Adaptive Time-Stepping, Part I

How Control Theory and Digital Filters Enhance IVP Solver Performance

Gustaf Söderlind

Numerical Analysis, Lund University

Contents

• What is the problem?

Adaptive numerical ODE solvers Automatic step size selection controls the error

• Control and signal processing

Computational stability Step size control based on digital filters

• Time transformation adaptivity *Time symmetric and reversible problems*

Hamiltonian systems and celestial mechanics

• Rolling bearing dynamics Systems with weak Rayleigh damping Dissipative geometric integrators

1. What is the problem?

Time-stepping methods for initial value problem $\dot{y} = f(t, y)$

Given an approximation $y_n \approx y(t_n)$ compute

 $y_n \mapsto y_{n+1}$

with time step size $h = t_{n+1} - t_n$

Work/accuracy trade-off

Rather than using constant step size, put grid points where they matter to accuracy

© G Söderlind, V2.0 Budapest, 17 September, 2018

Given an error tolerance TOL, adaptive methods select the time step h_n to make the local error $r_n = \text{TOL}$

Asymptotic step size – error model (as $h \rightarrow 0$)

 $r_n = \varphi_n h_n^k$

If φ is constant, then $h_{n+1} = (\text{TOL}/r_n)^{1/k} h_n$ makes $r_{n+1} \equiv \text{TOL}$

... and scientific computing stopped thinking, right there...

© G Söderlind, V2.0 Budapest, 17 September, 2018

2. Control and signal processing

Classical time-step control

$$h_{n+1} = \left(\frac{\text{TOL}}{r_n}\right)^{1/k} h_n$$

In logarithmic form

$$\log h_{n+1} - \log h_n = -\frac{1}{k} \left(\log r_n - \log \text{TOL} \right)$$

Integrating control Summation of control errors

Linear difference equation, $\log r \mapsto \log h$, where $\log r = {\log r_n}_{n=1}^{\infty}$

Signal processing How to map observed error sequence $\log r$ to suitable step size sequence $\log h$ while keeping $r \approx \text{TOL}$

General control law (linear difference equations)

 $(q-1)Q(q) \cdot \log h = P(q) \cdot (\log r - \log \text{TOL})$

P, Q polynomial operators in forward shift operator q

New possibilities

Q "autoregressive" part; P "moving average" part

© G Söderlind, V2.0 Budapest, 17 September, 2018

What step size properties can be achieved?

Will it have an impact on computations?

Standard, elementary time-step control

$$h_{n+1} = \left(\frac{\mathrm{TOL}}{r_n}\right)^{1/k} h_n$$

in logarithmic form is a *negative feedback control law*

$$\log \frac{h_{n+1}}{h_n} = -\frac{1}{k} \log \frac{r_n}{\text{TOL}}$$

Actual implementations add substantial safety nets and heuristics ... so scientific computing didn't quite stop thinking right there

Example of actual heuristic implementation

Typical plot of $\log(h_{n+1}/h_n)$ vs. $\log(r_n/\text{TOL})$

Nonlinear, discontinuous and nonsymmetric!

© G Söderlind, V2.0

Budapest, 17 September, 2018

Control Theory and Digital Filters

DASSL

How well does it work?

Chemakzo problem

Small changes in TOL have large effects on output

© G Söderlind, V2.0 Budapest, 17 September, 2018

What is computational stability?

Continuous data dependence

```
c \cdot \text{TOL} \le \|e\| \le C \cdot \text{TOL}
```

with $\log_{10}(C/c) \ll 1$

How can it be improved?

- Digital filtering of error estimates
- Control theory for time-step selection
- Order selection controller
- Appropriate Newton iteration termination

$\Rightarrow \log_{10}(C/c) \approx 0.05$ possible at no extra cost!

... and it works a lot better!

