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Model problem

Space-fractional diffusion problem:{
∂tu(t, x) = µ · −(−∆)αu(t, x), x ∈ Ω, t > 0
u(0, x) = u0(x), x ∈ Ω,

(1)

where

Ω ⊂ Rd denotes the computational domain and µ ∈ R+ is a diffusion
coefficient.

(−∆)α denotes the fractional power of the negative Dirichlet Laplace
operator.
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For any α ∈ R+ and u ∈ C∞
0 (Ω), the operator (−∆)α is defined as follows:

(−∆)αu(t, x) =
∞∑

k=1
ukλ

α
kϕk, (2)

where

{ϕk}k∈N is the orthonormal system of eigenfunctions of −∆,

{λk}k∈N corresponding eigenvalues,

uk =
∫
Ω

uϕk, k ∈ N denotes the related Fourier coefficients.

For the details, we refer to [2], [5], and [6].
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Finite difference discretization

To approximate (−∆)α, we apply FDM:

Let A ∈ Rn×n is any discretized form of −∆.

The basic idea of the matrix transformation method is that

for A ≈ −∆, we also have Aα ≈ (−∆)α.

Using the matrix transformation method, (1) can be semi-discretized as

∂tu(t, ·) = µ · −(A)αu(t, ·). (3)
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Full discretization (θ- scheme)

We investigate the weighted average of the explicit and implicit finite
difference schemes, leading to the so-called θ schemes:

un+1 − un

δ
= −(A)αun · (1 − θ) +−(A)αun+1 · θ, (4)

where

δ is a time step and θ ∈ [0, 1] is a parameter.

For θ = 0, we get an explicit scheme, otherwise an implicit one.

The choice θ = 1
2 leads to the Crank–Nicolson scheme.
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Theoretical analysis

Definition
The matrix B ∈ Rn×n is said to be an M matrix if

all its off-diagonal elements are non-positive,
there exists a vector g ∈ Rn > 0 such that Bg > 0 (element-wise
positive).

Definition
The matrix B ∈ Rn×n is called a Stieltjes matrix if

B is a real symmetric positive definite matrix,
all its off-diagonal elements are non-positive.

Note that a matrix B ∈ Rn×n is called (weakly) diagonally dominant if
n∑

k̸=j
|Bjk| ≤ |Bjj| for all j = 1, . . . , n.
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Theorem regarding Stieltjes matrix

We use the following key properties in the forthcoming analysis.

Theorem
Let B be a Stieltjes matrix and α ∈ (0, 1]. In this case,

B is an M matrix such that it has a non-negative inverse,
Bα is also a Stieltjes matrix.

For the details, we refer to [4].
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General assumptions

(i) A is symmetric positive definite.

(ii) A has positive diagonal elements and non-positive off-diagonals
elements.

(iii) A is (weakly) diagonally dominant.

(iv) The diagonal of A is d · I with d ≥ 1, where I is the identity matrix.

(v) The inequality 1 − δ · d ≥ 0 is satisfied for the time step δ in (5).

The explicit Euler discretization i.e. the case of θ = 0 in (4), is given by

un+1 = un − δAαun = (I − δAα)un. (5)
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Explicit Time stepping

Theorem
Assume that conditions (i)-(v) are satisfied for the time step δ in (5).
Then the explicit time stepping in (5) is stable and preserves
non-negativity for any α ∈ [0, 1].

Non-negativity for explicit time stepping

Theorem
Assume that for α = 1, we have the condition δ ≤ c∗h2 with some
c∗ ∈ R+ for preserving non-negativity in (5). Then for any α ∈ [0, 1], the
condition δ ≤ c∗h2α in (5) is sufficient for the same purpose.
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Remarks for the Theorems

In case of the conventional d-dimensional finite difference
discretization, for α = 1, we have the condition δ ≤ h2

2d for preserving
non-negativity, see Theorem 6.2 in the article by István Faragó and
Róbert Horváth [1].

According to Theorem 3, we obtain the condition δ ≤ h2α
2d for a

general α ∈ [0, 1] using the matrix transformation technique.

Taking a small discretization parameter h and α < 1, this can be
again a weaker condition for δ compared to the case of conventional
diffusion.
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Implicit Time stepping
Implicit Euler discretization:

un+1 = un − δAαun+1. (6)

Theorem
Assume that the conditions (i) and (ii) are satisfied, then implicit time
stepping is stable for any α ∈ [0, 1] and preserves non-negativity.

From (6), we have

un+1 = [I + δ · Aα]−1un, (7)

where Aα is a Stieltjes matrix by the Theorem.

Here [I + δ · Aα]−1 is element-wise positive.

