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Motivation

Linear continuous-time delay system

x(t) = Ax(t)+ Agx(t—7), te€ R, (1)
xo(t) = ¢(t), te[-7,0] CR, (2)

where
@ x(t) € R™ is the state,
@ A and Ay are constant matrices,
@ 7 is a constant time delay and
@ xo(.) is the initial function.

Discrete-time analogue

x(t+1) = Ax(t)+Agx(t—71), teZso, (3)
xo(t) = o(t), te[-7,0]CZ,, (4)
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Motivation

Stability analysis:
@ via the characteristic equation or the Razumikhin theorem,
@ based on Lyapunov - Krasovskii functional.

A Lyapunov-Krasovskii functional: let x;(s) = x(t + s), and
0
V(Xt,).(t) = ( )TPX(t) +/ ( )TQX(S)dS

/ / (0)dods, P,Q,ReS},
—7 Jt+s

The time derivative contains the term
t
—/ x(0)TRx(0)do
t—71

How can it be estimated? = Integral inequalities
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Integral inequalities

(Join work with T. Takacs, SCL, 96(2016)72-80)

Let W € ST, and ¢ € Z>( be given. Consider

JW,Z,a,b(f) = _a // /fT Wf deVg dv1

_ /ab (2_a> FT(s)Wr(s)ds, f e C([a, b],R7).

Aim: derive a lower estimation of this functional.

For g1,42 € L»[a, b] define a scalar product by

(81, 82)0ap) = /ab (Z:a>€g1(s)gg(s)ds.

a
Then

Iw,0,a,6(F) = (F, W)y (a0
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Integral inequalities

Orthogonal polynomials with respect to the previous scalar product:

t—a

pe.n(t) = Prn <b — a) t € [a, b],

where Py, can be given by the generalized Rodrigues-formula:

Peo(x) = 1, x € [0,1],
11d" /4, 5
Pg7n(X) = mg@ (X (X —X)n>, n = 1,2,...
Properties:
{+n

pen(b) = 1, pen(a) = (=1)"——,
2 b—a

”pf:"Hl,[a,b]



Stability analysis & inequalities
0000@00000000000000

Integral inequalities

Lemma

Let M >0, £ > 0 and vy > 0 be given integers satisfying the
condition £ +vy < M — 1. Then

1 _ _
Jw gab(f) > E(DI\-’;I )T Wi (Ze® 1) du, (5)

where

Wy = diag{(¢+1),({+3),....(¢l +2vy+ 1)} @ W,

b
CDX;, = [(bg—, ceey ¢I\7;I—1] with qu:/ poj(s)f(s)dS,

matrix =y = =y(vg, M — 1) is connected with a basis transformation.

(The explicit formula is given in Gyurkovics-Takacs, SCL, 96(2016)72-80)
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Integral inequalities

Some special cases.
Q Case /=0,y =M—-1,M>1:

JW,f,a,b(f) > (2J + 1)¢JT W¢j7

b—

L

which is identical with
o the Jensen inequality, if M = 1; (e.g. Briat, "Linear
parameter-varying and time-delay systems." (2014).
e the Wirtinger inequality, if M = 2; (Seuret-Gouaisbaut,
Automatica, 49(2013)2860-2866.)
o the Bessel-Legendre inequalities, if M > 1;
(Seuret-Gouaisbaut, SCL, 81(2015))
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Integral inequalities

@ Case/? >0,

e for { =11, =0,M =1, it is the double integral Jensen
inequality, (e.g. Sun et al. Int. J. Robust Nonlin. Control 19
(2009) 1364-1375)

e for{ =1,vy =1, M = 2, it is the improvement of the double
integral Wirtinger inequality, (Park et al. Automatica 55 (2015)
204-208)

e for£>1,v, =1, M > 2, it is the improvement of the multiple
integral inequality of (Lee et al. JFI, 352 (2015) 5627-5645)

e for the general case equivalent inequalities in (Park et al.
Appl.Math. Lett. 77 (2018) 6-12)
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Integral inequalities

Application to Jy ¢, p(f") = (f', Wf/)i,[a,b]-

Lemma

Let M >0, ¢ >0 and vy > 0 be given integers satisfying the
condition ¢+ vy < max{0,M — 1}. Then

1 ~ ~
JW,Z,a,b(f,) > E(D/\Z (Ze® /)TWg (Ze 1) Py, (6)

where W, is the same as before , &g = col {f(b), f(a)},

S = co/{f(b), f(a), s=o,-- -, ﬁwfl}, if M > 0,
Zo=6) 2 -z 2= o, -z].Ft>0
(D =(1,...,1)7,0,=(0,...,007, & = (~=1,1,...,+1)T and

