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Biological inspiration

Neuron types

Connections, synapses,
action potential
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A neural field model

Neural activity dynamics in a bounded, open, connected domain
Ω ⊂ Rd , d = 1, 2, 3 is modeled by

∂Vi

∂t
(t, r) = −αiVi (t, r) +

p∑
j=1

∫
Ω

Jij(r , r ′)Sj(Vj(t−τij(r , r ′), r ′))d r ′.

Vi (t, r) membrane potential

Jij(r , r ′) the connectivity kernel

Sj the synaptic activation function

τij(r , r ′) the propagation delays

[Wilson and Cowan, 1972; Amari, 1977]
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A neural field model

∂

∂t
u(t, x) = −αu(t, x) +

∫
Ω

w(x , y)f (u(t − τ(x , y), y))d y︸ ︷︷ ︸
synaptic input

τ(x , y) =
|x − y |

v
.
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Delays in neural systems

Sources of delay:

• Due to propagation of action potentials along the axon and/or
dendrite

• Due to the transmission of electric signals across the synapse

Play an important role in the spatiotemporal dynamics of neural
activity.
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The mathematical model



Neural field models as dynamical systems

The membrane potentials evolve according to the integro
-differential equation with space dependent delay

∂u
∂t

(t, x) = −αu(t, x) +

∫
Ω

J(x, r)S(u(t − τ(x, r), r)) dr

HJ The connectivity kernel J ∈ C (Ω× Ω).

HS The synaptic activation function S ∈ C∞(R) and its kth
derivative is bounded for every k ∈ N0.

Hτ The delay function τ ∈ C (Ω× Ω) is non-negative and not
identically zero.

[S.A. van Gils e.a., 2013]
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Choice of the State Space
∂u
∂t (t, x) = −αu(t, x) +

∫
Ω

J(x , r)S(u(t − τ(x , r), r)) dr

The maximal delay

0 < τmax := sup{τ(r, r′) : r, r′ ∈ Ω} <∞

Introduce Y := C (Ω) , X := C ([−τmax , 0]; Y )

Define the nonlinear operator G : X → Y (integral part that involves
the history) by

G (φ)(r) :=

∫
Ω

J(r, r′)S(φ(−τ(r, r′), r′)) dr′ ∀φ ∈ X , ∀ r ∈ Ω
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Define the history at time t ≥ 0 by

X 3 ut(θ) := u(t + θ) ∀ t ≥ 0, θ ∈ [−τmax , 0]

Then studying of the neural field equation is equivalent to analyzing
the following Delay Differential Equation:{

u̇(t) = −αu(t) + G (ut) t ≥ 0

u(t) = φ(t) t ∈ [−τmax , 0]
(DDE)

where the solution u ∈ C ([−τmax ,∞); Y ) ∩ C 1([0,∞); Y ).

The state of the system at time t ≥ 0

ut(s)(x) = u(t + s, x), s ∈ [−τmax , 0], x ∈ Ω

The operator G is globally Lipschitz continuous.
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Time-discontinuous Galerkin
method for NF



Numerical study of NF

Difficulties: localized nature is lost (weight kernel), space-dependent
time delays

First choice: approximations of NF with large systems of DDEs, the
state space C ([−τmax , 0],Y ) reduces to C ([−τmax , 0],Rm+1) (works
well for special types of connectivity kernels )

[Faye and Faugeras, 2010]

New scheme: includes a convolution structure, hence allows fast
numerical algorithms (works only for special types of connectivity
kernels)

[Hutt and Rougier, 2014]

Our choice: Time-discontinuous (dGcG) finite element method

[P., van der Vegt, van Gils, SISC 2017]
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Motivation of using dGcG method for NF

• The use of a space-time discretization is a natural way to deal
with the space-dependent delays

• Well established to solve PDEs and stiff ODE systems

• It is well suited for mesh adaptation

• It has good long-time accuracy

• No restrictions to the functions involved in the system
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dGcG-FEM for u̇(t) = −αu(t) + G(ut), G(ϕ)(x) =
∫

Ω
J(x , r)S(ϕ(−τ(x , r), r))d r

The variational formulation:

Find u ∈ C 1 ([0,T ),Y ) ∩ C ([−τmax ,T ),Y ) , such that

(u̇(t) + αu(t), v)− (G (ut), v) = 0, ∀v ∈ Y , ∀t ∈ (0,T ),

u(s) = u0(s), s ∈ [−τmax , 0],

where (·, ·) is the L2(Ω) inner product. The delay contribution is
expressed as (

G (ut), v
)

=

∫
Ω

G (ut)(x)v(x)dx
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The space-time dGcG-FEM discretization

• E ⊂ Rd+1: open, bounded space-time domain in which a point
has coordinates (t, x) ∈ Rd+1

• Partition the time interval Ī = [0,T ] using the time levels
0 = t0 < t1 < . . . < tN = T , and denote by In = (tn−1, tn] the nth
time interval of length kn = tn − tn−1

• A space-time slab is defined as En = In × Ω

En

Ω(tn)

Ω(tn−1)

Kn
jIn

x

t

Figure 1: Two-dimensional space-time elements in physical space.
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The space-time dGcG-FEM discretization

• Approximate the spatial domain Ω with Ωh using a tessellation of
non-overlapping hexahedral elements

T̄h =

Kj :
M⋃
j=1

K̄j = Ω̄h, Kj ∩ Ki = ∅ if i 6= j

 .

