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Operators on Hilbert spaces: compact operators

H and U real Hilbert spaces, L(U,H) denotes the space of bounded linear
operators; L(U,U) := L(U).
A linear operator T : U → H is called compact if T maps bounded sets into
precompact sets.

Theorem (Spectral Theorem for compact self-adjoint operators). If
T : U → U is a compact self-adjoint operator on an infinite dimensional Hilbert
space U, then there is an orthonormal basis of U consisting of eigenvectors {ek}
of T with corresponding real eigenvalues {λk}. Furthermore,

Tu =
∞∑
k=1

λk〈u, ek〉ek , u ∈ U.

Corollary (Functional calculus). Let f be a bounded function on {λk}. Then,
the mapping Θ : f → f (T ) ∈ L(U) where

f (T )u :=
∞∑
k=1

f (λk)〈u, ek〉ek , u ∈ U,

is an isometric algebra homomorphism. That is, Θ is linear, it maps products to
products, f (λ) = λ 7→ T , f (λ) = 1 7→ Id and ‖f (T )‖ = supk∈N |f (λk)|.
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Operators on Hilbert spaces: compact operators

Proof. Linearity is straightforward. If f , g are bounded on {λk}, then

f (T )g(T )u = f (T )
∞∑
l=1

g(λl)〈u, el〉el =
∞∑
l=1

g(λl)〈u, el〉f (T )el

=
∞∑
l=1

g(λl)〈u, el〉
∞∑
k=1

f (λk)〈el , ek〉ek =
∞∑
l=1

g(λl)f (λl)〈u, el〉el = (fg)(T )

Finally, f (T )ek = f (λk)ek and hence ‖f (T )‖ ≥ supk∈N |f (λk)|. On the other
hand, by Parseval’s identity,

‖f (T )u‖2 =
∞∑
k=1

f (λk)2〈u, ek〉2 ≤ sup
k∈N

f (λk)2
∞∑
k=1

〈u, ek〉2 = sup
k∈N

f (λk)2‖u‖2

�

I If 〈Tu, u〉 ≥ 0 for all u ∈ U, the we write T ≥ 0 and say that T is positive
semidefinite. If T is compact, self-adjoint and T ≥ 0, then the eigenvalues
of T are nonnegative. Then, we may define the square-root of T by

T
1
2 u =

∞∑
k=1

λ
1
2

k 〈u, ek〉ek , u ∈ U
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Operators on Hilbert spaces: nuclear operators and trace

An operator T : U → H is called nuclear if there are sequences
{aj} ⊂ U, {bj} ⊂ H with

∑∞
j=1 ‖aj‖U‖bj‖H <∞ and such that

Tu =
∞∑
j=1

〈u, aj〉Ubj ∀u ∈ U.

Notation: T ∈ L1(U,H)

I If T ∈ L1(U,H), then T is compact

I If U = H, T is compact and self adjoint then T ∈ L1(U) := L(U,U) iff∑∞
k=1 |λk | <∞

I If T ∈ L1(U) then the trace of T is defined as

Tr(T ) =
∞∑
k=1

〈Tek , ek〉

with {ek}∞k=1 an ONB of U.

I For T ∈ L1(U) the quantity Tr(T ) is well-defined and is independent of the
choice of the ONB.
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Operators on Hilbert spaces: Hilbert Schmidt operators

An operator T : U → H is called Hilbert Schmidt, if

‖T‖HS :=
( ∞∑
k=1

‖Tek‖2
) 1

2 <∞.

Notation: T ∈ L2(U,H)

I If T ∈ L2(U,H), then T is compact and ‖T‖L(U,H) ≤ ‖T‖HS

I ‖T‖HS is independent of the choice of the ONB
I ‖T‖2

HS = Tr(T ∗T ) = Tr(TT ∗) = ‖T ∗‖2
HS

Remark. In general, one defines the Schatten p-classes Lp(U,H) the following
way.

I For a compact operator T the operator T ∗T is compact, self adjoint,
semidefinite on U.

I The absolute value |T | of T is then defined as |T | = (T ∗T )
1
2 . It is also

compact, self adjoint, positive semidefinite on U.
I The singular values sj(T ) of T are defined to be the nonzero eigenvalues of
|T | counted according to their multiplicity.

I T ∈ Lp(U,H) if
∑

j sj(T )p <∞, 0 < p <∞.
I For p = 1 and 2 the Schatten p-classes coincide with the nuclear and Hilbert

Schmidt operators, respectively.
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 6 / 36



Operators on Hilbert spaces: Hilbert Schmidt operators
An operator T : U → H is called Hilbert Schmidt, if

‖T‖HS :=
( ∞∑
k=1

‖Tek‖2
) 1

2 <∞.

