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Cooperative games

I Cooperative games vs. non cooperative games,

I Nash program,

I Transferable utility cooperative games (TU-games),

I Non transferable utility cooperative games (NTU-games).



TU-games

Definition
The nonempty finite set of the players is denoted by N .
A transferable utility (TU) game, henceforth TU-game v , with
the set of players N , is a function v : P(N)→ R such that
v(∅) = 0.
Let denote GN the class of TU-games with player set N .



Example

I Let N = {1, 2, 3},
I v({1}) = 0, v({2}) = −1 and v({3}) = 2,

I v({1, 2}) = 1, v({1, 3}) = 3 and v({2, 3}) = 1,

I v(N) = v({1, 2, 3}) = 4.



Solution, value

Definition
A mapping ψ is a solution on the set of TU-games A ⊆ GN , if
ψ| : A→ P(RN).

Definition
A ψ solution on the set of TU-games A ⊆ GN is a value, if it
is single valued, that is for all v ∈ A it holds that |ψ(v)| = 1.



Core

Definition
Take a TU-game v ∈ GN . Then the core (Shapley, 1955) of
the game v is defined as follows:

core (v) = {x ∈ RN : x(N) = v(N) and x(S) ≥ v(S), S ⊆ N} .



Example

Consider the following game: Let T ⊆ N , T 6= ∅, and for each
S ⊆ N , let

uT (S) $

{
1, if T ⊆ S
0 otherwise

.

Then the TU-game uT is called unanimity game on coalition
T .

core(uT ) = conv{x ∈ RN : there exists i ∈ T such that xi =
1 and xj = 0, j 6= i}.



Balanced set system

Definition
A sets system B ⊆ P(N) \ {∅} is a balanced set system, if
there exists a vector λ ∈ RB++ such that∑

S∈B

λSχS = χN .

The weights (λS)S∈N are called balancing weights.



Balanced games

Definition
A TU-game v ∈ GN is balanced, if

max
B is a balanced set system

∑
S∈B

λSv(S) ≤ v(N) .



The Bondareva-Shapley Theorem

Theorem (Bondareva (1963), Shapley (1967))
A TU-game v ∈ GN is balanced, if and only if, core(v) 6= ∅,
that is, if and only if the TU-game does have nonempty core.



Marginal contribution

Definition
Take a TU-game v ∈ GN . Then player i ∈ N marginal
contribution to coalition S ⊆ N in the game v is
v ′i (S) = v(S ∪ {i})− v(S). Let v ′i denote the marginal
contribution of player i in the TU-game v , that is,
v ′i = (v ′i (S))S∈P(N).



Shapley value

Definition (Shapley (1953))
Let v ∈ GN and

piSh(S) =


|S |!(|N \ S | − 1)!

|N |!
, if i /∈ S

0 otherwise
.

Then φi(v), the Shapley value of player i in the TU-game v is
the piSh expected value of v ′i . In other words,

φi(v) =
∑
S⊆N

v ′i (S) piSh(S) .



Example I
Let N = {1, 2, 3}, and let v ∈ GN be as follows:

v({1}) = 1, v({2}) = 0, v({3}) = 2,
v({1, 2}) = 2, v({1, 3}) = 2, v({2, 3}) = 3,
v({1, 2, 3}) = 5.

Orders:

1 1 2 2 3 3
2 3 1 3 1 2
3 2 3 1 2 1

Marginal contributions:

1 1 2 2 0 2
1 3 0 0 3 1
3 1 3 3 2 2



Example II

The Shapley values:

φ1(v) =
1

6

(
1 + 1 + 2 + 2 + 0 + 2

)
=

8

6
,

φ2(v) =
1

6

(
1 + 3 + 0 + 0 + 3 + 1

)
=

8

6
,

φ3(v) =
1

6

(
3 + 1 + 3 + 3 + 2 + 2

)
=

14

6
.



Equivalence of players

Definition
Players i , j ∈ N are equivalent in a TU-game v ∈ GN , i ∼v j ,
if for all S ⊆ N \ {i , j} it holds that v ′i (S) = v ′j (S).



