DNP with computable mesh conditions for parabolic standard diffusion with nonlinear reaction FE PDEs

Menghis T. Bahlibi Supervisors: János Karátson & Ferenc Izsák

Institute of Mathematics Faculty of Science, Eötvös Loránd University

May 22, 2025

Model problem

- 2 Motivations and earlier results
- 3 Discrete non-negativity preservation (DNP)
- Theoretical and experimental results

5 Conclusion

Model problem

Parabolic standard diffusion with a nonlinear reaction:

$$\begin{cases} \partial_t u(t, \mathbf{x}) - \mu_0 \Delta u(t, \mathbf{x}) + q(u(t, \mathbf{x})) = f(t, \mathbf{x}), & \mathbf{x} \in \Omega, \ t > 0, \\ u(t, \mathbf{x}_1) = 0, & \mathbf{x}_1 \in \partial\Omega, \ t > 0, \\ u(0, \mathbf{x}) = u_0(\mathbf{x}), & \mathbf{x} \in \Omega, \end{cases}$$
(1)

where

•
$$\Omega \subset \mathbf{R}^2$$
,

•
$$\mu_0 \in \mathbf{R}^+$$
 is a diffusion coefficient,

• $q \in C^1(\mathbf{R})$, q(0) = 0, and f is a source function.

Assume that q(u) = r(u)u, and there exists $\sigma_1 > 0$ such that for all $\xi \in \mathbf{R}$

$$0 \leq \frac{\partial q}{\partial \xi}(\xi) \leq \sigma_1, \text{ thus, } 0 \leq r(\xi) \leq \sigma_1.$$
(2)

Finite element approximation

To find the FE approximation in space for the model problem, consider a FE subspace V_h of first-order elements with the following assumptions:

(B1)
$$0 \leq \phi_i \leq 1, \quad (\forall i = 1, \ldots, n),$$

(B2)
$$\sum_{i=1}^{n} \phi_i \equiv 1$$
,

(B3) $\phi_i(P_j) = \delta_{ij}$ for proper nodes $P_1, \ldots, P_n \in \Omega$.

• There exists a constant $\sigma_0 > 0$, independent of h, such that for any $i \neq j$ for which the interior of $\Omega_{ij} := supp \phi_i \cap supp \phi_j$ is nonempty, then the basis functions satisfy

$$\int_{\Omega_{ij}} \nabla \phi_i \cdot \nabla \phi_j \le -\frac{\sigma_0}{h^2} \operatorname{meas}(\Omega_{ij}).$$
(3)

Full discretizations with four versions of time-stepping

Using the matrices S(stiffness), M(mass), and matrix N obtained from nonlinear term, where δ is the time step, the full discretizations of (1):

(i) Implicit

$$M\frac{\mathbf{u}^{k+1}-\mathbf{u}^{k}}{\delta}+S\mathbf{u}^{k+1}+N(\mathbf{u}^{k+1})\mathbf{u}^{k+1}=\underline{\mathbf{f}}^{k},$$
(4)

(ii) Semi-implicit

$$M\frac{\mathbf{u}^{k+1}-\mathbf{u}^{k}}{\delta}+S\mathbf{u}^{k+1}+N(\mathbf{u}^{k})\mathbf{u}^{k+1}=\underline{\mathbf{f}}^{k},$$
(5)

(iii) Linearly implicit

$$M\frac{\mathbf{u}^{k+1}-\mathbf{u}^{k}}{\delta}+S\mathbf{u}^{k+1}+N(\mathbf{u}^{k})\mathbf{u}^{k}=\underline{\mathbf{f}}^{k},$$
(6)

(iv) Explicit

$$M\frac{\mathbf{u}^{k+1}-\mathbf{u}^{k}}{\delta}+S\mathbf{u}^{k}+N(\mathbf{u}^{k})\mathbf{u}^{k}=\underline{\mathbf{f}}^{k}.$$
(7)

Full discretizations

The rearranged forms of (4)–(7) are (i) Implicit

$$\left(\frac{1}{\delta}M + S + N(\mathbf{u}^{k+1})\right)\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k + \frac{1}{\delta}M\mathbf{u}^k,\tag{8}$$

(ii) Semi-implicit

$$\left(\frac{1}{\delta}M + S + N(\mathbf{u}^k)\right)\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k + \frac{1}{\delta}M\mathbf{u}^k,\tag{9}$$