Notation: T ∈ L2(U,H)
I If T ∈ L2(U,H), then T is compact and ‖T‖L(U,H) ≤ ‖T‖HS

I ‖T‖HS is independent of the choice of the ONB
I ‖T‖2

HS = Tr(T ∗T ) = Tr(TT ∗) = ‖T ∗‖2
HS

Remark. In general, one defines the Schatten p-classes Lp(U,H) the following
way.

I For a compact operator T the operator T ∗T is compact, self adjoint,
semidefinite on U.

I The absolute value |T | of T is then defined as |T | = (T ∗T )
1
2 . It is also

compact, self adjoint, positive semidefinite on U.
I The singular values sj(T ) of T are defined to be the nonzero eigenvalues of
|T | counted according to their multiplicity.

I T ∈ Lp(U,H) if
∑

j sj(T )p <∞, 0 < p <∞.
I For p = 1 and 2 the Schatten p-classes coincide with the nuclear and Hilbert

Schmidt operators, respectively.
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Gaussian measures in Hilbert spaces

I (Ω,F ,P) probability space

I U real separable Hilbert space

I B(U) is the Borel σ-algebra of U: smallest σ-algebra containing all open sets
of U

I For v ∈ U let v ′ : U → R denote the linear functional given by

v ′(u) = 〈v , u〉, u ∈ U

I As v ′ : U → R is continuous it is also measurable if we equip U and R with
their respective Borel σ-algebra

I Hence, given a probability measure µ on (U,B(U)), the functional v ′ can be
viewed as a real-valued random variable on the probability space (U,B(U), µ).
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Gaussian measures in Hilbert spaces: definition

Definition. A probability measure µ on (U,B(U)) is Gaussian if for all v ∈ U,
the random variable v ′ : (U,B(U))→ (R,B(R)) has a Gaussian law. That is, for
all v ∈ U, there are mv ∈ R and σv ∈ R+, such that, if σv > 0,

µv ′(A) = µ(v ′−1(A)) = µ ({u ∈ U : v ′(u) ∈ A}) =
1√

2πσv

∫
A

e
− (s−mv )2

2σ2
v ds,

for all A ∈ B(R).
In the degenerate case, that is, if σv = 0, then we require that µ ◦ (v ′)−1 = δmv ,
the Dirac measure concentrated at mv .

Question: Given a real separable Hilbert space U are there any Gaussian
measures at all on (U,B(U))?
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Characterization of Gaussian measures

Theorem. A finite measure µ on (U,B(U)) is Gaussian if and only if

µ̂(v) :=

∫
U

ei〈v ,u〉U dµ(u) = ei〈m,v〉U− 1
2 〈Qv ,v〉U ,

where
I m ∈ U
I Q is self-adjoint, Q ≥ 0 and Q ∈ L1(U).

In this case we write µ = N(m,Q), and m and Q are called the mean and the
covariance operator of µ. The measure µ is uniquely determined by m and Q.
Corollary. Let µ be a Gaussian measure on U with mean m and covariance
operator Q. Then, for all u, v ∈ U,∫

U

〈u, v〉U dµ(u) = 〈m, v〉U ,∫
U

〈u −m, v〉U〈u −m,w〉U dµ(u) = 〈Qv ,w〉U ,∫
U

‖u −m‖2
U dµ(u) = Tr(Q).
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Characterization of Gaussian measures

Proof of the easy direction of the Theorem and the Corollary.
If µ has the stated Fourier transform, then
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Characterization of Gaussian measures

Using the polarization identity

〈Qv ,w〉U =
1

4
(〈Q(v + w), v + w〉U − 〈Q(v − w), v − w〉U)

we get

〈Qv ,w〉U =

∫
U

1

4
(〈u −m, v + w〉2U − 〈u −m, v − w〉2U) dµ(u)

=

∫
U

〈u −m, v〉U〈u −m,w〉U dµ(u).

Finally, by monotone convergence and Parseval’s identity,

Tr(Q) =
∞∑
k=1

〈Qek , ek〉U =
∞∑
k=1

∫
U

〈u −m, ek〉2U dµ(u)

=

∫
U

∞∑
k=1

〈u −m, ek〉2U dµ(u) =

∫
U

‖u −m‖2
U dµ(u).
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Gaussian random variables

Definition. A U-valued random variable X on a probability space (Ω,F ,P); that
is, a measurable mapping X : (Ω,F ,P)→ (U,B(U)), is Gaussian if the law
µX = P ◦ X−1 of X is a Gaussian measure on (U,B(U)). That is,
P ◦ X−1 ∈ N(m,Q) for some m ∈ U and Q ∈ L(U). We call m the mean and Q
the covariance operator of X .

Remark. X is Gaussian iff 〈X , v〉U is real valued Gaussian.

An immediate consequence of the previous corollary is the following.