Chemakzo problem

High computational stability

© G Söderlind, V2.0

Budapest, 17 September, 2018

Compare to standard implementation Chemakzo problem

Poor computational stability

© G Söderlind, V2.0

Digital filter based controller

Chemakzo problem

High computational stability

© G Söderlind, V2.0

Budapest, 17 September, 2018

Control theoretic approach

Feedback loop

Asymptotic process model

$$r = \varphi h^k \Rightarrow \log r = k \cdot \log h + \log \varphi$$
 $(G(q) = k)$

Control law $\log h = C(q) \cdot (\log \text{TOL} - \log r)$

© G Söderlind, V2.0 Budapest, 17 September, 2018

Closed loop

To find controller-process interaction, solve the linear system

 $\log r = k \cdot \log h + \log \varphi$ $\log h = C(q) \cdot (\log \text{TOL} - \log r)$

for $\log r$ and $\log h$, to find the maps

 $egin{aligned} H_arphi(q) &: & \log arphi \mapsto \log h \ R_arphi(q) &: & \log arphi \mapsto \log r \end{aligned}$

revealing how the differential equation (external disturbance $\log \varphi$) affects the error $\log r$ and step size $\log h$

Closed loop response functions

Step size response $H_{\varphi}(q) : \log \varphi \mapsto \log h$

$$-kH_arphi(q)=rac{k\cdot C(q)}{1+k\cdot C(q)}$$

Error response $R_{\varphi}(q) : \log \varphi \mapsto \log r$

$$R_{arphi}(q) = rac{1}{1+k\cdot C(q)}$$

Control design Low-pass filter for h and high-pass filter for r

© G Söderlind, V2.0 Budapest, 17 September, 2018

Control design

Choosing C(q)

The most general choice of controller is

$$C(q) = \frac{P(q)}{(q-1)Q(q)}$$

with $\deg P = \deg Q$ correponding explicit step size recursion

$$(q-1)Q(q) \cdot \log h = P(q) \cdot (\log r - \log \text{TOL})$$

Consistency Difference operator q - 1 is necessary

Stability Interaction between C(q) and the process G(q) = k

Convergence to the set point, $r \rightarrow \text{TOL}$, then follows

What is a digital filter?

 $\mathcal{F}: u \mapsto v = \mathcal{F}u$

Let $u = \{u_n\}_0^\infty$ be a given time sequence

A causal linear digital filter is a *difference equation*

R(q)v = P(q)u

where *P* and *R* are polynomials, with deg $P < \deg R$

Stable filter $R(q) = 0 \Rightarrow |q_{\nu}| < 1$

If $u_n = e^{i\omega n}$ for $\omega \in [0, \pi]$ then the *particular solution* is

 $v_n = A(\omega) e^{i\omega n}$

Attenuation $|A(\omega)| = |P(e^{i\omega})/R(e^{i\omega})|$ affects frequency content

© G Söderlind, V2.0 Budapest, 17 September, 2018

Step size response for C(q) = P(q)/[(q-1)Q(q)]

Closed loop recursion $((q-1)Q(q) + kP(q)) \log h = -P(q) \log \varphi$

Control designs

 $\begin{array}{lll} \mbox{Elementary control} & Q \equiv 1; & P \equiv 1/k \\ \mbox{Convolution filter} & Q \equiv 1; & P \equiv \gamma < 1/k \\ & I \ control & Q \equiv 1; & \deg P = 0 \\ PI \ control & Q \equiv 1; & \deg P = 1 \\ PID \ control & Q \equiv 1; & \deg P = 2 \\ & FIR \ filter & (q-1)Q(q) + k \cdot P(q) = q^m \\ \mbox{Autoregressive } (AR) & Q \ has \ zero(s) \ at \ q = 1 \\ & Moving \ average \ (MA) & P \ has \ zero(s) \ at \ q = -1 \end{array}$

A digital filter for step size control

LP filter H211b

Remove logarithms to get multiplicative recursion

$$h_{n+1} = \left(\frac{\text{TOL}}{r_n}\right)^{1/(bk)} \left(\frac{\text{TOL}}{r_{n-1}}\right)^{1/(bk)} \left(\frac{h_n}{h_{n-1}}\right)^{-1/b} h_n$$