(iii) Linearly implicit

$$\left(\frac{1}{\delta}M+S\right)\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k + \left(\frac{1}{\delta}M-N(\mathbf{u}^k)\right)\mathbf{u}^k,\tag{10}$$

(iv) Explicit

$$\left(\frac{1}{\delta}M\right)\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k + \left(\frac{1}{\delta}M - S - N(\mathbf{u}^k)\right)\mathbf{u}^k.$$
 (11)

< 47 ▶

- < ∃ >

æ

- The general idea for the conditions of δ and h is taken from Faragó I., Horváth R., and Karátson J. (2010, 2012) (θ-schemes for 0 < θ ≤ 1 were studied).
- We introduce different types of discretizations by treating the diffusion and reaction terms in various ways, like (9)-(11), which have not yet been studied.

We can determine the bounds of δ and h in all cases to ensure non-negativity.

• The implicit discretization in (8) is a special case of the approaches discussed in the works of Faragó I., Horváth R., and Karátson J. (2010, 2012) for $\theta = 1$.

However, our bounds calculations for the semi-implicit case yielded the same result as the implicit case.

Therefore, we determine the bounds in a combined form.

Let $A(\underline{\mathbf{v}}) = S + N(\underline{\mathbf{v}})$, then $A(\underline{\mathbf{v}})\underline{\mathbf{v}} = S\underline{\mathbf{v}} + N(\underline{\mathbf{v}})\underline{\mathbf{v}}$ for a vector $\underline{\mathbf{v}}$. Then, the entries of the matrices are

$$a_{ij}(\underline{\mathbf{v}}) = s_{ij} + n_{ij}(\underline{\mathbf{v}}) = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j + \int_{\Omega} r(\mathbf{v}_h) \phi_i \phi_j dx.$$

э

8/31

(i)-(ii): Implicit and semi-implicit Euler discretizations

Using the stiffness matrices $A(\mathbf{v})$ and the mass matrix M, the schemes (8)–(9) can be expressed in combined form as follows:

$$M\frac{\mathbf{u}^{k+1}-\mathbf{u}^k}{\delta} + A(\mathbf{u}^{k+w})\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k, \tag{12}$$

where w = 0 or 1, and $\mathbf{u}^{k+w} = (u_0^w, \dots, u_n^{k+w})$ is the coordinate vector of FE solution.

Note that w = 0 and w = 1 in (12) correspond to semi-implicit and implicit time discretization, respectively.

The scheme (12) can be rephrased as

$$(A(\mathbf{u}^{k+w}) + \frac{1}{\delta}M)\mathbf{u}^{k+1} =: B(\mathbf{u}^{k+w})\mathbf{u}^{k+1} = \underline{\mathbf{f}}^k + \frac{1}{\delta}M\mathbf{u}^k.$$
(13)

We wish to ensure the preservation of non-negativity in the numerical solution.

Theorem

Assume the conditions $f \ge 0$, $u_0 \ge 0$, and that for all $k \in N$, $B(\mathbf{u}^{k+w})$ is a Stieltjes matrix. Then the implicit and semi-implicit time stepping (13) preserves non-negativity.

Proof: The proof is established using the principle of induction.

10/31

Computable condition for implicit and semi-implicit case

Theorem

Let the assumptions (2), (3) hold and assume that $C_m > 0$ such that

$$\int_{\Omega_{ij}} \phi_i \phi_j \, d\mathsf{x} \leq C_m \mathrm{meas}\,(\Omega_{ij}), \quad (\forall i, j = 1, \ldots, n).$$

For a given time-step $\delta > 0$, let the mesh size h in the space satisfy

$$0 < h \leq h_0 = \left(\frac{\sigma_0 \mu_0 \delta}{(\sigma_1 \delta + 1)C_m}\right)^{\frac{1}{2}}.$$
 (14)

Then the implicit and semi-implicit time stepping (13) satisfies

$$b_{ij}(\mathbf{u}^{k+w}) \leq 0, \quad i=1,...,n, \ j=1,...,n \quad (i \neq j)$$

and, consequently, preserves non-negativity.

Budapest, Hungary (ELTE)

We wish to ensure the preservation of non-negativity in the numerical solution.

Theorem

Assume the conditions $f \ge 0$, $u_0 \ge 0$, $\delta \le \frac{1}{\sigma_1}$ and that $\frac{1}{\delta}M + S$ is a Stieltjes matrix. Then, the linearly implicit time stepping (10) preserves non-negativity.