Corollary. If X is a U-valued Gaussian random variable with mean m and
covariance operator Q, then for all u, v ∈ U,

E(〈X , v〉U) = 〈m, v〉U ,
E(〈X −m, v〉U〈X −m,w〉U) = 〈Qv ,w〉U ,
E(‖X −m‖2

U) = Tr(Q).

Proof. Change of variables.
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Existence of Gaussian measures

Theorem. Let m ∈ U and Q ∈ L(U), Q ≥ 0, with Tr(Q) <∞. A U-valued
random variable X on (Ω,F ,P) is Gaussian with P ◦X−1 = N(m,Q) if and only if

X = m +
∞∑
k=1

√
λkβkek ,

where (λk , ek) are the eigenpairs of Q and βk are independent real random
variables with P ◦ β−1

k = N(0, 1) if λk > 0 and βk = 0 otherwise. The series
converges in L2(Ω,F ,P;U).

Proof (Hint).

I (⇒) If X is Gaussian then write X −m =
∑√

λk
1√
λk
〈X −m, ek〉Uek

I (⇐) If X is given by the above sum use the fact that sum of independent
Gaussians is Gaussian and that the L2(Ω,F ,P;U)-limit of Gaussians is
Gaussian (Fourier transform!).

Corollary (Existence of Gaussian measures.) For each m ∈ U and Q ∈ L(U),
Q ≥ 0, with Tr(Q) <∞, there exists µ = N(m,Q).
Remark. This all relies on the nontrivial fact that there exist a probability space
(Ω,F ,P) with infinitely many independent Gaussian random variables
(Kolmogorov’s Extension Theorem).
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 13 / 36



Existence of Gaussian measures
Theorem. Let m ∈ U and Q ∈ L(U), Q ≥ 0, with Tr(Q) <∞. A U-valued
random variable X on (Ω,F ,P) is Gaussian with P ◦X−1 = N(m,Q) if and only if

X = m +
∞∑
k=1

√
λkβkek ,

where (λk , ek) are the eigenpairs of Q and βk are independent real random
variables with P ◦ β−1

k = N(0, 1) if λk > 0 and βk = 0 otherwise. The series
converges in L2(Ω,F ,P;U).

Proof (Hint).
I (⇒) If X is Gaussian then write X −m =

∑√
λk

1√
λk
〈X −m, ek〉Uek

I (⇐) If X is given by the above sum use the fact that sum of independent
Gaussians is Gaussian and that the L2(Ω,F ,P;U)-limit of Gaussians is
Gaussian (Fourier transform!).

Corollary (Existence of Gaussian measures.) For each m ∈ U and Q ∈ L(U),
Q ≥ 0, with Tr(Q) <∞, there exists µ = N(m,Q).
Remark. This all relies on the nontrivial fact that there exist a probability space
(Ω,F ,P) with infinitely many independent Gaussian random variables
(Kolmogorov’s Extension Theorem).
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Nuclear Q-Wiener processes

Definition. A U-valued stochastic process {W (t)}t≥0 on a probability space
(Ω,F ,P) is called a (nuclear) Q-Wiener process if

1. W (0) = 0;

2. {W (t)}t≥0 has continuous paths almost surely, that is, the mapping
t 7→W (t, ω) is continuous for almost every ω ∈ Ω;

3. {W (t)}t≥0 has independent increments, that is, for any finite partition
0 ≤ t1 < · · · < tm−1 < tm <∞ the U-valued random variables
W (t1),W (t2)−W (t1), · · · ,W (tm)−W (tm−1), are independent;

4. the increments have Gaussian laws, more precisely,

P ◦ (W (t)−W (s))−1 = N(0, (t − s)Q), 0 ≤ s ≤ t.

Question: For a given Q are there any Q-Wiener processes?
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 14 / 36



Nuclear Q-Wiener processes

Definition. A U-valued stochastic process {W (t)}t≥0 on a probability space
(Ω,F ,P) is called a (nuclear) Q-Wiener process if

1. W (0) = 0;

2. {W (t)}t≥0 has continuous paths almost surely, that is, the mapping
t 7→W (t, ω) is continuous for almost every ω ∈ Ω;

3. {W (t)}t≥0 has independent increments, that is, for any finite partition
0 ≤ t1 < · · · < tm−1 < tm <∞ the U-valued random variables
W (t1),W (t2)−W (t1), · · · ,W (tm)−W (tm−1), are independent;

4. the increments have Gaussian laws, more precisely,

P ◦ (W (t)−W (s))−1 = N(0, (t − s)Q), 0 ≤ s ≤ t.

Question: For a given Q are there any Q-Wiener processes?
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 14 / 36



Existence of nuclear Q-Wiener processes

Theorem. Let Q ∈ L(U), Q ≥ 0, with Tr(Q) <∞. A U-valued process
{W (t)}t≥0 is a U-valued Q-Wiener process if and only if

W (t) =
∞∑
k=1

√
λkβk(t)ek ,

where (λk , ek) are the eigenpairs of Q and {βk(t)}t≥0 are independent real-valued
standard Brownian motions on (Ω,F ,P). For each T > 0, the series converges in
L2

(
Ω,F ,P;C ([0,T ],U)

)
. In particular, for every Q ∈ L(U) with Q ≥ 0 and

Tr(Q) <∞, there exists a Q-Wiener process.
Proof.

