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1. What is the problem?

Time-stepping methods for initial value problem y = f(t,y)

Given an approximation y, ~ y(t,) compute

Yn > Yn+1

with time step size h =t 11 — tp

Work/accuracy trade-off

Rather than using constant step size, put grid points where they
matter to accuracy
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Adaptive methods

Given an error tolerance TOL, adaptive methods select the
time step h, to make the local error r, = TOL

Asymptotic step size — error model (as h — 0)

rn = @nhrl;

If © is constant, then h, 1 = (TOL/r,)"/¥h, makes r, 1 = TOL

... and scientific computing stopped thinking, right there. ..
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2. Control and signal processing

Classical time-step control

1/k
hoay = <TOL> h,

I'n

In logarithmic form

1
log hpt1 — log h, = — P (log rn — log TOL)
Integrating control Summation of control errors

Linear difference equation, log r — log h, where log r = {log r,}>°,
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Linear control and signal processing

Signal processing How to map observed error sequence log r to
suitable step size sequence log h while keeping r ~ TOL

General control law (linear difference equations)

(9 —1)Q(q) - log h = P(q) - (log r — log TOL)

P, Q polynomial operators in forward shift operator ¢

New possibilities

@ "autoregressive” part; P “moving average” part
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What step size properties
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can be achieved?
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Will it have an impact on computations?

Standard, elementary time-step control

1/k
TOL
hn+1 - < ) hn

I'n

in logarithmic form is a negative feedback control law

hn+1 1 In

I = ——|

Actual implementations add substantial safety nets and heuristics

... so scientific computing didn't quite stop thinking right there
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Example of actual heuristic implementation DASSL

Typical plot of log(hpt1/hn) vs. log(r,/TOL)

Nonlinear, discontinuous and nonsymmetric!
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How well does it work? Chemakzo problem
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Small changes in TOL have large effects on output
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What is computational stability?

Continuous data dependence
c-TOoL < |le]| < C - TOL

How can it be improved?

e Digital filtering of error estimates

e Control theory for time—step selection

e Order selection controller

o Appropriate Newton iteration termination

= logy9(C/c) = 0.05 possible at no extra cost!
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...and it works a lot better! Chemakzo problem
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High computational stability
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Compare to standard implementation = Chemakzo problem
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Poor computational stability
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Digital filter based controller
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Control theoretic approach Feedback loop

log
log TOL log h log r
C(q) G(q)
Control Process
-1
Asymptotic process model
r=ph" = logr=k-logh+logy (G(q) = k)

Control law  logh = C(q) - (logTOL — log r)
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Closed loop

To find controller—process interaction, solve the linear system
logr = k - log h+ log ¢
log h= C(q) - (log TOL — log r)
for log r and log h, to find the maps
Ho(q): logy — logh

R,(q) : logy > logr

revealing how the differential equation (external disturbance log ¢)
affects the error log r and step size log h
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Closed loop response functions

Step size response H,(q) : log ¢ — log h

k- C(q)

~kHA9) = 5 c(g)

Error response R,(q) : log ¢ + logr
1
R(q)=—

Control design [Low-pass filter for h and high-pass filter for r
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Control design Choosing C(q)

The most general choice of controller is

P(q)
(¢—1)Q(q)

with deg P = deg @ correponding explicit step size recursion

C(q) =

(g —1)Q(q) -logh = P(q) - (log r — log TOL)

Consistency Difference operator g — 1 is necessary
Stability Interaction between C(q) and the process G(q) = k

Convergence to the set point, r — TOL, then follows
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What is a digital filter? Fiu—v=Fu

Let v = {u,}3° be a given time sequence

A causal linear digital filter is a difference equation

where P and R are polynomials, with deg P < deg R
Stable filter R(q) =0 = |q,| <1
If u, = e“" for w € [0, 7] then the particular solution is

Vp = A(w) e"

Attenuation |A(w)| = |P(e'“)/R(e“)| affects frequency content
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Step size response for C(q) = P(q)/[(q — 1)Q(q)]

Closed loop recursion ((g —1)Q(q) + kP(q)) log h = —P(q)log ¢

Control designs

Elementary control Q =1, P=1/k
Convolution filter Q =1, P=~<1/k
I control Q=1;, degP =0
Pl control Q@ =1, degP =1
PID control Q =1, degP =2

FIR filter (q—1)Q(q)+ k- P(q)=q"
Autoregressive (AR) @ has zero(s) at g =1
Moving average (MA) P has zero(s) at g = —1
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A digital filter for step size control LP filter H211b

Remove logarithms to get multiplicative recursion
oL\ (k) 7 rop\ 1/(bk) hy —1/b
hn+1 - hn
In 'n—1 hn—1

The filter coefficients are determined by order conditions

Properties

e Stable for b € [1,00) with polesat ¢ =0,1—2/b
e 1st order low-pass FIR filter (deadbeat) at b =2

e Increasing b increases noise suppression
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Actual implementation LP filter H211b
Let the sequence ¢ = {TOL/r,}7° denote the control errors
Let the sequence p = {h,/h,_1}5° denote the step size ratios

Recursive digital filter Process errors and step ratios

1/(bk) = 1/(bk)

1 —1/b
Pn+1 = Cn Chly Pn /

Single integrating control Update step size

hny1 = pni1 - hn
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Pole placement
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Filter design in the frequency domain

Quasi periodic input log ¢, = ¢“" for w € [0, 7]

Output log h, = A(w)e™" with amplitude |A(w)| = [H, ()]

n

The attenuation of ¢“" is measured by

kP(e“)
(o~ 1)Q(e) + kP(e™)

[kHp(e™)| =

Zeros of H,(q) block signal transmission!
Low-pass filter Make |H,(e'™)| =0 by taking P(—1) =0
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H211b frequency response on [0.1, 7]

log p — klogh log i — log r log r+— logh

Stepsize (dB) Error (dB) Controller (dB)

FIR filter (dashed, b = 2), noise shaping: b=4; b=16;, b=38
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Example. Modifying ode45 in MATLAB to ode45dc

Step size sequences in chemotaxis problem
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Example. Modifying ode23s in MATLAB to ode23sdc

Step size sequences van der Pol problem, ;1 = 200

van der Pol, solution component x1
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Modified code with H211PI controller, for various TOL
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Elementary deadbeat grid in diffusion problem
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Pl controlled grid in diffusion problem
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A selection of digital filters for step size control

Recursive error filter p,.1 = c,/,gl/k . c}‘?i/lk Cpp T
Controller \ Type \ 01 \ B2 \ o
Elementary | | (deadbeat integral control) 1 0 0
P13040 Pl (proportional-integral) 7/10 | —4/10 | O
P13333 Pl (proportional-integral) 2/3 1 -1/3 | 0
P14020 Pl (proportional-integral) 3/5 | —-1/5 0
H211PI PI digital filter 1/6 | 1/6 | 0
H211b Noise shaping digital filter 1/b 1/b | 1/b

Step size control h,. 1 = ppi1hy
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Coming attractions

e Dedicated controllers for multistep methods
The asymptotic model r ~ ¢hP is questionable
Develop proper error model based on actual error estimate

Prove convergence as TOL — 0 for adaptive scheme
e Tracking CFL conditions

In conservation laws one wants to use the max stable step size

This is about controlling stability rather than accuracy
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Thank you!
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