Axioms I

A value ψ on the set of games A ⊆ GN is / satisfies

I Pareto optimal (PO), if for each v ∈ A,∑
i∈N ψi(v) = v(N),

I Null-player Property (NP), if for all v ∈ A, i ∈ N , v ′i = 0
implies ψi(v) = 0,

I Equal Treatment Property (ETP), if for all v ∈ A,
i , j ∈ N , i ∼v j implies ψi(v) = ψj(v),

I Additive (ADD), if for all v ,w ∈ A such that v + w ∈ A,
ψ(v + w) = ψ(v) + ψ(w),



Shapley’s axiomatization of the Shapley value

Theorem (Shapley (1953))
A value ψ defined on the class of TU-games GN meets axioms
PO, NP, ETP and ADD if and only if it is the Shapley value.



A tuple Γ = (N , {Ai}i∈N , {fi}i∈N) is a noncooperative game in
normal form, if

I N is the nonempty players set,

I Ai is the nonempty set of Player i ’s actions,

I fi : A→ R is the payoff function of Player i ,

where A = ×i∈NAi .



The game of chicken

Player 2
Swerve Straight

Player 1
Swerve
Straight

(6,6)
(7,2)

(2,7)
(0,0)



The prisoner’s dilemma

Prisoner 2
Cooperate Defeat

Prisoner 1
Cooperate

Defeat
(-2,-2)

(-1,-10)
(-10,-1)
(-5,-5)



Nash equilibrium

Definition
An action profile a∗ ∈ A is a Nash equilibrium of the game
(N , {Ai}i∈N , {fi}i∈N), if for all i ∈ N and ai ∈ Ai we have

fi(ai , a
∗
−i) ≤ fi(a

∗) .



Mixed extension

Definition
The mixed extension of a game (N , {Ai}i∈N , {fi}i∈N) is a game
(N , {∆(Ai)}i∈N , {f̂i}i∈N), where ∆(X ) is the set of probability
distributions over set X , and f̂i(â) =

∫
fi dâ, â ∈ ×i∈N∆(Ai).



Minimax theorem

Theorem (von Neumann (1928))
Take a matrix game A. Then

max
x∈∆n

min
y∈∆m

x>Ay = min
y∈∆m

max
x∈∆n

x>Ay ,

where ∆d is the d − 1-dimensional unit simplex, and A is an
n ×m matrix.
Moreover, (x∗, y ∗) for which the equality holds is a solution of
the mixed extension of the matrix game, and
v = max

x∈∆n
min
y∈∆m

x>Ay = min
y∈∆m

max
x∈∆n

x>Ay is called the value the

matrix game A.



The existence of Nash equilibrium

Theorem (Nash (1950, 1951))
The mixed extension of a finite game in normal form has a
Nash equilibrium.



1st version of Rationalizability I

Given a finite game in normal form (N , {Ai}i∈N , {fi}i∈N). An
action of Player i ai ∈ Ai is rationalizable, if there exists

I a collection of sets {{X t
j }j∈N}t∈N with X t

j ⊆ Aj for all j
and t,

I a belief of player i p1
i ∈ ∆(A−i),

I for all j ∈ N , t ∈ N and aj ∈ X t
j we have a belief of

player j pt+1
j (aj) such that its support is a subset of X t

−j

such that

I ai is a best response to the belief of player i p1
i ,

I X 1
i = ∅ and for each j ∈ N \ {i} the set X 1

j is the set of
all a′j ∈ Aj such that there is some a−i in the support of
p1
i for which a′j = (a−i)j ,



1st version of Rationalizability II

I for every player j ∈ N and every t ≥ 1 every action
aj ∈ X t

j is a best response to the belief of player j

pt+1
j (aj),

I for each t ≥ 2 and each j ∈ N the set X t
j is the set of all

a′j ∈ Aj such that there is some player k ∈ N \ {j}, some

action ak ∈ X t−1
k , and some a−k in the support of ptk(ak)

for which a′j = (a−k)j .



2nd version of Rationalizability

Definition
Given a finite game in normal form (N , {Ai}i∈N , {fi}i∈N). An
action of Player i ai ∈ Ai is rationalizable, if for each j ∈ N
there is a set Zj ⊆ Aj such that

I ai ∈ Zi ,

I every action aj ∈ Zj is a best response to a belief of
player j pj(aj) such that its support is a subset of Z−j .



