑖
𝑘

ധ𝑢𝑖 ,

𝑖 = 2,3, … , 𝑁

𝐮ℎ
(𝑘+1)

= ഥ𝐮ℎ +
𝑢𝑏 − ത𝑢𝑁

ധ𝑢𝑁
ന𝐮ℎ,

At each step 𝑘, we can use (11), instead of  FDM (page 8), avoiding   

(10)

(11)

𝐋ℎ
𝑘

−1
𝐆 𝐮ℎ

𝑘
. 14



Numerical comparison between NFDM and NLSM

For the solution of the IVPs, we choose EE_. For the FDM, we choose D = D−. Consider:

𝑢′′ = −
3𝑢2𝑢′

𝑥
, 𝑥 ∈ 1,2 , 𝑢 1 =

1

2
, 𝑢 2 =

2

5

Exact solution: 𝑢 𝑥 = 𝑥/ 1 + 𝑥2.  

k 𝜖(𝑘), NFDM _ 𝜖(𝑘), NLSM EE_

0
1
2
3

1.257774292959600e-01
5.908388441300371e-03
7.827639094112682e-06
1.207704920791167e-11

1.257774292959598e-01
5.908388441300540e-03
7.827639094064679e-06
1.207704131132550e-11

1 1.5 2
0.7

0.75

0.8

0.85

0.9

 x

 u

 NFDM_ , + NLSM EE_ , ⎯ exact solution

Table 1. 𝜖(𝑘) = 𝐮ℎ
𝑘+𝟏

− 𝐮ℎ
𝑘

𝐿2
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Numerical comparison between PFDM and PLSM

We solve the TPBVP (12) using PFDM and PLSM. Again, we choose D = D− and  EE_. 

k 𝜖(𝑘), PFDM _ 𝜖(𝑘), PLSM EE_

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

1.121969507867195e-01
2.213503602145248e-02
3.057696505976492e-03
5.647562667135585e-04
1.806427862599132e-04
2.463853234546461e-05
8.371405221603600e-06
1.771619590213677e-06
3.078247434095909e-07
1.062797393253808e-07
1.552916954477012e-08
4.739721265430622e-09
1.114973121540600e-09
1.736426690506943e-10
6.326895982029898e-11

1.121969507867196e-01
2.213503602145243e-02
3.057696505976490e-03
5.647562667136228e-04
1.806427862598797e-04
2.463853234551921e-05
8.371405221586881e-06
1.771619590120436e-06
3.078247434000902e-07
1.062797392684467e-07
1.552916953923758e-08
4.739721250544968e-09
1.114973108446678e-09
1.736426723812498e-10
6.326885861115776e-11

Table 2. 𝜖(𝑘) = 𝐮ℎ
𝑘+𝟏

− 𝐮ℎ
𝑘

𝐿2

 PFDM_ , + PLSM EE_ ,
⎯ exact solution

1 1.5 2
0.7

0.75

0.8

0.85

0.9

 x

 u
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Numerical comparison between CFDM and CLSM

We solve the TPBVP (12) using CFDM and CLSM. Again, we choose D = D− and  EE_. 

k 𝜖(𝑘), CFDM _ 𝜖(𝑘), CLSM EE_

0
1
2
3
4
5
6
7
8

1.257774292959600e-01
5.659109740927136e-03
3.008316690785012e-04
1.210372256400646e-05
1.303905575804010e-06
6.240213217768302e-08
4.576333624407518e-09
3.699691119783297e-10
1.547497895480243e-11

1.257774292959598e-01
5.659109740927313e-03
3.008316690785886e-04
1.210372256404309e-05
1.303905575772519e-06
6.240213222206902e-08
4.576333693878961e-09
3.699691065145836e-10
1.547502506938748e-11

Table 3. 𝜖(𝑘) = 𝐮ℎ
𝑘+𝟏

− 𝐮ℎ
𝑘

𝐿2

 CFDM_ , + CLSM EE_ ,
⎯ exact solution

1 1.5 2
0.7

0.75

0.8

0.85

0.9

 x

 u
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Comparing the time-efficiency of NFDM and NLSM

For NFDM we use the MATLAB backslash operator: L\G. It is faster than inv(L)*G.