I (⇒) The proof goes along the same lines as the representation theorem for
U-valued Gaussian random variables with more work involved in showing
independence of the components in the series.

I (⇐) To show convergence in L2

(
Ω,F ,P;U

)
for fixed t is the same as for

U-valued Gaussian random variables. To show convergence in
L2

(
Ω,F ,P;C ([0,T ],U)

)
one uses Doob’s maximal martingale inequality.

Remark. Again, we need the (nontrivial) existence of a probability space
(Ω,F ,P) with countably many independent Brownian motions!
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Cylindrical processes

Often one would like to consider a Wiener process with more general covariance
operator Q, such as Q = I . If Tr(Q) =∞, then the sum

W (t) =
∞∑
k=1

√
λkβk(t)ek

does not even converge in L2(Ω,F ,P;U), since

E
∥∥∥ ∞∑

j=1

√
λjβj(t)ej

∥∥∥2

U
=
∞∑
j=1

λjE
(
βj(t)2

)
= t

∞∑
j=1

λj = t Tr(Q) =∞.

In this case we call the formal sum a cylindrical Q-Wiener process. The
important point is that we can still define an integral w.r.t. cylindrical processes.

Remark.

I The sum converges in a suitable larger Hilbert space where one obtains a
nuclear Wiener process. However, this is not unique.

I The real processes Wx(t) =
∑∞

k=1

√
λkβk(t)〈ek , x〉U are well-defined real

valued Brownian motions with covariance E(Wx(t)2) = t‖Q 1
2 x‖2

U .
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E
∥∥∥ ∞∑

j=1

√
λjβj(t)ej

∥∥∥2

U
=
∞∑
j=1

λjE
(
βj(t)2

)
= t

∞∑
j=1

λj = t Tr(Q) =∞.

In this case we call the formal sum a cylindrical Q-Wiener process. The
important point is that we can still define an integral w.r.t. cylindrical processes.

Remark.

I The sum converges in a suitable larger Hilbert space where one obtains a
nuclear Wiener process. However, this is not unique.

I The real processes Wx(t) =
∑∞

k=1

√
λkβk(t)〈ek , x〉U are well-defined real

valued Brownian motions with covariance E(Wx(t)2) = t‖Q 1
2 x‖2

U .
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The infinite dimensional Wiener integral

I Let U,H be real separable Hilbert spaces
I Let

W (t) =
∞∑
k=1

√
λkβk(t)ek ; Qek = λkek , (1)

be an U-valued Q-Wiener process on (Ω,F ,P), where the sum is formal if
Tr(Q) =∞

I Let {F (t)}t∈[0,T ] be a family of linear operators F (t) : U → H such that
t 7→ ‖F (t)ek‖H is L2[0,T ] for each k = 1, 2, . . . .

I Define, first formally,∫ t

0

F (s) dW (s) :=
∞∑
k=1

√
λk

∫ t

0

F (s)ek dβk(s), t ∈ [0,T ]. (2)

I Each term in the expansion in (2) is defined in terms of real-valued Wiener
integrals as ∫ t

0

F (s)ek dβk(s) :=
∞∑
j=1

∫ t

0

〈F (s)ek , φj〉 dβk(s)φj ,

where {φj}∞j=1 is an orthonormal basis for H.
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The infinite dimensional Wiener integral

The latter series converges in L2(Ω,F ,P;H), because, by the Itô isometry of the
real-valued Wiener integral; that is,

E
(∣∣∣ ∫ t

0

f (s) dβk(s)
∣∣∣2) =

∫ t

0

|f (s)|2 ds,

Parseval’s identity and monotone convergence, we have for fixed t > 0,

E
(∥∥∥∫ t

0

F (s)ek dβk(s)
∥∥∥2

H

)
= E

( ∞∑
j=1

∣∣∣∫ t

0

〈F (s)ek , φj〉 dβk(s)
∣∣∣2)

=
∞∑
j=1

∫ t

0

|〈F (s)ek , φj〉|2 ds

=

∫ t

0

‖F (s)ek‖2
H ds <∞.
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The infinite dimensional Wiener integral and Itô’s isometry

Theorem. Assume that the operator F (s)Q
1
2 ∈ L2(U,H) for almost all s ∈ [0,T ]

and that ∫ T

0

‖F (s)Q
1
2 ‖2

HS ds <∞.

Then, the following hold.