Zy = Zy(ve, M — 1) is connected with a basis transformation.
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Stability analysis

Consider

x(t) = Ax(t)+ Agx(t —7)+ Ag, /t x(s)ds, t >0,
x(t) = ¢(t), te[-70],

Let M >0, my >0, my > 1 be given integers,

x¢(s) = x(t + s) be the solution,

P um(t) = col{¢o(t), ..., pm-1(t)} with

oi(t) = fST poj(s)xt(s)ds, (poj is the Legendre polynomial)
and introduce the exteded and augmented state variables

%(t) = col {x(t), by (1)},
Su(t) = co/{x(t),x(t—T),j_d)M(t)}.
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Stability analysis

Consider the LKF candidate

V(xe, %e) = Va(xe) + Vo(xe) + Va(xt),
where

Vilxe) = x(t)7Px(t),
P €S, (mi1)

o 0 S T J
ui) = 3 [ () s gl

Qj S Sn—";? j=0,...,my

Vi) = Ti/o <S+T>J>'<t(s)TRJ~>'<t(s)ds,
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Stability analysis

Theorem

Let M >0, my >0, m>1andvy; >0, (j=0,...,m),
V2 k >0, (kZO,...,m2—1) satisfyj+1/1d- < M, k+V2,k < M,
Vj, k. The system is asymptotically stable, if

P € S,,X(MH), Qj S Si,rx, Ry € S?,LX,

j=0,...m; and k =1, ..., my such that

0
(ﬁm,M) 1 2 wml’l\g,(lT) ~ 07 3,2
V() + lllml’M e \Usz(T) — \Umz’M(T) <0

hold true, where
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Stability analysis

my

Wou(r) = P+ diegl{o,Een o (5 en},
j=0

Wiy(r) = TyPAm+ALPTy,

my ma
Viom = diag{Zoj, —oo,—Zj(zj_l@/)TQ,@I(E,-_l@/)},
j=0 j=1

m2
Viam(n) = TATY RA,
j=1
1n. -
Viiu(m = 2D i(Eae) RY (Fae)),
j=1

matrices =, Zi are given previously with vx = vy k, and vy = vak,
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o = diag{(j+1), (+3), ., (+(2M-1))}®Q,
A = (A, A4, TAgp,0,...,0) € R>*M+2),
A= {Zoég/} T = B i T(/)M] ®l,
Lo = [ 4, 6, ~z2M-1,M-1) ],
R, = disg{jR;, (+2)R;, -, (+2-1)R},
where ﬁs\},ll, ﬁs\ill Zo(M — 1, M — 1) are given previously.
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Hierarchy of the LMI stability conditions

Aim: Comparison of the stability conditions for different M, m.
Assume that

M>1, m=m-1, my = m,
nj=M-j-1, vy =M — k,
j=0,1,...m—1, k=0,..m—1.

Lm.m depends on 7 : write L, p(7) when considering £, v for a
given value of 7.

Definition

Let the pairs (m, M) and (1, M) be given. We will say that L . Y
outperforms L, v, if, for every T for which L, p(7) has a feaSIb/e
solution, L 1(7) has a feasible solution, too. This is denoted by
»Cm,M < L. PR
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Hierarchy of the LMI stability conditions

Let the integer parameters satisfy the previous assumption. Then

Lm,M = 'Cm,l\/l—l—lv
Em,M = £m+1,M-

The LMIs can be arranged into a bidirectional hierarchy:

Lo1 < Loz < Loz < ... < Lom
A A A

Li2 < Liz < ... < Liwm
A A

Lo3 < ... < Lowm
A

Lyv-1,m
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Summation inequalities

(Join work with K. Kiss, I. Nagy, T. Takacs, JFI, 354(2017)123-144.)
Let m, N € Z>o, si=1i,if (i=0,1,...,N—1). For f,g: Z — R,
define a scalar product by

N-1 i1 imfl

<fg>m = > > Y f(im)g(im), (7)

i1=0 =0 in=0

and denote the corresponding norm by |||f]||m. Equivalently

L f,g>n= Zme 1(Nf(Ng(i),
where
m-1(x) = (N=1-x+m—-1)(N-1-x4+m—2)..(N—-1—x+1).
Further,
N—1

<f,g>m= Y mm1(Nf()g(i), with |f|Z =<ff>pn.
i=0
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Summation inequalities

Let {pm;} be a set of orthogonal polynomials w.rt. <. . >p,.

