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The logarithmic norm was introduced in 1958 independently by Germund
Dahlquist and Sergey Lozinskij. It is a real-valued functional on operators,
quantifying the notions of definiteness for matrices; monotonicity for nonlinear
maps; and ellipticity for differential operators. It is defined either in terms of
an inner product in Hilbert space, or in terms of the operator norm on a Ba-
nach space. Originally, it was only introduced for matrices, but today there is
a modern theory also covering nonlinear operators, infinite dimensional spaces,
bounded and unbounded linear operators, such as differential operators. Thus
the logarithmic norm has a wide range of applications in matrix theory, stabil-
ity theory and numerical analysis, e.g. offering various quantitative bounds on
(functions of) operators, operator spectra, resolvents, Rayleigh quotients and
the numerical range, stability and error bounds in initial as well as boundary
value problems and their discretizations. Some special fields in mathematics,
such as semigroup theory, rely on notions that are strongly related to the loga-
rithmic norm.

In this talk, we shall only work within a Hilbert space setting and note that
the lower and upper logarithmic norms of an operator A are the best bounds
such that

m2[A] · ‖u‖22 ≤ (u,Au) ≤ M2[A] · ‖u‖22
holds for all u and a given inner product (·, ·). This extends to all types of linear
operators, but for nonlinear operators, where there is no longer any equivalence
between boundedness and continuity, one has a choice to either emphasize either
one. Mostly, continuity is emphasized, considering the applications in stability
theory, and for nonlinear operators it is common to define the logarithmic Lip-
schitz constants as the best bounds satisfying

m2[F ] · ‖u− v‖22 ≤ (u− v,F(u)−F(v)) ≤ M2[F ] · ‖u− v‖22

To give two important applications of how the logarithmic norm plays a
significant role in stability theory, let us first consider a nonlinear initial value
problem

ut = F(u) + p(t)

vt = F(v).

Using the upper Dini derivative, we have the differential inequality

D+
t ‖u− v‖ ≤M [F ] · ‖u− v‖+ ‖p(t)‖.

By integration, one finds that

‖u(t)− v(t)‖2 ≤ etM2[F ]‖u(0)− v(0)‖2 +
∫ t

0

e(t−τ)M2[F ]‖p(τ)‖2 dτ.
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In case p ≡= 0, one finds a bound on how initial values are propagated; in case
u(0) = v(0), one finds a bound on how far a perturbation can force two solutions
apart. In both cases, one finds that the solution depends continuously on the
data.

For operator equations, independent of time, the logarithmic norm is equally
important. Assuming that m[F ] > 0, the operator F is invertible. Considering
two neighboring problems

F(x+ δx) = y + δy

F(x) = y

one finds that δx = F−1(y+δy)−F(y). Therefore, by the Uniform Monotonicity
Theorem (Browder & Minty 1963) we have

‖δx‖ ≤ L[F−1] · ‖δy‖ ≤ ‖δy‖
m[F ]

,

where L[·] is the (least upper bound) Lipschitz constant. Thus F has a Lipschitz
inverse. One of the prime applications of this result is in the classical conver-
gence theory of discretizations, due to Lax and Stetter, and in (some variants
of) the Lax–Milgram lemma in finite element theory.

In (static) differential equations, the condition m[F ] > 0 typically represents
ellipticity. In this talk, we shall develop some aspects of elliptic differential
operators. The reason why logarithmic norms play an important role is that
they are easily used to derive bounds in perturbation theory. Thus, some of the
most important general properties of the logarithmic norm are

• −l[F ] ≤M [F ] ≤ L[F ]

• M [αF ] = α ·M [F ] , α ≥ 0

• m[F ] = −M [−F ]

• M [F + z] =M [F ] + Re z

• M [F ] +m[G] ≤M [F + G] ≤M [F ] +M [G],

where l[·] is the (greatest lower bound) Lipschitz constant.

The original application to matrices was straightforward, but the extension
to non-numeric objects such as nonlinear maps and differential operators has re-
quired some modifications of the theory. The simplest application to differential
operators is to consider the 1D Poisson equation, −u′′ = f with Dirichlet con-
ditions u(0) = u(1) = 0. since this is an operator equation, we are interested in
whether L = −d2/dx2 is “invertible” on H1

0 [0, 1]. Although this is well known
and classical theory, we shall compute the logarithmic norm of the operator.
Thus, integrating by parts, using the Poincaré-Sobolev inequality, we find

(u,Lu) = −
∫ 1

0

uu′′ dx = −(u, u′′) = (u′, u′) ≥ π2‖u‖2L2[0,1]

This implies that L = −d2/dx2 is elliptic on H1
0 [0, 1], with

m2[L] = m2

[
− d2

dx2

]
= π2 > 0.
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This can also be formulated as a variational problem, as

min
u

∫ 1

0

|u′|2 dx

subject to ‖u‖L2 = 1 and the boundary conditions u(0) = u(1) = 0. With a
Lagrangian L(u, u′) = (u′)2 − λu2, this leads to the standard Sturm–Liouville
problem −u′′ = λu, whose eigenfunctions are uk(x) = sin kπx with eigenvalues
λk = k2π2. Unlike in variational calculus, where we normally seek the mini-
mizing function, we here seek the minimum itself, and m[−d2/dx2] equals the
smallest eigenvalue, λ1, which is π2.

There are many variants, and changing to Neumman conditions u′(0) =
u(0) = 0 leads to another Strum–Liouville problem, with m[−d2/dx2] = π2/4.
Likewiese, with periodic boundary conditions, u(0) = u(1) and u′(0) = u′(1)
we get yet another Sturm–Liouville problem with m[−d2/dx2] = 4π2. Thus the
logarithmic norm of a differential operator depends on the space of functions
over which it is computed.

We then extended this theory to non-selfadjoint convection-diffusion opera-
tors, demonstrating how to construct symmetrizers. Thus, for Lcdu = −u′′+au′
with u(0) = u(1) = 0, the integrating factor w = exp(−ax) leads to the selfad-
joint operator wLcdu = (wu′)′. By further symmetrizing this operator into the
selfadjoint operator A = w1/2Lcdw

−1/2, the logarithmic norm of A as well as
of Lcd are easily computed, and a “tailor-made” inner product is introduced to
obtain sharp bounds, such that m[A] = λ1[Lcd] = π2+a2/4. The same result is
obntained if the standard inner product (u, v) is replaced by the weighted inner
product, (u,wv).

The theory is finally illustrated for a singular problem, the axisymmetric
Bessel operator

L0u = −u′′ − u′

r
,

with Neumann conditions u′(0) = u(1) = 0. This problem is not elliptic with
respect to the standard L2 inner product, but after symmetrization with w(r) =
r it can be shown that the operator is elliptic with respect to a weighted inner
product. For the non-axisymmetric operator

Lmu = −u′′ − u′

r
− m2

r2
u,

with Dirichelt conditions u(0) = u(1) = 0, the problem is elliptic, and the
logarithmic norm in L2 is estimated by simple use of submultipliciativity and
integration by parts.

Due to time restrictions, applications to fourth order operators, such as
the biharmonic equation, were left out. These lead to more difficult eigenve-
laue problems, and variational formulations outside the classical Euler–Lagrange
theory.
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