I The operators QF (t) given by

QF (t)x =

∫ t

0

F (s)Q
1
2 (F (s)Q

1
2 )∗x ds, x ∈ H, t ∈ [0,T ],

are well defined and have finite trace for all t ∈ [0,T ].
I The series in (2) converges in L2(Ω,F ,P;H) and∫ t

0

F (s) dW (s) ∈ N(0,QF (t)).

I The Itô isometry

E
(∥∥∥∫ t

0

F (s) dW (s)
∥∥∥2

H

)
= Tr(QF (t)) =

∫ t

0

‖F (s)Q
1
2 ‖2

HS ds (3)

holds.
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Theorem. Assume that the operator F (s)Q

1
2 ∈ L2(U,H) for almost all s ∈ [0,T ]

and that ∫ T

0

‖F (s)Q
1
2 ‖2

HS ds <∞.

Then, the following hold.

I The operators QF (t) given by

QF (t)x =

∫ t

0

F (s)Q
1
2 (F (s)Q

1
2 )∗x ds, x ∈ H, t ∈ [0,T ],

are well defined and have finite trace for all t ∈ [0,T ].
I The series in (2) converges in L2(Ω,F ,P;H) and∫ t

0

F (s) dW (s) ∈ N(0,QF (t)).

I The Itô isometry
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The infinite dimensional Wiener integral and Itô’s isometry

Remark. For fixed s, the operator F (s) does not have to be a bounded operator

only the product F (s)Q
1
2 has to be Hilbert-Schmidt (and hence bounded). If

F (s) ∈ L(U,H) for all s, then

QF (t)x =

∫ t

0

F (s)QF (s)∗x ds.

Proof. That the operator QF (t) is well defined follows from the bound∫ t

0

∥∥∥F (s)Q
1
2 (F (s)Q

1
2 )∗x

∥∥∥
H

ds

≤
∫ t

0

∥∥∥F (s)Q
1
2

∥∥∥
L(U,H)

∥∥∥(F (s)Q
1
2 )∗
∥∥∥
L(H,U)

‖x‖H ds

=

∫ t

0

∥∥∥F (s)Q
1
2

∥∥∥
L(U,H)

∥∥∥F (s)Q
1
2

∥∥∥
L(U,H)

‖x‖H ds

=

∫ t

0

∥∥∥F (s)Q
1
2

∥∥∥2

L(U,H)
ds‖x‖H ≤

∫ t

0

∥∥∥F (s)Q
1
2

∥∥∥2

HS
ds‖x‖H <∞.
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The infinite dimensional Wiener integral and Itô’s isometry
We can calculate the trace of QF (t) using monotone convergence as

Tr(QF (t)) =
∞∑
k=1

〈QF (t)φk , φk〉H =
∞∑
k=1

〈
∫ t

0

F (s)Q
1
2 (F (s)Q

1
2 )∗φk ds, φk〉H

=
∞∑
k=1

∫ t

0

〈F (s)Q
1
2 (F (s)Q

1
2 )∗φk , φk〉H ds

=
∞∑
k=1

∫ t

0

〈(F (s)Q
1
2 )∗φk , (F (s)Q

1
2 )∗φk〉U ds

=
∞∑
k=1

∫ t

0

‖(F (s)Q
1
2 )∗φk‖2

U ds =

∫ t

0

∞∑
k=1

‖(F (s)Q
1
2 )∗φk‖2

U ds

=

∫ t

0

‖(F (s)Q
1
2 )∗‖2

HS ds =

∫ t

0

‖F (s)Q
1
2 ‖2

HS ds,

where {φj}∞j=1 is an orthonormal basis of H. This is the last equality in (3).

Next we show that the series in (2) converges in L2(Ω,F ,P;H) (omitting the
subscript H from norms and scalar products in the calculation):
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The infinite dimensional Wiener integral and Itô’s isometry
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 21 / 36



The infinite dimensional Wiener integral and Itô’s isometry

E
(∥∥∥ n∑

k=m

λ
1
2

k

∫ t

0

F (s)ek dβk(s)
∥∥∥2)

= E
( ∞∑

j=1

∣∣∣ n∑
k=m

λ
1
2

k

∫ t

0

〈F (s)ek , φj〉 dβk(s)
∣∣∣2)

=
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j=1

E
(∣∣∣ n∑

k=m

λ
1
2

k
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0

〈F (s)ek , φj〉 dβk(s)
∣∣∣2)

=
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λ
1
2

k λ
1
2

l E
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〈F (s)ek , φj〉 dβk(s)
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0

〈F (s)el , φj〉 dβl(s)
)

{Independence of βk , βl and real Itô isometry}

=
∞∑
j=1

n∑
k=m

λk
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|〈F (s)ek , φj〉|2 ds =
∞∑
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n∑
k=m
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0

|〈F (s)Q
1
2 ek , φj〉|2 ds

=

∫ t

0

n∑
k=m

∞∑
j=1

|〈F (s)Q
1
2 ek , φj〉|2 ds =
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0

n∑
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‖F (s)Q
1
2 ek‖2ds
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The infinite dimensional Wiener integral and Itô’s isometry