Ωh → Ω as h→ 0,
• The space-time elements are obtained as Kn

j = (tn−1, tn)× Kj .

En

Ω(tn)

Ω(tn−1)

Kn
jIn

x

t

Figure 2: Two-dimensional space-time elements in physical space. 14



FEM spaces

The finite element space associated with the tessellation T n
h is defined

as:

V n
h =

{
u ∈ C 0(En) : u |K ◦Gn

K ∈
(
P̂q(−1, 1)⊗ P̂r (K̂ )

)
,∀K ∈ T n

h
}

The weak formulation: find uh ∈ Vh such that the variational equation

holds for all v ∈ Vh = {u ∈ L2(E) : u |En∈ V n
h , n = 1, 2, . . . ,N}.
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Figure 3: Continuous Galerkin FEM, where u = u(t) is approximated globally
in a (piecewise linear) continuous manner (top figure). In contrast, in a
discontinuous Galerkin FEM, u = u(t) is approximated globally in a
discontinuous manner and locally in each element in a (piecewise linear)
continuous way (bottom figure).
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u̇(t) = −αu(t) + G(ut), G(ϕ)(x) =
∫

Ω
J(x , r)S(ϕ(−τ(x , r), r))d r

The space-time dGcG-FEM method: find uh ∈ Vh such that

N∑
n=1

 ∑
K∈T n

h

( ∂
∂t

uh + αuh, vh
)
K −

∫
In

(
Ĝ(uht), vh(t)

)
dt



+
N∑

n=2

(
[uh]n−1, vn−1,+

h

)
︸ ︷︷ ︸

jump term

+
(
u0,+

h , v0,+
h

)
=
(
u0(0), v0,+

h

)

holds for all vh ∈ Vh

Here [uh]n = un,+
h − un,−

h , un,±
h = lims→0+ uh(tn ± s, ·).
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Finite element approximation

Introduce the approximation

uh(t, x) |K=

Np∑
m=1

ûKmψ
K
m(t, x)

and set the test function vh(t, x) = ψKi (t, x), with ψKi the Lagrange
basis functions.

The delay term:

∫
K
ψKi (t, x)

(∫
Ω

J(x , r)S (uh(t − τ(x , r), r)) dr
)

dx dt

=

∫
K
ψKi (t, x)

(∑
L∈T̄h

∫
L
J(x , r)S

 Np∑
m=1

ûL
mψ

L
m(t − τ(x , r), r)

 dr
)
dK
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How to treat the delay term?∫
K ψ
K
i (t, x)

(∑
L∈T̄h

∫
L J(x , r)S

(∑Np
m=1 ûL

mψ
L
m(t − τ(x , r), r)

)
dr
)
dK

Fix a quadrature point (tq, xq) ∈ Kn in a space-time element. To
compute the integral over a space element L, consider rqs ∈ Ω, and
distinguish three cases for the time delay tq − τ(xq, rqs).

x

t

−1 1xq

Km

Kn

tn−1

tm−1

tn

t0rqs

|xq − rqs|

τ (xq, rqs) = τ0 + |xq − rqs|

tm
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Numerical examples



Neural fields in 1D

Space and time are re-scaled such that Ω̄ = [−1, 1] and the
propagation speed is 1,

τ(x , r) = τ0 + |x − r |.

∂u
∂t

(t, x) = −αu(t, x) +

∫ 1

−1
J(x , r)S(u(t − τ(x , r), r))d r .

The connectivity and activation functions are, respectively,

J(x , y) = Ĵ(|x − y |) =
2∑

j=1

cje−µj |x−y |, cj ∈ R, µj ∈ R,

S(u) =
1

1 + e−σu −
1
2
, ∀u ∈ R.

[S.A. van Gils e.a., 2013]
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Characteristic equation
∂u
∂t (t, x) = −αu(t, x) +

∫
Ω

J(x , r)S ′(0)u(t − τ(x , r , r)) dr

∆(λ)q = 0, q ∈ Y ,

where ∆(λ) : Y → Y is defined as

∆(λ)q = (λ+ α)q − e−τ0λ
2∑

i=1

ciKi (λ)q,

ci = ĉi S ′(0)︸ ︷︷ ︸
=σ

, ki (λ) = λ+ µi ,

with Ki (λ) : Y → Y

(Ki (λ)q) (r) =

∫
Ω

e−ki (λ)|r−r ′|q(r ′)dr ′.
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Neural field simulations

Hopf bifurcation

α τ0 σ c1 c2 µ1 µ2

1.0 1.0 4.2202 3.0 −5.5 0.5 1

Ĵ(x) = ĉ1e−µ1|x| + ĉ2e−µ2|x|, |x | ≤ 1,

The initial function for this simulation is u(t, x) = ε = 0.01.
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Figure 4: Time simulation of the system for σ = 6, beyond a Hopf bifurcation.