N—1 i1 im—l

Jrmon(F) = D3N T (im)Rf (im) =< £, RF > .

i1=0i2=0 in=0

Lemma

Let m,v1,vm, N be given integers satisfying conditions m > 1 and
vm<v1<N.Let R€ES} and f:Z — R". Then

1 —_ —
Jrmon(f) > D ST En@ N Rn(Gm® 1) .
¢ = CO/{¢07 ceey d)Vl}a (Z)j =< faplj >1

and =, is connected with a basis transformation.
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Summation inequalities

With special choices of m and v,, one can obtain from the
previous estimation

@ the single and double summation Jensen inequality

@ the single and double summation Wirtinger inequality

@ and some recently published higher "order" inequalities.

Summation inequalities for differences

Let p be given by function f : Z — R" as

p:Z—=R" p(i)y="f(i+1)—f(@), i=01,...,N—1
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Summation inequalities

Lemma

Let m, vy, vm, N satisfy condition vy, +m—1 <1y < N, and let
R €S/ . Then

1 =7 T =
JR,m,O,N(/)) > m(b (Zm & /) Rm (Zm & /) b,

Where§> = col{f(N), f(0), ¢o, ..., ¢Pu,—1}, ifr1 >0,
® = col{f(N),f(0)}, ifvy =0,
Rm is defined previously and
Zm is connected with a basis transformation.

Sufficient LM stability condition can be derived for discrete-time
systems, as well.
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Generalized free-matrix-based approach

(Join work with T. Takacs SCL 123(2019)40-46)
Let D; CRor D; C Z, Dy = [a, b], D = [a, C)7 D, = [C7 b] (If
D; C Z, then, eg. [a,b] :={l€Z:a<[|< b}
Let V; (i = 0,1,2) be the inner product space of ¢ from D; — R
with the scalar product (.,.); containing the elements m;(t) = 1,
t € D;, having the following properties:
(P1) If 9 € Vi, then pip € Vi and (p, ¥); = (moi, p¥)i;
(P2) If for ¢ € V; ¢(t) > 0 for all t € D;, then (mo;, ¢); > 0.
(P3) (¢, v)0 = (p1,%1)1 + (p2,12)2, where p; and 1); are the
restrictions of o and v respectively to D;.
Typically, Vi = La(D;) or Vi = h(D;) with the scalar product
(o) = [, e(t)d(t)dt and (p,9)i = 3 cp, @(t)1b(t), respectively.
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Generalized free-matrix-based approach

Let mo;, 71/, ..., Ty be an orthogonal system in V; for v € N,
let V§ = {¢=(¢",...,0")T : ¢' € Vo} and consider f € V.
Set My = (v + 1)n, My = 2My and define w € RM2 with

. [Wl] B [[m,wog{, ey (i ma)] ]

T
1
2 [<f277702>;—7 cee <f277TV2>2T]

)

T
w T

where f; is the restriction of f to D;. Set W' (i = 1,2) as

Zi .z N
wio | o
ziT ... Zi, N
NgT NET W

where Z,i, e RM2xMz N,’; e RM2xn | | =0....,uv.
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Generalized free-matrix-based approach

Lemma ( GFMB inequality)

Fori=1,2, W €S}, and
v >0,

the following generalized free-matrix-based inequality holds true for
all pj, > ||mill:

(F:, WEY; = =X <Zpk2kk> xi — He (x[ N'w)

where x; € RM2 (i =1,2) is arbitrary,
N = (N1,0> (NL,..,NL0,...,0) € RM:xM:

N2 = (o, N2) = (0,...,0, N2,..., N2) € RMxMz,
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Generalized free-matrix-based approach

Independent functions based GFMB inequality:

Lemma (I-GFMB inequality)

Let {pi}k—o be a system of linearly independent functions in V;,

wj = (fi, pi}i and Yig = (pki, pii)i- If W € S}, and W' >0, , then

(., WE); ZHe( ,TNLvT/,i)
-xi <Z’Ykkzkk+z Z He ( ’Ykle/>

k=0 I=k+1

where x; € RM2 js arbitrary.
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Generalized free-matrix-based approach

Notations: Set W; = diag {pi pi} ® W, Wy = diag (W1,0),
0 v
W, = diag (0, W>), and W, is defined analogously with Wl-_l.