As ∫ t

0

∞∑
k=1

∥∥∥F (s)Q
1
2 ek

∥∥∥2

ds =

∫ t

0

∥∥∥F (s)Q
1
2

∥∥∥
HS

ds <∞,

the series in (2) converges in L2(Ω,F ,P;H) to a random variable, which is
zero-mean Gaussian, because it is the limit of zero-mean Gaussian random
variables (similarly to the real case). The calculation also shows Itô’s Isometry:

E
(∥∥∥∫ t

0

F (s) dW (s)
∥∥∥2

H

)
=

∫ t

0

‖F (s)Q
1
2 ‖2

HS ds.

Finally, a similar calculation shows that

E
(〈∫ t

0

F (s) dW (s), x
〉
H

〈∫ t

0

F (s) dW (s), y
〉
H

)
= 〈QF (t)x , y〉H , x , y ∈ H,

so that the covariance operator of
∫ t

0
F (s) dW (s) is indeed QF (t). �

Remark. Even when the Fourier expansion (1) of W (t) does not converge in
L2(Ω,F ,P;U) (Tr(Q) =∞), the expansion (2) of the stochastic integral still

converges in L2(Ω,F ,P;H) provided that
∫ t

0
‖F (s)Q

1
2 ‖2

HS ds <∞. Hence the
integral may be defined even when W (t) itself does not exist in U.
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Semigroup approach to SPDEs: the linear case

Linear SPDEs with additive noise:{
dX (t) + AX (t) dt = B dW (t), t > 0

X (0) = X0

I H, U Hilbert spaces

I W (t) =
∑∞

k=1

√
λkβk(t)ek , Q-Wiener process on U, Qek = λkek

I Filtration Fs :=
⋂

r>s F̃0
r , where

N := {C ∈ F : P(C ) = 0}, F̃s := σ(βk(r) : r ≤ s, k ∈ N), F̃0
s := σ(N ∪F̃s)

I B ∈ L(U,H)

I {X (t)}t≥0, H-valued stochastic process

I X0 is F0-measurable
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I −A : D(A) ⊂ H → H is linear operator, generating a strongly continuous
semigroup (C0-semigroup) of bounded linear operators {S(t)}t≥0 ⊂ L(H);
that is,

I S(0) = I ;
I S(t + s) = S(t)S(s) for all s, t ≥ 0;
I {S(t)}t≥0 is strongly continuous on [0,∞), that is, t 7→ S(t)x is continuous

on [0,∞) for all x ∈ H;
I limh→0+

S(h)x−x
h

= −Ax for all x ∈ D(A);

In this case u(t) = S(t)x is the unique (mild) solution of the deterministic
equation

u(t) + A

∫ t

0

u(s)ds = x , x ∈ H, t ≥ 0,

and if x ∈ D(A), then u is the unique (strong) solution of

u̇(t) + Au(t) = 0, t > 0; u(0) = x .

Sometimes the semigroup S(t) generated by A is also written as S(t) = e−tA in
analogy with matrix exponentials. In several cases this can be made rigorous using
a functional calculus.
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Weak solution

Definition. An H-valued process {X (t)}t∈[0,T ] is a weak solution of the linear
SPDE if X (t) is Ft-measurable (t ∈ [0,T ]), {X (t)}t∈[0,T ] has Bochner integrable
trajectories P-almost surely and

〈X (t), η〉 +

∫ t

0

〈X (s),A∗η〉 ds = 〈ξ, η〉 + WB∗η(t)

P-a.s., ∀η ∈ D(A), t ∈ [0,T ].

Recall that

WB∗η(t) =
∞∑
k=1

√
λkβk(t)〈ek ,B∗η〉U =

∞∑
k=1

√
λkβk(t)〈Bek , η〉H .

Note, that WB∗η(t) =
∫ t

0
lηB dW (s), where

lη : H → R, lη(h) := 〈h, η〉, h ∈ H.

The obvious candidate for the solution is given by the variation of constants
formula

X (t) = S(t)ξ +

∫ t

0

S(t − s)B dW (s).
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Weak solution: existence and uniqueness

Theorem. If ∫ T

0

‖S(r)BQ1/2‖2
HS dr <∞,

then

X (t) = S(t)ξ +

∫ t

0

S(t − s)B dW (s)

is a weak solution of the linear SPDE and it is unique up to modification. That is,
if Y (t) is another weak solution then X (t) = Y (t), P-a.s.

Remark. The concept of weak solution is necessary for two reasons.