New simulations (adding spatial inhomogeneity)

Locally changed connectivity J̃(x , y) = J(x , y) + ωJ(x , y) |Ωk

Figure 5: Time simulation of the system for σ = 4, in the homogeneous (top)
and the inhomogeneous (bottom, ω = 15) case.



Effect of spatial inhomogeneity
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Neural fields in two space dimensions
∂u
∂t (t, x) = −αu(t, x) +

∫
Ω

J(x , r)S(u(t − τ(x , r), r)) dr

First the connectivity function

J(x , r) = Ĵ(‖x − r‖) = ĉ1e−µ1‖x−r‖1 + ĉ2e−µ2‖x−r‖1 , x , r ∈ [−1, 1]2

• For σ = 4 we obtain convergence to zero steady state.
• For σ = 6 we obtain periodic solution

0 50 100 150 200 250
time t

−0.2

−0.1

0.0

0.1

0.2
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Time-periodic solution, homogeneous kernel

Figure 6: The solution of the system when σ = 6, at the beginning and at
half of a time period.
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Time-periodic solution, inhomogeneous kernel

Figure 7: Time evolution of the system when σ = 4, during half of a time
period, ω = 30.
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Neural fields in two space dimensions

Second example the connectivity kernel is defined as

J(x , r) = Ĵ(‖x − r‖) =
1√
2πξ21

e
− ‖x−r‖2

2ξ2
1 − 1√

2πξ22
e
− ‖x−r‖2

2ξ2
2 ,

with ξ1 = 0.3, ξ2 = 0.4, the norm is the ‖ · ‖1, σ = 45. The rate of
natural decay of activity as bifurcation parameter, α = 1/5.

Figure 8: Pattern emerging in the two-dimensional neural field model with
homogeneous connectivity and ‖ · ‖1-norm.
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Neural fields in two space dimensions

Figure 9: Pattern emerging in the two-dimensional neural field model with
inhomogeneous connectivity, ω = 15, and ‖ · ‖2-norm.
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Error analysis



Error analysis

Theorem

Let u ∈ C 1 ([0,T ); Y ) ∩ Hq+1
(
[0,T ]; H r+1(Ω)

)
be the solution of the

NF equation for some q, r ≥ 0, with initial state
u0 ∈ X ∩ Hq+1

(
[−τmax , 0]; H r+1(Ω)

)
, and let uh ∈ V n

h be the dGcG
solution. Then

‖uh(tN)− u(tN)‖2 ≤ C

(
M∑
i=1

m(i)B(u0, Ji ) +
N∑

n=1

m(n)k2q+2
n

∫
In
‖∂q+1

t u(t, ·)‖2dt

+h2r+2
N∑

n=0

‖u(tn)‖2r+1 +
N∑

n=1

h2r+2m(n)kn‖u‖2r+1,In

)

holds for tN ≥ 0, where C is a positive constant independent of the time
step kn = tn − tn−1 and the maximal space element diameter h.



Proof of the error estimate

Main difficulty: we cannot use the standard techniques for strongly
parabolic PDEs

Best we can use: Grönwall’s inequality
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Proof of the error estimate

η(tn) ≤ C1η(tn−1) + C2

∫ tn−1

tn−1−τmax

η(s)ds

+ C3

∫ tn

tn−1−τmax

‖ρ(s)‖2ds + C4‖ρn−1‖2 +
1

ε2(1− ε2)
‖ρn‖2,

t
0

t t
1 2 t t

3 4

m1
t

m

-

t

t

t

2
- m

3
- m

4
-
m

m

-



Concluding remarks

Main results:

• A new algorithm for the numerical solution of DDEs (NF)

• Error analysis

• Application to neural field models

Future work

• Spectral analysis in more space dimensions

• Extend the numerical model to more populations

• Computations in higher dimensions on arbitrary domain

34



DDE with constant delay

Let u ∈ C 1 ((0,T ),R) ∩ C ([0,T ],R) be the solution of

u̇(t) = −αu(t) + u(t − τ), t > 0,

u(s) = u0(s) = −s, s ∈ [−τ, 0],

where α = 1 and τ = 2.
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Figure 10: The dGcG(1) solution for α = 1 (left). The accuracy of the
method, on a log-log plot, (right) when τ/k is not an integer and when it is an
integer.
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Integro-differential equations

Consider the integro-differential equation with source term g

∂

∂t
u(t, x) + αu(t, x) =

∫
Ω

J(x , r)u(t, r)d r + g(t, x),

with u(0, x) = u0(x) = x , J(x , r) = 1. When g = 0 and α = 1, the
exact solution is u(x , t) = xe−t .

With this example we would like to demonstrate that the time
accuracy is not destroyed when we add a spatial integral term.
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Figure 11: The dGcG(1) solution for α = 1 and g = 0 (top). The accuracy of
the method on a log-log plot (bottom).
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