Proof: The proof is established using the principle of induction.

Computable condition of the linearly implicit discretization.

Theorem

Let the assumption (3) hold and assume that $C_m > 0$ such that

$$\int_{\Omega_{ij}} \phi_i \phi_j \, d\mathsf{x} \leq C_m \mathrm{meas} \, (\Omega_{ij}) \quad (\forall i, j = 1, \ldots, n).$$

For a given time-step $\delta > 0$, let the mesh size h in the space discretization of (10) satisfy

$$0 < h \le h_0 = \left(\frac{\sigma_0 \mu_0 \delta}{C_m}\right)^{\frac{1}{2}}.$$
(15)

Then the linearly implicit time stepping (10) satisfies

$$b_{ij} \leq 0, \quad i = 1, ..., n, \ j = 1, ..., n \quad (i \neq j),$$

where b_{ij} are entries of the matrix $B = \frac{1}{\delta}M + S$, and consequently, non-negativity $\mathbf{u}^k \ge 0$ holds for all k = 0, ..., n.

The explicit scheme (11) must be modified to ensure non-negativity, since $\frac{1}{\delta}M$ is not a Stieltjes matrix, which implies that $\left(\frac{1}{\delta}M\right)^{-1}$ is not necessarily element-wise nonnegative.

- We utilize the mass lumping techniques described in Thomée V. (2007) for the linear case.
- We adopt the methods outlined in Frittelli M., Madzvamuse A., Sgura I., and Venkataraman C. (2017) for the non-linear reaction case.

Definition

A lumped mass matrix is a diagonal matrix whose elements are obtained by adding the corresponding rows of the mass matrix.

く 目 ト く ヨ ト く ヨ ト

Lumped matrix scheme

The explicit scheme presented in (11) can be modified as follows:

$$\left(\frac{1}{\delta}\tilde{M}\right)\mathbf{u}^{k+1} = \underline{\mathbf{f}} + \left(\frac{1}{\delta}\tilde{M} - S - \tilde{N}(\mathbf{u}^k)\right)\mathbf{u}^k,\tag{16}$$

where \tilde{M} and \tilde{N} are the lumped matrix for M and N respectively. Using the condition $\sum_{i=1}^{n} \phi_i = 1$, and for all i, j = 1, ..., n

$$\tilde{M}_{ij} = \begin{cases} \sum_{j=1}^{n} m_{ij} = \sum_{j=1}^{n} \int_{\Omega} \phi_i \phi_j = \int_{\Omega} \phi_i \sum_{j=1}^{n} \phi_j = \int_{\Omega} \phi_i, \quad i = j \quad ,\\ 0, \quad i \neq j. \end{cases}$$
(17)

Similarly,

$$\tilde{N}(\mathbf{u}^{k})_{ij} = \begin{cases} \sum_{j=1}^{n} \int r(u_{h}^{k})\phi_{i}\phi_{j} = \int \Omega r(u_{h}^{k})\phi_{i}\sum_{j=1}^{n}\phi_{j} = \int \Omega r(u_{h}^{k})\phi_{i}, \quad i = j, \\ 0, \quad i \neq j. \end{cases}$$
(18)

15/31

Modified explicit scheme: Non-negativity

Definition

Let $\phi_i, \phi_2, \ldots, \phi_n$ be a basis. Then,

$$\mathcal{R}(h) := \max_{i=1,...,n} \Big(\frac{\int (
abla \phi_i)^2}{\int \Omega \phi_i^2} \Big).$$

Theorem

Assume the conditions $f \ge 0$, $u_0 \ge 0$,

$$\delta \le \frac{1}{R(h) + \sigma_1} \tag{19}$$

hold, and (3) satisfied for the FE mesh. Then, the modified explicit time stepping in (16) preserves non-negativity.

Budapest, Hungary (ELTE)

Remarks: Implicit and semi-implicit time stepping

Now we can discuss the space mesh and time stepping restrictions from equations (14) to ensure non-negativity.