0

0,02

0,04

0,06

0,08

0,1

0,12

500 1000 1500 2000 2500

NFDM-  \ NLSM EE-

NFDM_

NLSM EE_

Time
[seconds]

Number of mesh-points 𝑁

The NLSM is 𝑂 𝑁 operations and is much faster than NFDM. The Thomas method is 
also 𝑂 𝑁 but cannot be applied directly for all BCs. 
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Using higher-order IVP methods with the proposed NLSM

We apply the proposed NLSM with the Heun’s method (which is RK2 method). 

𝑁 ℎ 𝑒ℎ 𝑒2ℎ/𝑒ℎ

21
41
81

161
321
641

1281
2561
5121

0.05
0.025
0.0125
0.00625

1.4332e-05
3.5150e-06
8.7042e-07
2.1658e-07
5.4017e-08
1.3488e-08
3.3701e-09
8.4228e-10
2.1054e-10

4.0775
4.0382
4.0190
4.0094
4.0047
4.0024
4.0012
4.0006

Table 2. 𝑒ℎ = 𝐮𝑒𝑥𝑎𝑐𝑡 − 𝐮ℎ 𝐿2

The method is the required 𝑂 ℎ2 .
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Shooting-projection procedure

Let 𝑢(𝑥; 𝑣𝑎
𝑘) be a solution to the following IVP (Cauchy problem):

(1) Use 𝑢(𝑥; 𝑣𝑎
𝑘) as 𝑢 𝑘 (𝑥) and find a TPBVP approximation 𝑢 𝑘+1 (𝑥) using:

Newton (QLM),     Picard, or      constant-slope linearization (page 6). 
The function 𝑢 𝑘+1 (𝑥) satisfies the BCs, and satisfies approximately the ODE. It is 

called relaxation-trajectory or projection-trajectory.
(2) Use 𝑣𝑎

𝑘+1 = 𝑢 𝑘+1
′ (𝑎) as a next initial condition and find 𝑢(𝑥; 𝑣𝑎

𝑘+1).

(3) Repeat the procedure.

The function 𝑢(𝑥; 𝑣𝑎
𝑘) is called a shooting-trajectory.

If we could find 𝑣𝑎
𝑘+1 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎

𝑘 , then we have an iteration formula!

𝑢′′ 𝑥; 𝑣𝑎
𝑘 = 𝑓 𝑥, 𝑢 𝑥; 𝑣𝑎

𝑘 , 𝑢′ 𝑥; 𝑣𝑎
𝑘 , 𝑥 ∈ 𝑎, 𝑏 ,

𝑢 𝑎; 𝑣𝑎
𝑘 = 𝑢𝑎, 𝑢′ 𝑎; 𝑣𝑎

𝑘 = 𝑣𝑎
𝑘.

(13)

(14)
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Shooting-projection iteration formulae (results)

It turns out that it is possible to find 𝑣𝑎
𝑘+1 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎

𝑘 for all three cases.

Results:

Newton Picard constant-slope

𝑣𝑎
𝑘+1 = 𝑣𝑎

𝑘 −
𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢𝑏

𝜕𝑢 𝑏; 𝑣𝑎
𝑘

𝜕𝑣𝑎
𝑘

(shooting by Newton method)

𝑣𝑎
𝑘+1 = 𝑣𝑎

𝑘 −
𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢𝑏

𝑏 − 𝑎

(shooting-projection method [1]) NEW

𝑣𝑎
𝑘+1 = 𝑣𝑎

𝑘 −
𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢𝑏

𝜕𝑢 𝑏; 𝑣𝑎
0

𝜕𝑣𝑎
0

(shooting by constant-slope method)

[1] S. M. Filipov, I. D. Gospodinov, I. Faragó (2017). Shooting-projection method for two-point boundary value problems. 
Appl. Math. Lett. 72 (2017) 10–15
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Derivation of the shooting-projection iteration formula (     Picard case)

𝑢(𝑘+1)
′′ 𝑥 = 𝑓 𝑥, 𝑢 𝑥; 𝑣𝑎

𝑘 , 𝑢′ 𝑥; 𝑣𝑎
𝑘 , 𝑥 ∈ 𝑎, 𝑏 ,

The Picard linearization method gives:

𝑢(𝑘+1) 𝑎 = 𝑢𝑎, 𝑢(𝑘+1) 𝑏 = 𝑢𝑏.