This results nonnegativity preservation.
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Crank–Nicolson scheme

We also investigate the Crank–Nicolson scheme

un+1 = un +
δ

2Aα(un + un+1), (8)

which can be rephrased as

un+1 =

(
I + δ

2Aα

)−1 (
I − δ

2Aα

)
un. (9)

Theorem
The Crank–Nicolson scheme in (9) is unconditionally stable and preserves
non-negativity for δ < 2C∗ · h2α ∀α ∈ [0, 1] and for some C∗ ∈ R+.
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Computation of matrix-vector products

Matrix-vector products: Aαv, where A ∈ Rn×n is a symmetric positive
definite sparse matrix, v ∈ Rn is an arbitrary vector and α ∈ [0, 1].

We apply the Matlab codes described in the article by Ferenc Izsák
and Béla J. Szekeres [3].

Using this technique, we avoid the calculation of the matrix power
Aα, which is a large and full matrix.

In the framework of the above technique, we should compute only sparse
matrix-vector products, which leads to an efficient implementation.
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Computation of matrix-vector products

Let x1, x2, . . . , xn are the eigenvectors and λ1 ≤ λ2 ≤ ... ≤ λn the
corresponding eigenvalues of A.
Then Aα has the same eigenvectors, while the corresponding
eigenvalues are λα

1 ≤ λα
2 ≤ ... ≤ λα

n .
For any vector v = a1x1 + a2x2 + ...+ anxn ∈ Rn.
The matrix-vector product is given as follows:

Aαv = a1λ
α
1 x1 + a2λ

α
2 x2 + ...+ anλ

α
n xn, (10)

which has to be approximated.
To reduce the computational complexity, we compute only a few
eigenvectors: x1, x2, . . . , xk1 and xn−k2+1, xn−k2+2, . . . , xn along with
the corresponding eigenvalues.
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Truncated Taylor’s approximation
This can be performed rather quickly using sparse eigensolvers of Matlab
and can be used in the course of the entire simulation process.
The approximation has then two main steps:

We first compute the component

v1 = a1x1 + a2x2 + · · ·+ ak1xk1 + an−k2+1xn−k2+1 + · · ·+ anxn.

For this part, we can easily apply (10) to get

Aαv1 = a1λ
α
1 x1+· · ·+ak1λ

α
k1xk1+an−k2+1λ

α
n−k2+1xn−k2+1+· · ·+anλ

α
n xn.

For the rest v2 = v − v1, we apply a truncated Taylor’s approximation

Aαv2 ≈
( σ(A)

2
)α

K∑
k=1

(
α

k

)( 2A
σ(A) − I

)k
v2,

where σ denotes the spectral radius such that σ
(

2A
σ(A) − I

)
≤ 1 and the

related binomial series is convergent.
Finally, we obtain the approximation Aαv ≈ Aαv1 + Aαv2.
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Computational results
The computations in the forthcoming examples will confirm our theoretical
expectations in Theorem 2 and Theorem 3.
Example 1:1D space-fractional diffusion problem:

∂tu(t, x) = −(−∆)αu(t, x), x ∈ (0, π/2), t ∈ (0, 0.1)
u(0, x) = sin(2x), x ∈ (0, π/2)
u(t, 0) = u(t, π/2) = 0, t ∈ (0, 0.1),

(11)

Analytic solution is given by u(t, x) = e−4αt sin 2x.
α ∈ [0, 1] denotes the exponent in the matrix power, k1 and k2 are
the numbers of eigenvectors of the matrix that are used for the
decomposition and K is the number of terms in Taylor’s
approximation.
n is the number of subintervals in Ω = (0, π/2), δ is the time step,
where the domain is discretized using a uniform grid with the grid size
h = π

2n .
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Experimental error rates with respect to L2-norm

δ h α = 0.4 α = 0.6 α = 0.8 r1 r2 r3

10−4 0.2618 1.3 × 10−3 2.4 × 10−3 3.8 × 10−3 - - -
10−4 0.1309 4.143 × 10−4 6.97 × 10−4 1.1 × 10−3 1.6 1.7 1.7
10−4 0.0654 1.221 × 10−4 2.158 × 10−4 3.235 × 10−4 1.7 1.6 1.7
10−4 0.0327 3.817 × 10−5 7.192 × 10−5 8.987 × 10−5 1.6 1.5 1.8
10−4 0.0164 1.272 × 10−5 2.258 × 10−5 2.248 × 10−5 1.5 1.6 1.9

In this Convergence results, the first K = 1000 terms in the Taylor
expansion and k1 = k2 = 20 were computed.
Here r1, r2, and r3 are the convergence order with respect to the space
parameter h in case of α = 0.4, α = 0.6 and α = 0.8, respectively.

Non-negativity preservation is the consequence of the stability condition
δ ≤ h2α

2 , since we prescribed non-negative initial and boundary conditions.
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Stability condition

The stability conditions for the maximum time step δexp in the experiments
and the maximal time step δtheory = h2α

2 ensuring stability according to
Theorem 3 for the numerical solution of (11) are recorded in Table 2.