Corollary ( Simplified GFMB inequality)
GFMB inequality lemma implies that
S-GFMB (f;, W) > —He (x] N'w) — xTN'W-NiTy;
S-FMB  (fi,Wh) > —wT (He(N') + NW N ) w
BBI (F, WE) > wil Wiwi
Moreover, the right hand side of the last inequality is always greater
than or equal to the right hand side of the others.




Relations of different approaches
000008000000

Generalized free-matrix-based approach

Theorem

Suppose that {pyj},_o and {mki},_o span the same subspace of
V. Let pj = |[mll?.

Then the GFMB inequality, and the I-GFMB inequality are
equivalent.

Moreover, the GFMB-, S-GFMB-, S-FMB- and BBI inequalities are
equivalent.

Comparison of complexity characterized by the number of
parameters involved:

BBl < S-FMB < 5-GFMB << GFMB=<< I-GFMB
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Estimations for two connected intervals

Let V; = Lo(D;) or V; = h(D;) with the scalar product given
previously, and let W € S}, Define

W =diag{1,3,....,2v + 1} @ W.
Then
(f, Wf)o = (h, Wh)1 + (R, Wh)a.

Suppose that a < ¢ < b, and introduce the notations h = b — a,
a = <32, Then S-FMB inequality yields

(F, W) > %WTQF(a, w, N', W?)w,
where
Qr(a, W, NY, N?) = —hHe ([Nl o} n [o /V2D
— (=ANY) (W 1) (=hNYT
— (=hNA)((1 = a)W ) (=hNA)T.
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Estimations for two connected intervals

On the other hand, the BBI inequality is

1
here (f, WFf)o > EWTQB(Q, W)w,
w0

Qs(0, W):[ 0 )W]

Advantage of BBI: tighter lower bound and less complexity.
Disadvantage: it is non-convex in the lengths of the intervals, if it
is applied in case of time-varying delays. To avoid the
non-convexity, further lower estimation is needed.
Possibilities:the application of

@ the classical reciprocally convex combination (RCC) lemma of Park et al.

(2015),

@ the extended RCC (E-RCC) lemma of Seuret et al. (2016),

@ the modified Moon lemma of Liu et al. (2016),

@ a simplified and a modified version of the E- RCC lemma.
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Estimations for two connected intervals

Let W € S}t be given.

(A) S-FMB < ( BBI & modified Moon lemma)
The modified Moon lemma: for all Uy, U € RM2XMv and for
all « € (0,1)

QB(a, W) > Ql(a, W, U, U2) = He([Ul 0] + [0 UQ])
—aUWIU] — (1 =)Wt
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Estimations for two connected intervals

(B) (BBI & modified Moon lemma) =
(BBI & simplified E-RCC), but not conversely.
The simplified E-RCC:
lf Yl, Yz € RMlXM1 are arbitrary matrices and
=W-YiW~ Yl,Xg W =YWLy,
then

Qp(a, W) > Qa(a, W, Y1, Y2)

W+ (1 —oz))?l a1+ (1—-a)Ys

- Vo € (0,1).
* W+(ZYX2 @ ( )
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Estimations for two connected intervals

(C) (BBI & simplified E-RCC) < (BBl & E-RCC),
The E-RCC states that, if Y1, Yo € RM>M1 and Xq, X5 € S,
are arbitrary matrices satisfying inequality

W 0 X1 Y1 0 Y2
[0 W}a[le 0](1a)[Y2T X2]ZO

for « = 0,1, then for all « € (0,1)

Qp(a, W) > Q3(a, W, X1, X2, Y1, Y2)

L W+(1—a)X1 aY1+(1—a)Y2
T * W—FOZXQ ’
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Estimations for two connected intervals

(D) (BBI & simplified E-RCC) = (BBI & the modified E-RCC),
but not conversely.
The modified E-RCC states that, if Y € RM1*M1 js ap
arbitrary matrix and X1 =W — YW1y T,
Xo =W — YTWLY | then, for all o € (0,1)

W+ (1-a)X1 Y ]

QB(O[, W) > Q4(Oé, W7 Y) = |: * W + ay2

(E) (BBI & modified E-RCC) = (BBl & RCC).
RCC : If Y € RMixM s satisfies the inequality of E-RCC with
X1=Xo=0and Y1 =Y = Y, then
W Y
Y W
Qs(a, W, Y) < Qq(a, W, Y) if Y is chosen as in RCC.

