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Having fun on the plane: Poincaré-Lyapunov
constants, Jacobians, Quadrics and Jordan Forms
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OUTLINE

• Intro: Hopf bifurcation, Poincaré-Lyapunov constants

• Hopf Quadric

• 15 Little Jacobians

• Poincaré-Lyapunov constants and linear algebraic 

properties of Carleman matrices

• Summary
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MOTIVATION: HOPF BIFURCATION ANALYSIS

Source : YouTube – Aeroelastic Flutter

Source: YouTube - Nonlinear Dynamics and 
Chaos
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POINCARÉ-ANDRONOV-HOPF BIFURCATION

Supercritical case Subcritical case

� − bifurcation parameter
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HOPF BIFURCATION AND POINCARÉ-LYAPUNOV CONSTANTS

Nonlinear system at Hopf bifurcation

Poincaré-Lyapunov constants
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CRITICALITY OF HOPF BIFURCATION

Supercritical case: Subcritical case:

First Poincaré-Lyapunov constant

ν − bifurcation parameter
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HOPF QUADRIC 
WITH ALEXEI UTESHEV – ST. PETERSBURG STATE UNI.
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HOPF QUADRIC

15 parameters (ω, 7 a's and 7 b's) in the planar differential 

equation, but         is a function of only 11 parameters.

First Poincaré-Lyapunov constant
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L1

is a quadratic formL1
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HOPF QUADRIC
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HOPF QUADRIC
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Hx : xTAx  2bTx  0 HOPF 
QUADRIC

Question: can we find the distance between a given 
parameter point x₀∈R⁸ and the Hopf quadric?
This distance would be a 
measure of the "criticality" of the Hopf bifurcation.
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HOPF QUADRIC AND DISCRIMINANTS

Hx : xTAx  2bTx  0 HOPF 
QUADRIC

The stationary points of the squared distance function from x₀∈Rⁿ 
to the quadric are the real zeros of a univariate algebraic equation

f  A04  A13  A22  A3  A4  C, A0  0

Df : 4I2
3  27I3

2Discriminant:

I2 : 4A0A4  A1A3  1
3
A2
2,

I3 : A0A3
2  A1

2A4  8
3
A0A2A4  1

3
A1A2A3  2

27
A2
3 .



13

30
HOPF QUADRIC

The condition is necessary and sufficient 
for the existence of a multiple zero of f.
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HOPF QUADRIC
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HOPF QUADRIC - EXAMPLE
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15 LITTLE JACOBIANS

Can we determine 
stability from eigenvalues 
around a nonhyperbolic

equilibrium?
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15 LITTLE JACOBIANS
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15 LITTLE JACOBIANS
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15 LITTLE JACOBIANS

L1  1
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Can we express the 
Poincaré-Lyapunov

constant in terms of TrJ
and DetJ evaluated at 

different points?



20

30
15 LITTLE JACOBIANS
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15 LITTLE JACOBIANS

Yes, we can determine 
stability from eigenvalues at 

15 points 
around a nonhyperbolic

equilibrium!
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HOPF BIFURCATION AND CARLEMAN MATRICES
WITH CSANÁD HUBAY – BME ARA

o 1932, Carleman method based on Poincaré’s 
idea

o 1986, Tsiligiannis & Lyberatos, theorems about 
Hopf bifurcation using Carleman matrices

o 1991, Steeb and Kowalski book

Research question:

What is the connection between the Poincaré-Lyapunov constants and
the linear algebraic properties of the Carleman matrices?

Goal: Use of linear algebraic methods in bifurcation 
analysis
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CARLEMAN EMBEDDING TECHNIQUE

Introducing the monomials of       and 

e.g.

.

Let us consider
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DERIVATION OF THE VECTORS OF MONOMIALS

For example, differentiating            

In general,

where

,
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CARLEMAN EMBEDDING TECHNIQUE

The matrices

where

The Carleman embedding
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CARLEMAN EMBEDDING TECHNIQUE

The Carleman embedded system

and the vector of the initial conditions
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CONSTRUCTING A SOLUTION

Strategy to solve the linearized system:

1. Calculating the eigenvalues of the Carleman matrix 

2. Calculating the eigenvectors of the Carleman matrix

3. Constructing the solution as linear combinations

The linearized system
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1. EIGENVALUES OF THE CARLEMAN MATRIX

The Carleman matrix:

Lemma (non-trivial):

Lemma (trivial):

It is true since         is an upper-triangular matrix.
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2. EIGENVECTORS OF THE CARLEMAN MATRIX

Eigenproblem

Block matrix structure

Starting point

, 

that yields
.
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2. EIGENVECTORS OF THE CARLEMAN MATRIX

The equations to solve are

1. Case of eigenvalues with already calculated eigenvectors ,

The eigenvector reads

(1)

(2)
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2. EIGENVECTORS OF THE CARLEMAN MATRIX

2. Case of new, single eigenvalues,

Thus,

(1)

(2)
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2. EIGENVECTORS OF THE CARLEMAN MATRIX

3. Case of repeated eigenvalues,

a) Similarly to the first case 

b) 

Inhomogeneous 
eigenvalue problem
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TRICKY CASE: INHOMOGENEOUS EIGENVALUE PROBLEM 

In case of zero eigenvalue

,

utilizing the blockmatrix structure of 

Since
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APPLICATION OF THE FREDHOLM ALTERNATIVE

We want to solve the following equation

Let                             then
.

If             there exists no solution. Otherwise,

,
and

we examine the scalar product  (                           )

...
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GENERALIZED EIGENVECTORS

The Carleman matrix         is defective. 

The number of distinct eigenvalues is                          . 

Generalized eigenvector of rank     

but

The rank 1 generalized eigenvector is the normal eigenvector       . Generalized 
eigenvectors can be calculated from
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SOLUTION OF THE LINEAR SYSTEM

The linear combination of all the linearly independent solutions of the eigenvalues
gives

.

Introducing the notation of the eigenvectors

,

where

• is the Carleman matrix of order    ,
• is the   th eigenvalue,
• denotes the rank     generalized eigenvector.
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SOLUTION OF THE LINEAR SYSTEM

Kuznetsov & Leonov (2007, 2008)

Where

is the standard basis vector,

are the Poincaré-Lyapunov constants.

Difference between the solution and the intial conditions

,



38

30
PHASE PORTRAIT
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EXAMPLE
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EXAMPLE: GENERALIZED EIGENVECTOR
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EXAMPLE: CONSTRUCTING A SOLUTION
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SOLUTION OF THE EXAMPLE
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LINEAR ALGEBRAIC PROP. OF CARLEMAN MATRICES
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The row echelon form of a Carleman matrix

,

where                                     is the   th non-vanishing Poincaré-Lyapunov constant.

Lemma:

The research question is answered: we found the connection between the
Poincaré-Lyapunov constants and the linear algebraic properties of the
Carleman matrices.

LINEAR ALGEBRAIC PROP. OF CARLEMAN MATRICES



Thank you for your attention!