Since 𝑢 𝑥; 𝑣𝑎
𝑘 is a solution to the Cauchy problem (13), (14), eqn. (15) gives:

𝑢(𝑘+1)
′′ 𝑥 = 𝑢′′ 𝑥; 𝑣𝑎

𝑘 , 𝑥 ∈ 𝑎, 𝑏 ,

Integrating (17) on 𝑎, 𝑥 , and then integrating the result on 𝑎, 𝑏 , we get: 

𝑢(𝑘+1) 𝑏 − 𝑢 𝑘+1 𝑎 − 𝑢 𝑘+1
′ 𝑎 𝑏 − 𝑎 = 𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢 𝑎; 𝑣𝑎
𝑘 − 𝑢′ 𝑎; 𝑣𝑎

𝑘 (𝑏 − 𝑎)

Finally, denoting 𝑢 𝑘+1
′ 𝑎 = 𝑣𝑎

𝑘+1, and using the BCs (16) and the ICs (14), we get: 

(15)

(16)

(17)

(18)

𝑣𝑎
𝑘+1 = 𝑣𝑎

𝑘 −
𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢𝑏

𝑏 − 𝑎
22



Derivation of the shooting by Newton iteration formula (     Newton case)

Let 𝑦 𝑥 = 𝑢(𝑘+1)(𝑥) − 𝑢 𝑥; 𝑣𝑎
𝑘 . Since 𝑢 𝑥; 𝑣𝑎

𝑘 satisfies (13), the QLM (page 6) gives: 

𝑦′′ 𝑥 = 𝑞 𝑘 𝑥 𝑦 𝑥 + 𝑝 𝑘 𝑥 𝑦′ 𝑥 , 𝑥 ∈ 𝑎, 𝑏 ,

𝑦 𝑎 = 0, 𝑦 𝑏 = 𝑢𝑏 − 𝑢 𝑏; 𝑣𝑎
𝑘 .

Let us denote 𝑢 𝑘+1
′ 𝑎 = 𝑣𝑎

𝑘+1, and replace the BCs (20) by the ICs:

𝑦 𝑎 = 0, 𝑦′ 𝑎 = 𝑣𝑎
𝑘+1 − 𝑣𝑎

𝑘.

Now, we introduce 𝑧(𝑥) such that 𝑦 𝑥 = 𝑣𝑎
𝑘+1 − 𝑣𝑎

𝑘 𝑧(𝑥). Then, (19) and (21) yield: 

𝑧′′ 𝑥 = 𝑞 𝑘 𝑥 𝑧 𝑥 + 𝑝 𝑘 𝑥 𝑧′ 𝑥 , 𝑥 ∈ 𝑎, 𝑏 ,

𝑧 𝑎 = 0, 𝑧′ 𝑎 = 1.

However, differentiating (13), (14) wrt 𝑣𝑎
𝑘 gives (22), (23). ⟹ 𝑧 𝑥 = 𝜕𝑢 𝑥; 𝑣𝑎

𝑘 /𝜕𝑣𝑎
𝑘 .  

𝑣𝑎
𝑘+1 = 𝑣𝑎

𝑘 −
𝑢 𝑏; 𝑣𝑎

𝑘 − 𝑢𝑏

𝜕𝑢 𝑏; 𝑣𝑎
𝑘

𝜕𝑣𝑎
𝑘

At 𝑥 = 𝑏, we have: 𝑦 𝑏 = 𝑣𝑎
𝑘+1 − 𝑣𝑎

𝑘 𝑧 𝑏 ⟹
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Conclusions

The Newton, Picard, and constant-slope linearization methods can be used to derive 
the respective:

(i) FDMs (relaxation methods)
(ii) shooting-methods 

Based on results (i), we have proposed a replacement of the finite-difference 
methods for nonlinear TPBVPs (the relaxation methods) by respective successive 
application of the linear shooting method. The approach removes the necessity of 
working with matrices altogether. Instead, it achieves the same result by solving one or 
two IVPs.  It reduces the number of computational operations from 𝑂(𝑁3) to only 𝑂 𝑁 .

Based on results (ii), we have ‘discovered’ the shooting by Picard method 
(recently proposed by the authors as shooting-projection method). It has some 
advantages over the other shooting methods and the FDMs, e.g. greater stability in 
certain situations. 24



Thank you!