I The relation X (t) ∈ D(A) is seldom true

I For the integral
∫ t

0
B dW (t) to exist one needs ‖BQ1/2‖2

HS <∞
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Semigroup approach to SPDEs: the semilinear case

Here we consider equations written formally as

dX (t) + AX (t) dt = f (X (t)) dt + B dW (t), 0 < t < T ,

X (0) = ξ.
(4)

I H, U real, separable Hilbert spaces
I W (t) =

∑∞
k=1

√
λkβk(t)ek , Q-Wiener process on U, Qek = λkek

I Filtration Fs :=
⋂

r>s F̃0
r , where

N := {C ∈ F : P(C ) = 0}, F̃s := σ(βk(r) : r ≤ s, k ∈ N), F̃0
s := σ(N ∪F̃s)

I −A generates a C0-semigroup {S(t)}t≥0

I B ∈ L(U,H)
I f : H → H
I {X (t)}t≥0, H-valued stochastic process
I X0 is F0-measurable

The main difference when dealing with this kind of equations compared to the one
before is that, in general, there is no explicit representation of the solution of (4).
Another solution concept is more convenient in this case.
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before is that, in general, there is no explicit representation of the solution of (4).
Another solution concept is more convenient in this case.
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Mild solution

Definition. An H-valued process {X (t)}t∈[0,T ] is a mild solution of (4) if X (t)
is Ft-measurable (t ∈ [0,T ]),

X ∈ C
(
[0,T ]; L2(Ω,F ,P;H)

)
and, for all t ∈ [0,T ],

X (t) = S(t)ξ +

∫ t

0

S(t − s)f (X (s)) ds +

∫ t

0

S(t − s)B dW (s) P-a.s.

Theorem. If ξ ∈ L2(Ω,F0,P;H),∫ T

0

‖S(s)BQ1/2‖2
HS ds <∞

and f : H → H satisfies the global Lipschitz condition

‖f (x)− f (y)‖H ≤ K‖x − y‖H , ∀x , y ∈ H,

for some K > 0, then there is a unique mild solution of (4).
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 29 / 36



Mild solution
Definition. An H-valued process {X (t)}t∈[0,T ] is a mild solution of (4) if X (t)
is Ft-measurable (t ∈ [0,T ]),

X ∈ C
(
[0,T ]; L2(Ω,F ,P;H)

)
and, for all t ∈ [0,T ],

X (t) = S(t)ξ +

∫ t

0

S(t − s)f (X (s)) ds +

∫ t

0

S(t − s)B dW (s) P-a.s.

Theorem. If ξ ∈ L2(Ω,F0,P;H),∫ T

0

‖S(s)BQ1/2‖2
HS ds <∞

and f : H → H satisfies the global Lipschitz condition

‖f (x)− f (y)‖H ≤ K‖x − y‖H , ∀x , y ∈ H,

for some K > 0, then there is a unique mild solution of (4).
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Mild solution

Proof (Sketch.) The proof is a fixed point argument.

First, it is not difficult to show that

Z[a,b] :=
{
X ∈ C

(
[a, b]; L2(Ω,F ,P;H)

)
: X (t) is Ft-measurable (t ∈ [a, b])

}
with norm ‖Y ‖Z[a,b]

= supt∈[a,b](E‖Y (t)‖2
H)1/2 is a Banach space.

Then, define

F (Y )(t) := S(t)ξ +

∫ t

0

S(t − s)f (Y (s))ds +

∫ t

0

S(t − s)B dW (s)

and show that F : Z[0,τ ] → Z[0,τ ] for some τ > 0 and that it is a contraction; that
is,

‖F (Y1)− F (Y2)‖Z[0,τ ]
≤ L‖Y1 − Y2‖Z[0,τ ]

, L < 1.

This yields a unique fixed point of F and hence a unique mild solution on [0, τ ].
Finally, repeat the argument on [τ, 2τ ], [2τ, 3τ ] and so on, to get a unique
solution on [0,T ].
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Example: linear stochastic wave equation

We consider the stochastic wave equation

du̇ −∆u dt = dW in D × R+,

u = 0 on ∂D × R+,

u(·, 0) = u0, u̇(·, 0) = u1 in D.

Let Ḣ−1 = (H1
0 (D))∗. We let Λ = −∆ with D(Λ) = H1

0 and we regard Λ as an
operator H1

0 ⊂ Ḣ−1 → Ḣ−1 by

(Λu)(v) = 〈∇u,∇v〉L2(D).

Let U = L2(D) and W be a Q-Wiener process on U. We put

X =

[
X1

X2

]
:=

[
u
u̇

]
, ξ =:

[
u0

u1

]
, H = L2(D)× Ḣ−1.
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Example: linear stochastic wave equation

Now we can write

dX =

[
du
du̇

]
=

[
u̇ dt

∆u dt + dW

]
=

[
X2

−ΛX1

]
dt +

[
0
I

]
dW

=

[
0 I
−Λ 0

]
X dt +

[
0
I

]
dW

= −AX dt + B dW ,

where

A =

[
0 −I
Λ 0

]
, B =

[
0
I

]
.