Qp(a, W) > Qs(a, W, Y) = [ } .Ya € (0,1)




Control design
©000000000000000000000000000000000

Synchronization of networks: The problem

(Join work with A. Kazemy & K. Kiss, JFI 355(2018)8934-8956)
Consider the following CDN that consists of N nodes

N
%i(t) = Axi(t) + Bef (xi(t)) + Buui(t) + ¢ Y £;Gxi(t — 7(t)),
Jj=1
i (t) = Cxi(t), i=1,...,N,
where
xi(t) € R™ state of the ith node
ui(t) € R™ control signal of the ith node
yi(t) € R™ measured output of the ith node
G € R™>"~ constant inner-coupling matrix of the nodes

L = [¢;] € RY*M  outer coupling configuration matrix with properties

Lij=¢ji > 0, if there is an interconnection between nodes i and j, and ¢;; = 0,
otherwise, while the diagonal elements of L are defined by

N
Li = — Z i, i=1,...,N.

=L
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Synchronization of networks: The problem

The time-varying delay 7(.) is supposed to be a differentiable
function satisfying conditions

O0<z<7(t)<7, 7(t) <p,

with known constant bounds 7 < 7 and . The initial condition:
xi(t) = pi(t), if t € [-7,0], i e W[-T7,0], and i =1,... N.

Assumption

The continuous function f : R"™ — R"* satisfies

[f(x) - f(y)} ! [Qo 50] [f(x) — f(y)

> Nx
x—y 507- Ry x—y ]_0 V x,y € R™,

where Qo € S, So € R™*"™, Ry € ST are known matrices.
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Synchronization of networks: The problem

Let z(t) € R™ be the trajectory of the unforced isolate node
described by

z(t) = Az(t) + Brf(z(t)),
yz(t) = Cz(t).

The communication structure is as follows:

Measurement time instants: j§, with 6 > 0, j =0,1,...,

they are transmitted from the isolate node to all nodes, while
packet dropouts may happen.

Successfully transmitted measurements: {sk, y-(sk)},

O=s50<s1 < - <5< ..., limgyoosk =00,0 <511 — sk <,
v is given. The measurements of the ith node {9, y,.(j6)} are
saved and, based on sy, {sk,yx (sk)} is taken out.
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Synchronization of networks: The problem

The control

Ui = (Ki+ DK k) (v (sk) = v2(s1))
is computed and applied through a Zero-Order-Hold (ZOH) device
from tx = s, +n till txr1 = sk1 + 1, e
ui(t) = ul, t € [te, tir1) -
1 > 0 is a known constant transmission delay.

The time-dependent uncertainty AK; , represents a possible gain
fluctuation satisfying condition

AKix = DAjEsi,  where Al A <1, forall ik,

and D, E.; are known constant matrices.
Let n(t) =t — tyx +n, if t € [tk, tkt1), then t —n(t) = s, if
te [tka tk+1)a and

0<n<n(t)<n+v=nu.



Control design
0000®00000000000000000000000000000

Synchronization of networks: The problem

Let ri(t) = x;(t) — z(t) be the synchronization error of the ith
node.Then the synchronization error of the CDN can be written as

fi(t) = Ari(t) + Brg(z(t), ri(t)) + BuKiCri(t — n(t)) + BuDpk.(t)

N
+cliGri(t —7(t) + ¢ Y L5Gr(t —7(t)),
J=1
t € [tk, tkr1),
ri(t) = x(t) — z(t), te (-7, i=1,...,N,

where g(z(t), ri(t)) = f(ri(t) + z(t)) — f(z(t)).

Definition

Let ty = to + 7, and let r(t) = col{ri(t),...,rn(t)}. The CDN is
said to be globally exponentially synchronized onto the isolate
node, if there exist constants M > 0, ~ > 0, such that, for t > t§
and for any ris € W[-7,0], [|r(t)|| < Me—(t=1%) , holds.

rta‘
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Synchronization of networks: The main result

Lyapunov-Krasovskii functional for the error system:
V(t, rt, rt) = Z \/i(t7 rt, I:t), t e [tk7 tk+1), k = 07 ].7 ey

where the functionals Vi(t) = VIi(t, ry, Ft) are defined as follows.
3 4 . .
V() =3 Vit +Z (Vaj(8) + V3i(8)) + Va(t) + ) Vy(1),
j=1

Via(t) = r,-(r)TPur,-<t>, Vio(t) = pin(t) T Piapin (t),
V13(t) ,012() Pispia(t),

t—1
i d. ’
/ T—T/t—T ri(s) s}
1 t=n
/ (s)ds, / r,-(s)ds} ,
v =1 Jt—nm

H\l—‘

pir(t) = col{

d\l—l

pia(t) = col{
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V()= [ & 05(5)7 Quilo)os