The implicit and semi-implicit time stepping (13)

• If δ is fixed, then the upper bound on h is

$$h \le \left(\frac{\sigma_0 \mu_0 \delta}{(\sigma_1 \delta + 1)C_m}\right)^{\frac{1}{2}} =: h_0^{(\delta)}$$
(20)

Note that here

$$h \leq O(\delta^{rac{1}{2}})$$
 as $\delta o 0.$

 If h is fixed, then it is necessary to determine a condition for δ. Then, using equation (20):

$$C_m h^2 \le \delta(\sigma_0 \mu_0 - h^2 \sigma_1 C_m). \tag{21}$$

17/31

Lower bounds of δ

• If $\sigma_0\mu_0 - h^2\sigma_1C_m > 0$ in (21), then we can determine the lower bound for δ from (21) as follows:

$$\delta \ge \frac{h^2 C_m}{\sigma_0 \mu_0 - h^2 \sigma_1 C_m} = \frac{h^2 C_m}{C_2 - h^2 C_3} =: \delta_0^{(h)},$$
(22)

where $C_2 = \sigma_0 \mu_0$ and $C_3 = \sigma_1 C_m$.

• If $\sigma_0\mu_0 - h^2\sigma_1C_m \leq 0$ then (21) is not possible since C_mh^2 is a positive quantity.

Then, from the first argument, we can determine a bound for the admissible values of h, which is independent of δ , as follows:

$$h < h_1 = \sqrt{\frac{\sigma_0 \mu_0}{\sigma_1 C_m}}.$$
(23)

In summary, when h is fixed we have two possibilities:

• If $h < h_1$, then $\delta \ge \delta_0^{(h)}$ implies non-negativity and

 $\delta \geq O(h^2)$ as $h \to 0$.

• If $h \ge h_1$, then there is no δ which could ensure non-negativity.

Graphical illustration for lower bound of δ in (22)

Using the constant for the bilinear elements $C_m = \frac{1}{18}$, and other constants which help to simplify easily such that $C_2 = \frac{3}{18}$ and $C_3 = \frac{1}{18}$, the lower bound of δ in terms of h is illustrated in the following figure.

Remarks: Linearly implicit time stepping

We can discuss the space mesh and time-stepping restrictions from equations (15).

• If $\delta \leq \frac{1}{\sigma_1}$, which has already been assumed, is fixed, then the upper bound on *h* is

$$h \leq \left(\frac{\sigma_0 \mu_0 \delta}{C_m}\right)^{\frac{1}{2}} =: h_0^{(\delta)}.$$

We observe in this context $h \leq O(\delta^{\frac{1}{2}})$ as $\delta \to 0$.

 If h is fixed, then it is necessary to determine a condition for δ. Then, using equation (15):

$$\delta \geq \frac{C_m h^2}{\sigma_0 \mu_0} = C h^2 =: \delta_0^{(h)},$$

where $C = \frac{C_m}{\sigma_0 \mu_0}$. That is, $\delta \ge O(h^2)$ as $h \to 0$. In addition, δ is also bounded from above by O(1), since $\delta \le \frac{1}{\sigma_1}$, that is,

$$O(h^2) \leq \delta \leq O(1).$$

We can discuss the space mesh and time-stepping restrictions from equations (19). For the explicit case, based on Faragó I., Horváth R., and Karátson J. (2010), page 11, Remark 5.5, we obtain $R(h) = O(h^{-2})$.

Then, assuming a constant $K \in \mathbf{R}^+$ for the general form of (19), we obtain

$$\delta \leq \frac{1}{R(h) + \sigma_1} \leq \frac{1}{\frac{K}{h^2} + \sigma_1} = \frac{h^2}{K + \sigma_1 h^2} \leq \frac{h^2}{K} = O(h^2).$$

Thus,

 $\delta \leq O(h^2).$

Example: Express the upper bound of δ in terms of h

Consider a uniform mesh size h for a two-dimensional domain.

Triangular (Courant) element:
$$\int_{\Omega} \phi_i^2 = \frac{\hbar^2}{6}$$
 and $\int_{\Omega} |\nabla \phi_i|^2 = 4$,

bilinear element (H=h):
$$\int_{\Omega} \phi_i^2 = \frac{4h^2}{9}$$
 and $\int_{\Omega} |\nabla \phi_i|^2 = \frac{8}{3}$.

Therefore, for Courant element, $R(h) = 24h^{-2}$ and for bilinear element, $R(h) = 6h^{-2}$.