α = 0.5 α = 0.7 α = 0.9
h 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01

δexp 0.048 0.0047 0.00047 0.0195 0.0006 0.0000031 0.006 0.000123
δtheory 0.05 0.005 0.0005 0.0199 0.0008 0.000032 0.008 0.000126

Comparison of experimental stability results and the result of
Theorem 3 for different values of h and fractional powers α.
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Non-negativity preservation

Example 2: 2D space-fractional diffusion problem:
∂tu(t, x) = −(−∆)αu(t, x, y), (x, y) ∈ Ω, t ∈ (0, 0.1)
u(t, x, y) = 0, (x, y) ∈ ∂Ω, t ∈ (0, 0.1)
u(0, x, y) = sin x sin y, (x, y) ∈ Ω,

(12)

where
Ω = (0, π)× (0, π) and the analytic solution is given by
u(t, x, y) = e−2αt(sin x sin y).

Here, we have used a uniform square grid of size h = π
n for the finite

difference discretization of Ω.

The rest of the notations coincide with the ones in Example 1.
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Experimental error rates with respect to L2-norm

δ h α = 0.2 α = 0.5 α = 0.6 α = 0.8

0.02 0.5236 3.16 × 10−2 3.87 × 10−2 4.13 × 10−2 4.7 × 10−2

0.005 0.2618 7.8 × 10−3 9.6 × 10−3 1.02 × 10−2 1.16 × 10−2

0.00125 0.1309 1.9 × 10−3 2.4 × 10−3 2.5 × 10−3 2.9 × 10−3

0.0003125 0.0654 4.83 × 10−4 5.9 × 10−4 5.62 × 10−4 7.26 × 10−4

0.000078125 0.0327 1.23 × 10−4 1.5 × 10−4 1.61 × 10−4 1.81 × 10−4

Convergence order is at least O(δ)+O(h2), the first K = 1000 terms
in the Taylor expansion, and k1 = k2 = 20 were computed.

Non-negativity preservation is the consequence of the stability condition
δ ≤ h2α

4 , since we prescribed non-negative initial and boundary conditions.
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Stability condition + convergence order

Example 3: 2D space-fractional diffusion problem:
∂tu(t, x) = −(−∆)αu(t, x, y), (x, y) ∈ Ω, t ∈ (0, 0.1)
u(t, x, y) = 0, (x, y) ∈ ∂Ω, t ∈ (0, 0.1)
u(0, x, y) = sin x sin 2y + sin 2x sin y, (x, y) ∈ Ω,

(13)

where
Ω = (0, π)× (0, π) and the analytic solution is given by
u(t, x, y) = e−5αt(sin x sin 2y + sin 2x sin y).

We use the same notations as in Example 2.
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Experimental error rates with respect to L2-norm

δ h α = 0.4 α = 0.6 α = 0.8 α = 0.9

0.02 0.5236 7.49 × 10−2 0.1001 0.1293 0.1445
0.005 0.2618 1.86 × 10−2 2.48 × 10−2 3.18 × 10−2 3.54 × 10−2

0.00125 0.1309 4.6 × 10−3 6.2 × 10−3 7.9 × 10−3 8.8 × 10−3

0.0003125 0.0654 1.1 × 10−3 1.5 × 10−3 2.0 × 10−3 2.2 × 10−3

0.000078125 0.03879 2.78 × 10−4 3.81 × 10−4 5.2 × 10−4 5.56 × 10−4

Convergence order is at least O(δ)+O(h2) and the first K = 1000
terms in the Taylor expansion and k1 = k2 = 20 were computed.

In the experiments, we have only stability δ ≤ h2α
4 since the given initial

condition is negative at some points.
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Stability condition

The stability conditions for the maximum time step δexp in the experiments
and the maximal time step δtheory = h2α

4 ensuring stability according to
Theorem 3 for the numerical solution of (13) are recorded in Table 4.

α = 0.5 α = 0.7 α = 0.9
h 0.1 0.01 0.001 0.1 0.01 0.1 0.01

δexp 0.0248 0.00245 0.000247 0.00993 0.000393 0.00392 0.000060
δtheory 0.025 0.0025 0.00025 0.00995 0.000396 0.00396 0.000063

Comparison of experimental stability results and the result of
Theorem 3 for different values of h and fractional powers α.
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Conclusion

In the framework of the matrix transformation method:

The stability, and preservation of non-negativity for space-fractional
diffusion problems can be analyzed independently from the spatial
dimension.

The stability condition depends only on the conventional finite
difference discretization matrix and the fractional power of the
Laplacian.

Taking a spatial refinement, this leads to milder stability conditions
compared to the case of conventional diffusion.

The preservation of non-negativity can be established.

The corresponding manuscript was submitted.
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Thank you for your attention!
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