Vit) = [ 05(5)7 Quri(5)
Vi (t) = /t ne2a(5’t)r;(s)TQ;3r,-(s)ds
Vo) = [ )7 Qun(s)e

M

Vit _T/ / €200~ ()T Ry :(5) dsdlf),
—7 Jt+0

Vi(t T—T/ /9 2= 1 (s)T RiaFi(s)dsd,
-7 Jt+
V'33(t)=77/ / geQO‘(S—t)r‘,(s )T Riafi(s)dsdo,
—n Jt+
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V;4( 77/\// 77/ /+9 2a(s t)f ,4fi(5)d5d9,
M
Vi) = / SO Sun(s)es
t

t—7(t)
+/ 27 r(5)7 Siari(s)ds

Z / 9ri(s) 7 Sjary(s)ds,

J Lj#17t=7(0)

V() = (ma — 0)? / (s) T Sri(s)ds
T s — ()T Siori(si) — i),

4 ty—n
Pi1, Qj. Rij, Sio, Si1, Siz € 8%, Pi, Pz € S3™,
i=1.. N, j=1,... 4
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Synchronization of networks: The main result

Let k1 = e 72T Ky = €297 k3 = e 2 and kg = e 2*M_ |f the
adjustable matrices satisfy the prescribed conditions and the LMIs

0 0 0

Pio+ |0 7r1Qi1 0 > 0,
10 0 (T — 7)K2Qi2
[0 0 0

Pz + |0 nr3Qi3 0 >0,
10 0 (MM — 1)kaQia

then for V(t)= V/(t, ri, f) there exist constants c; > 0 and c; > 0
such that -
a r(®)* < V(t) < e |Irellyy

and Iimt_)tk_ V(t) > /imt_>tk+ V(t).
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Synchronization of networks: The main result

Sufhicient condition for exponential synchronization can be derived
by the estimation of 4 V/(t). This estimation can be given in terms
of LMIs, but it is very technical, therefore we refer those who are
interested for details to the cited paper.

Advantages of the proposed method are the reduced conservatism
and the reduced number of decision variables (NoDV).
The number of decision variables is
3Nny(5Nny + 3)/2 + Nn?
in Lee et al. AMC 219(2012)1354-1366,
31.5(Nny)? + 6.5Nn, + 3Nn2 + 2
in Liu et al. IEEE Trans. NNLS 29(2018)118-128,
N((25.5 + 0.5.(cx))n2 + (8.5 + 0.5¢())nx + 2)
in the present work presumed that n, = n, = n,.
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Finite frequency H,, control design: The problem

(Join work with A. Kazemy T.& Takacs, ISA Trans.
doi:10.1016/j.isatra.2019.06.005)
Contributions :

© Finite-frequency Ho control is designed for linear systems via
dynamic output feedback.

@ Practical hard constraints are considered in the design problem.
Consider a linear dynamic system as

x(t) = Aex(t) + Beu(t) + Exf(t), x(0) = xo,
z(t) = Cx(t) + Byu(t) + E-f(t),
y(t) = C}/X(t)u
v(t) = Cux(t),
where
x(t) € R™ state, f(t) € L2[0, T) VT >0 external disturbance,
u(t) € R™  control signal, z(t) € R™ penalty output,

y(t) € R measured output, v(t) € R™ output to be constrained,
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Finite frequency H,, control design: The problem

Hard constraints:

vi(t) < 1, i=1,...n,
<

|u(t)]

Admissible external disturbance: f satisfying

Ujmax, J = 1,...,ny, where ujmay is a given constant.

o0
/ f(t)2dt < £2,, where fax is a given constant.
0

The dynamic output feedback controller:

5\<(t) :AC)?(t)-i—ch(t),
u(t) :Cc)?(t)+DCY(t)>

K = [Ac, Be, Cc, D] is referred to as controller gain matrix.
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Finite frequency H,, control design: The problem

Define &(t) = [xT(t),x7(t)] " € R

The closed-loop systems is
() = AE(t)+Bf(t), €0)=¢& =[x].07]",
((t) = C&(t) + Df(v),

where
_ |A«+B«D.C, B.Cc | Ex
A = B.C, A |’ B= 0|’
¢ = [G+B.D.C, B.C|, D=E..
Let ¢ € RI*M be the ith unit vector. The hard constraints are
g(t)Tcch,g(t) < 1, i=1,..,ny,
) ThTel gre(t) < e J=1,.0mu,

where k = [D.C, C, C, = [C, 0] and C,; is the i*" row of C,.
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Finite frequency H,, control design: The problem