So we have

dX + AX dt = B dW , t > 0,

X (0) = ξ,
(5)

where

D(A) =
{
x ∈ H : Ax =

[
−x2

Λx1

]
∈ H = L2(D)× Ḣ−1

}
= H1

0 (D)× L2(D).
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Example: linear stochastic wave equation

Hence, in this case, U 6= H and B 6= I . In order to see what S(t) = e−tA is, we
note that y(t) = S(t)x is the solution of

ẏ + Ay = 0; y(0) = x ,

that is,
ÿ1 + Λy1 = 0; y1(0) = x1, ẏ1(0) = x2.

We solve it using an eigenfunction expansion:

y1(t) =
∞∑
j=1

cos(
√
µj t)〈x1, φj〉φj +

1
√
µj

sin(
√
µj t)〈x2, φj〉φj

= cos(tΛ1/2)x1 + Λ−1/2 sin(tΛ1/2)x2,

and
y2 = ẏ1(t) = −Λ1/2 sin(tΛ1/2)x1 + cos(tΛ1/2)x2.
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ẏ + Ay = 0; y(0) = x ,

that is,
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Example: linear stochastic wave equation

Now we can write the semigroup as

S(t) = e−tA =

[
cos(tΛ1/2) Λ−1/2 sin(tΛ1/2)

−Λ1/2 sin(tΛ1/2) cos(tΛ1/2)

]
.

With ξ = 0 the evolution problem (5) has the unique weak solution

X (t) =

∫ t

0

S(t − s)B dW (s)

=


∫ t

0

Λ−1/2 sin((t − s)Λ1/2) dW (s)∫ t

0

cos((t − s)Λ1/2) dW (s)

 .
For the existence and uniqueness of mild solutions one needs∫ T

0

‖S(t)BQ1/2‖2
HS dt <∞.
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Example: linear stochastic wave equation

We have,∫ T

0

‖S(t)BQ
1
2 ‖2

HS dt =

∫ T

0

∑
k

‖S(t)BQ
1
2 fk‖2

H dt

=

∫ T

0

∑
k

(
‖Λ− 1

2 sin(tΛ
1
2 )Q

1
2 fk‖2

L2(D) + ‖cos(tΛ
1
2 )Q

1
2 fk‖2

Ḣ−1

)
dt

=

∫ T

0

(
‖Λ− 1

2 sin(tΛ
1
2 )Q

1
2 ‖2

HS + ‖Λ− 1
2 cos(tΛ

1
2 )Q

1
2 ‖2

HS

)
dt.

This must be finite.

I If Tr(Q) <∞:

‖Λ− 1
2 sin(tΛ

1
2 )Q

1
2 ‖2

HS ≤ ‖Λ−
1
2 ‖2

L(L2(D))‖sin(tΛ
1
2 )‖2

L(L2(D)) Tr(Q) <∞,

and similarly for cosine, so the condition holds in any spatial dimension.
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Example: linear stochastic wave equation

I For Q = I we have

‖Λ− 1
2 sin(tΛ

1
2 )Q

1
2 ‖2

HS = ‖Λ− 1
2 sin(tΛ

1
2 )‖2

HS

≤ ‖Λ− 1
2 ‖2

HS‖sin(tΛ
1
2 )‖2

L(L2(D)) ≤ ‖Λ
− 1

2 ‖2
HS.

Similarly for the cosine operator. We have that

‖A−1/2‖2
HS =

∑
k

µ−1
k ∼

∑
k

k−2/d .

This is finite if and only if d = 1. Thus white noise is too irregular in higher
spatial dimensions.

Note: this is where one needs the choice H = L2(D)× Ḣ−1. Otherwise, if
one takes H = H1

0 (D)× L2(D), then in case Q = I one would need, for
example, ∫ T

0

‖cos(tΛ
1
2 )‖2

HS dt <∞

which does not hold in any spatial dimension.

Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 36 / 36



Example: linear stochastic wave equation
I For Q = I we have

‖Λ− 1
2 sin(tΛ

1
2 )Q

1
2 ‖2

HS = ‖Λ− 1
2 sin(tΛ

1
2 )‖2

HS

≤ ‖Λ− 1
2 ‖2

HS‖sin(tΛ
1
2 )‖2

L(L2(D)) ≤ ‖Λ
− 1

2 ‖2
HS.

Similarly for the cosine operator. We have that

‖A−1/2‖2
HS =

∑
k

µ−1
k ∼

∑
k

k−2/d .

This is finite if and only if d = 1. Thus white noise is too irregular in higher
spatial dimensions.

Note: this is where one needs the choice H = L2(D)× Ḣ−1. Otherwise, if
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Mihály Kovács (PPKE ITK) FEM for stochastic PDEs Miklós Farkas Seminar, April 2019 36 / 36