The *filter coefficients* are determined by order conditions

Properties

- Stable for $b \in [1,\infty)$ with poles at q = 0, 1 2/b
- 1st order low-pass FIR filter (deadbeat) at b = 2
- Increasing b increases noise suppression

Actual implementation

Let the sequence $c = \{TOL/r_n\}_1^\infty$ denote the *control errors*

Let the sequence $\rho = \{h_n/h_{n-1}\}_2^{\infty}$ denote the *step size ratios*

Recursive digital filter Process errors and step ratios

$$\rho_{n+1} = c_n^{1/(bk)} \cdot c_{n-1}^{1/(bk)} \cdot \rho_n^{-1/b}$$

Single integrating control Update step size

 $h_{n+1} = \rho_{n+1} \cdot h_n$

Pole placement

The effect of choosing b

0.8 0.6 0.4 0.2 alpha2 -0 -0. -0.6 -0.8 1.2 0.2 0.4 0.6 0.8 1.4 1.6 1.8 kbeta1

H211 stability region

FIR filter at \bullet , other H211b on straight line segment

Filter design in the frequency domain

Quasi periodic input $\log \varphi_n = e^{i\omega n}$ for $\omega \in [0, \pi]$

Output $\log h_n = A(\omega) e^{i\omega n}$ with amplitude $|A(\omega)| = |H_{\varphi}(e^{i\omega})|$

The *attenuation* of $e^{i\omega n}$ is measured by

$$|kH_{\varphi}(e^{i\omega})| = \left|\frac{kP(e^{i\omega})}{(e^{i\omega}-1)Q(e^{i\omega})+kP(e^{i\omega})}\right|$$

Zeros of $H_{\varphi}(q)$ block signal transmission!

Low-pass filter Make $|H_{\varphi}(e^{i\pi})| = 0$ by taking P(-1) = 0

H211b frequency response on $[0.1, \pi]$

 $\log \varphi \mapsto k \log h \qquad \qquad \log \varphi \mapsto \log r$

 $\log r \mapsto \log h$

FIR filter (dashed, b = 2), noise shaping: b = 4; b = 6; b = 8

Example. Modifying ode45 in MATLAB to ode45dc

Original vs. modified code (PI controller)

© G Söderlind, V2.0

Budapest, 17 September, 2018

Example. Modifying ode23s in MATLAB to ode23sdc

Modified code with H211PI controller, for various TOL

© G Söderlind, V2.0

Budapest, 17 September, 2018

Elementary deadbeat grid in diffusion problem

PI controlled grid in diffusion problem

A selection of digital filters for step size control

Recursive error filter
$$\rho_{n+1} = c_n^{\beta_1/k} \cdot c_{n-1}^{\beta_2/k} \cdot \rho_n^{-\alpha}$$

Controller	Туре	β_1	β_2	α
Elementary	I (deadbeat integral control)	1	0	0
PI3040	PI (proportional-integral)	7/10	-4/10	0
PI3333	PI (proportional-integral)	2/3	-1/3	0
PI4020	PI (proportional-integral)	3/5	-1/5	0
H211PI	PI digital filter	1/6	1/6	0
H211b	Noise shaping digital filter	1/b	1/b	1/b

Step size control $h_{n+1} = \rho_{n+1}h_n$

Coming attractions

• Dedicated controllers for multistep methods

The asymptotic model $r \sim \phi h^{p}$ is questionable Develop proper error model based on actual error estimate Prove convergence as TOL $\rightarrow 0$ for adaptive scheme

• Tracking CFL conditions

In conservation laws one wants to use the max stable step size This is about controlling stability rather than accuracy

Automatic detection of stiffness

- Automatic detection of oscillatory behavior
- Replace heuristics by mathematics in software

Thank you!