Consider the finite-frequency H., performance index

sup [|G(jw)llos <7, (U =V=1)

w1 <w<w2
where

w1, wo . lower and upper bound of the concerned frequency,
v positive scalar,
G(jw):  transfer function matrix of the closed-loop system,

Problem statement: Design an appropriate dynamic output
feedback controller gain matrix K = [A¢, B, Cc, D] such that,

@ the closed-loop system is asymptotically stable, if f(t) =0,

@ the finite-frequency H., performance index is guaranteed with
a «v as small as possible,

@ the hard constraints are met.
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Finite frequency H,, control design: GKYP lemma

Lemma (GKYP Lemma, Iwasaki & Hara, (2005),

Pipeleers & Vandenberghe (2011) )
Let Ac R™" B e R™™M CeRP*", DeRP*M a~eRy4,
Z,={weR: w1 <w<wy}, be given Suppose that A has no
eigenvalues on the imaginary axis, and DT D — ~?1 < 0. Then for

G (jw) = C (jw! — A)"' B+ D the following statements are
equivalent:

(i) [g ({“)]*n [g ({w)] <0, el wel,

(ii) There exist real symmetric matrices P and Q with Q@ > 0 such

that
ABT:AB+CDTHCD<O
I o] =1 o] |o I o /|=%
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where
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Finite frequency H,, control design: Main result

Proposition (1)

LetZ, ={w € R: w1 <w <wy} and let G(jw) be the transter
function of the closed-loop system. Suppose that A has no
eigenvalues on the imaginary axis, and DD — ~?| < 0. Then

sup [|G(jw)llee <7,

w€eZ,

if and only if there exist matrices P € Sy, , Q € 52,, ,
W, Wim € R?™X20 sych that the following matrix inequality
holds:

<0,
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where I = [0 C D],

R o) P—-W, 0
QI‘ e 73 = WrT er W,TB P
| 0 B™W, —+?I
Qr =AW, + WA - w100,
R i 0 WCQ - Wim 0
Qim = | ~wcQ+ W] Q1im -WilB|,
0 BTWim 0

Qim =A"Wim — W A.
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Finite frequency H,, control design: Main result

Divide the selectable variables into two groups:
(1) Wo = [P, Q, W,, Wim,7], where ¥ = 42, and
(2) K= [AC7 Bc, Ce, Dc]-

Formally, the inequality of Proposition 1 can be written as

EO (w07 IC) < 07

which is LMI with respect to Wy by fixing the matrices in I, and it
is LMI with respect to K by fixing the matrices in Wy.
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Finite frequency H,, control design: Main result

For given R € S, and o > 0, introduce the ellipsoid

Ea(R) = {5 e R ¢TRe < a} .

Proposition (2)

Let ag > 0, v > 0 be given, and consider the closed-loop system
with admissible disturbances. Suppose that there exists a matrix
R €S3, such that

T TP
[.A R+RA B'R <0,

RB —vl
[ R ak eT/,/qu,-,,X >0

_ > =1,..n
aejk/ \/Uimax QUmax! | ’ J T
R aCl] .
[ac‘/, a}/,_ Z 07 I = 17 ) nV7
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(continuation)

where @ = ag + vf2,,.
Then
@ the closed-loop system is asymptotically stable for f(t) = 0;

e if f is an admissible disturbance and &y € Eq, (R), then
— &(t) € Ea(R) for all t > 0,
— and the hard constraints are satisfied.

Divide the selectable variables into two groups: W1 = [R, v] and
K =[Ac, B, Cey D.]. Formally, one can write inequalities of
Proposition 2 as

[:1 (‘U]_,IC) < 07 £2 (‘U]_,IC) > 07 £3 ("U]-?IC) > 07

which are LMIs with respect to Wy by fixing K, and they are also
LMIs with respect to K by fixing W;.
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Finite frequency H,, control design: Main result

@ How to solve the obtained system of BMIs?
Idea: find an initial guess for (A, Be, Ce, Dc) , then reduce ~
by iteratively solving the obtained bilinear inequalities
alternately fixing one or the other group of the decision
variables.

@ How to obtain a suitable initial guess?
Fix g, find the solution of the H,.-problem on the entire
frequency domain w € R. If it has a feasible solution, then it is
a feasible solution of the H,.-problem on the restricted
frequency domain.

The construction can be done by an approach frequently applied

since a seminal paper of Gahinet & Apkarjan.