The equivalence of the two versions

Theorem
The two versions of rationalizability are equivalent.



Game of chicken

Consider the game of chicken

Player 2
Swerve Straight

Player 1
Swerve
Straight

(6,6)
(7,2)

(2,7)
(0,0)

Then action Swerve is rationalizable for both players.



Repeated games I

Consider a finite normal form game Γ = {N , {Ai}i∈N , {fi}i∈N}
as a base game (stage game). Suppose that the game is
played repeatedly T ∈ N ∪ {∞} times (we consider only
discrete time models). Then the repeated game (supergame or
iterated game) is a normal form game, where

I N is the players set,

I The history at t is ht = (a0, . . . , at−1), if t ≥ 1, and
h0 = {∅}, the set of histories is denoted by H ,

I The strategy of player i is as follows: si : H → Ai , hence
at each stage t the strategy depends only on ht .

I Binary relation %i is the preference of Player i over
×T

t=0A such that (weak separability) for all a, a′ ∈ A,
fi(a) ≥ fi(a

′) we have the following for all t:



Repeated games II

(a0, . . . , at−1, a, at+1, . . . , aT ) %i (a0, . . . , at−1, a′, at+1, . . . , aT ) .

A repeated game is a finitely repeated game, if T <∞,
otherwise it is an infinitely repeated game.



Preference specifications

Definition

I Discounting: there exists a discount factor δ > 0 such
that a %i b, if

∑T
j=0 δ

j(fi(a
j)− fi(b

j)) ≥ 0 for all i ∈ N .

I Limit of means: a �i b, if
lim inft→T

∑t
j=0(fi(a

j)− fi(b
j))/t > 0 for all i ∈ N .

I Overtaking: a �i b, if
lim inft→T

∑t
j=0(fi(a

j)− fi(b
j)) > 0 for all i ∈ N .



An example I

Let the base game be as follows

Player 2
B J

Player 1
F
A

(3,3)
(2,4)

(4,2)
(5,5)

This game has two pure Nash equilibria (F ,B) and (A, J).
Let T = 1, therefore the base game is played two times (one
repetition). Then it is easy to see that in the repeated game
each player has 32 strategies (at the second stage there are 4
histories, so 24 × 2).

1. It is easy to see that the strategy when Player 1 plays F
in both games, and Player 2 plays B isn both games is a
Nash equilibrium in the repeated game.



An example II

2. Consider the following strategy profile:
Player 1: at stage 0 she plays A, at stage 1 she plays A, if
the outcome of the game at stage 0 is (A, J) and she
plays F otherwise.
Player 2: at stage 0 he plays J , at stage 1 he plays J , if
the outcome of the game at stage 0 is (A, J) and she
plays B otherwise.

This strategy profile is a Nash equilibrium in the repeated
game, since, if Player 1 wants to deviate she does not do
at stage 1 because (A, J) is a Nash equilibrium in the
base game. She does not deviate at stage 0 either
because it leads to outcome (F ,B) at stage 1 which
means worse payoff (3) than 5.



Strategies

Definition

I A strategy is stationer, if at each stage the same action is
played,

I A strategy is Markovian, if at each stage t the played
action does not depend on the elements of the history at
the stage older than t − 1,

I A strategy is a trigger strategy, if it initially cooperates
but punishes the opponent, if a certain level of defection
(i.e., the trigger) is observed.



Stationer subgame perfect Nash equilibrium

Theorem
Suppose that T <∞ and a ∈ A is the only Nash equilibrium
in the base game. Then the stationer strategy profile applying
a at each stage is the unique subgame perfect Nash
equilibrium of the repeated game.



Stationer subgame perfect Nash equilibrium

revisited

Theorem
Suppose that T <∞ and a ∈ A is a Nash equilibrium in the
base game. Then the stationer strategy profile applying a at
each stage is a subgame perfect Nash equilibrium of the
repeated game.



Nash folk theorem for the limit of means criterion

Theorem
For every ε > 0 every enforceable payoff profile of
Γ = (N , {Ai}i∈N , {fi}i∈N) such that it is in the convex hull of
{f (a)}a∈A is ε-close to a Nash equilibrium payoff profile of the
limit of means infinitely repeated game of Γ.



Thank you for your attention!
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