For the bilinear element, setting $\sigma_1 = 1$ in (19),

$$\delta \le \frac{1}{6h^{-2} + 1} = \frac{h^2}{6 + h^2} \le \frac{h^2}{6}.$$
 (24)

Graphical illustration for example in (24)

Figure: The upper bound of δ in terms of *h* for the explicit time stepping.

We illustrate the above theoretical results with an experiment for the bilinear FE solution of a 2D problem (Michaelis-Menten nonlinearity):

$$\begin{cases} \partial_t u - \mu_0 \Delta u + \frac{u}{1 + \epsilon u} = f \quad \text{in } \Omega := [0, 1]^2, \quad t \in (0, 1] \\ u = 0 \quad \text{on } \partial \Omega. \end{cases}$$
(25)

, where the initial condition $(t = 0) u_0 = 0$.

Numerical experiments for semi-implicit discretization

- In the experiment $\mu_0 = 10^{-5}$ and $\epsilon = 10^{-3}$ are constants given by Keller (1969).
- f(x, y) := (2x − 1)⁶ ≥ 0 describes a source function mostly concentrated near two sides of the square domain.

The table below illustrates the numerical solutions for five different meshes h and fixed $\delta = 0.1$ (non-negativity can fail for too coarse mesh).

Non-negative minima hold:

- theoretical results from (14): $h \le h_0 = 0.00165$,
- experimental results: $h \leq 0.002$.

This indicates that the estimation magnitude is reasonable.

h	0.1	0.01 0.0025		0.002	0.001
				_	
min u_h for $t_1 = 0.1$	-0.004	-1.1e - 12	-9.6 <i>e</i> - 16	0	0
min u_h for $t_2 = 0.2$	-0.01	-1.1e - 12	-5.4 <i>e</i> - 16	0	0
min u_h for $t_3 = 0.3$	-0.01	-2.6 <i>e</i> - 13	-1.5e - 16	0	0
min u_h for $t_4 = 0.4$	-0.02	-2.3e - 12	0	0	0
min u_h for $t_5 = 0.5$	-0.02	-6.1 - 12	0	0	0
min u_h for $t_6 = 0.6$	-0.02	-1.1e - 11	0	0	0
min u_h for $t_7 = 0.7$	-0.02	-1.6e - 11	0	0	0
min u_h for $t_8 = 0.8$	-0.02	-2.1e - 11	0	0	0
min u_h for $t_9 = 0.9$	-0.03	-2.7e - 11	0	0	0
min u_h for $t_{10} = 1$	-0.03	-3.2 <i>e</i> - 12	0	0	0

Table: Space size *h* and time levels t_1, \ldots, t_{10} with the corresponding min u_h .

• • • • • • • • • •

The table below illustrates the numerical solutions for five different time stepping δ and fixed h = 0.001 (non-negativity can fail for too fine time-stepping).

Non-negative minima hold:

- theoretical results from (22): $\delta \geq \delta_0 = 0.035$,
- experimental results: $\delta \ge 0.02$.

This indicates that the estimation magnitude is reasonable.

δ	0.001	0.01	0.02	0.035	0.1
min u_h for $t_1 = 0.1$	-1.1e-16	0	0	0	0
min u_h for $t_2 = 0.2$	-8.7e-15	0	0	0	0
min u_h for $t_3 = 0.3$	-1.3e-15	0	0	0	0
min u_h for $t_4 = 0.4$	-5.9e-14	0	0	0	0
min u_h for $t_5 = 0.5$	-1.3e-14	0	0	0	0
min u_h for $t_6 = 0.6$	-2.9e-15	-7.9e-16	0	0	0
min u_h for $t_7 = 0.7$	-4.7e-13	-6.5e-14	0	0	0
min u_h for $t_8 = 0.8$	-6.8e-14	-9.4e-15	0	0	0
min u_h for $t_9 = 0.9$	-3.6e-12	-5.3e-14	0	0	0
min u_h for $t_{10} = 1$	-5.1e-11	-6.2e-13	0	0	0

Table: Time step δ and time levels t_1, \ldots, t_{10} with the corresponding min u_h .

• We have determined threshold mesh sizes for h and the upper and lower bounds of δ using computable conditions based on the geometric characteristics of widely studied FE shapes for spatial discretization (triangles and rectangles) and four cases of time-discretization approaches.

This ensures the discrete non-negativity preservation (DNP) for parabolic standard diffusion with nonlinear reaction PDEs.

Thank you for your attention!

Image: A matrix

æ

31/31