(The details are given in A. Kazemy et al. ISA Trans.
doi:10.1016/j.isatra.2019.06.005)
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Finite frequency H,, control design: Main result

Algorithm

Step 0. Chose ag > 0, 7, > 0. Find the solution of the Hy, problem.
If it has a feasible solution, then let k = 1, 5(0) = 7,
KO = {A., B, Cc, Dc} . Choose a Ymin > 0, and Npyax € NT.

Step k. (i) If K*=1) is known, solve problem P1 for Wy, W :

P1: min 7,  with respect to
Lo (Wo,lc(kfl)) <0, Ly (Wl,lc(kfl)) <0,
£2 (W1, K6 >0, £ (Wi, K6 > 0,

Let \I!gk), ng) be defined as the solution.
(i) If \IJ(()k), \U(lk) is known, solve problem P2 for C and ¢ > 0 :
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P2 : min(—¢e),  with respect to
£o (W, K) < e, £ (W1,K) < —,
£ (W) >0, £5 (v, k) >0
Let () be defined as the solution.

If 7k=1) > 5(K) > ~ i and k < Npmax, then set k = k + 1,
and repeat step k, otherwise stop.

If the LMIs in Step 0 have a feasible solution, then problems P1
and P2 are feasible, Step k defines a strictly decreasing sequence
5(K). and the algorithm terminates in finitely many steps yielding a
suboptimal solution of the formulated problem.
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Finite frequency H,, control design: Example 1

Example 1. Consider a three-storey building model drawn in the
next Figure.

m

e va-f —D |—%

m, %j ) L\AW LA j —,

m, 1 L\/\/,N— —@—| —4
c ;

— ;X:
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Finite frequency H,, control design: Example 1

In this model, all three storeys are supposed to be identical,

ny = 6, n, = 3, The coefficient matrices of the model can be
computed from the physical parameters given in the literature.
Parameter zmay is the maximum allowable relative drift between the
floors with value 0.02 m. The 1940 El-Centro earthquake real data
is utilized, for which wo; = 0.3 and wy = 8.8.

4000
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3000 . . . . . . . .
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Finite frequency H,, control design: Example 1

Simulation results:

Relative drift of the first floor

0.3

Proposed method
— ——Kazemy et al. [18]
Chen et al. [22] 1

0 5 10 15
Time(s)
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Relative drift of the second floor

0.3
0.2r 1
1\
0.1+ N " ‘\ .
0 [ M\,r
£ Fa i o
g’ (W)
0.1+ \‘l 1“, y 'l’ J
\
L ¢
0.2f ) —
03l —— Proposed method | |
) — — —Kazemy et al. [18]
Chen et al. [22]
0.4 : :
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Time(s)
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Relative drift of the third floor

0.2
0.15 - |
0.1t |
0.05| /‘ A 1
'\ l 1 ﬁ\,\ / .1 \\ /\’\ V§
o ° N\'\J\W’ 7N\‘r‘w\\i’\‘\f’ M"W\J\"V\* ‘Wj\/ hadon
= Al i
-0.05 | 1
g Y
04 |
0.15 | 1
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] | — — —Kazemy et al. [18]| |
0.25 Chen et al. [22]
0.3 : ‘
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Time(s)
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Finite frequency H,, control design: Example 2

Example 2. In this example, an offshore platform with active mass
damper (AMD) is considered. A simplified model of this platform
is drawn in the next Figure.

ko Zs
C2 mz |5
u AMD
\\ /
f Zp
) ma —_
Platform Deck |

I
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Finite frequency H,, control design: Example 2

Hard constraints:

® Zymax = 25 m is the maximum deflection between the AMD

and the platform deck,

® Zpmax = 0.2 m is the maximum deviation of the platform,

® Umax = 7.6 x 10°.
The frequency limits o3 = 0.25, and @, = 5 are considered, a
corresponding wave force has been generated and shown in the next
Figure:

N
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20 25 30

o
a
o

15
Time(s)
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Simulation results with the computed controller:

0.2 —— Proposed method |
77777 Kazemy et al. [35]
0.15 Zhang et al. [36] | 4

0 5 10 15 20 25 30
Time(s)

abra: Displacement of the platform deck
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—— Proposed method
77777 Kazemy et al. [35]
Zhang et al. [36] | 4

0 5 10 15 20 25 30
Time(s)

abra: Acceleration of the platform deck
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Amplitude

ii

—— Proposed method
77777 Kazemy et al. [35]
Zhang et al. [36]

i
i | | |

0 5 10 15 20 25 30
Time(s)

abra: Control signal generated by different controllers
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