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Introduction

Earlier results: symmetric case

Let H be a real Hilbert space and F : H — H a nonlinear operator.

Abstract equation
F(u) =0.

Suppose F” is Lipschitz continuous and F’(u) is a self-adjoint operator
forallu € H.

Variable preconditioning: Quasi-Newton method
2
m, + M,

where D, are SPD operators spectrally equivalent to F'(u,):

Unsl = Uy — D, 'F(u,) (1.1)

my(Dyh, by < (F'(uy)h, h) < M, (Dyh, h).

Main idea: D, suitable cheap approximations of the Jacobians.
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Introduction

Objectives

* To construct an appropriate preconditioner and prove linear conver-
gence for the non-symmetric case. This will extend the previous re-
sults done in [4].

* Test our scheme on a nonlinear elliptic reaction-diffusion system.
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Introduction

Assumptions

Conditions for F:

 Fis Gateux differentiable such that F’ is Lipschitz continuous:
IF'(u) = F'(0)|| < Lllu —v]. (1.2)
* There exists A > 0 such that
MA|? < (F'(u)h,h)  (NYu,h € H). (1.3)
* There exists A > 0 such that

(F'(u)h,v) < AllRl|[IvIl - (Vu,h,v € H). (1.4)
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Introduction

Variable preconditioning iteration

Let B, : H — H be a self-adjoint, uniformly positive operator and

oy > 0:
Unp1 = Uy — B, 'F(u,)  (n €N), (1.5)

Additional conditions for B,,:

¢ Common lower bound:

M|A|[* < (Buh, h). (1.6)

¢ There exists M,,, m,, > 0 such that

(F'(un)h,v) < My|h||g,|[V]l5, and  my|hll5, < (F'(ua)h,h)
1.7
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Introduction

Preliminary results: contractivity estimates

There exists o, > 0, O, < 1 such that

Hl — By F (uy)

< On. (1.8)
Bn

2
Moreover, Qy, takes its smallest value Q, = /1 — % when o, = %
COROLLARY 1.1

HI— anF’(u,,)B;]HB;l < O (1.9)
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Introduction

‘We define the norms
2l symm = ((F (1) symm) "1y Y2, ([Bl] = [l symm-

Letu,h € H. Then

Al ||| <

(1.10)

u,symm — ’

PROPOSITION 1.1

If F(u*) = 0, then for any u € H there holds

u symm

L L e

<1+ p(u), (1.11)
1 +,u'(u) Hh”usymm

where i(u) = LAZ [|F () ||



Main results

Theorem 1: Symmetric part preconditioning (B, = S,)

Let u* € H be the unique solution of F(u) = 0. We define the iterative

sequence
Uil = Uy — S, 'F(u,), (n€N) (2.12)

where S, = F'(un)symm = 3 (F'(uy) + F'(u,)*) satisfies:
(F'(un)h,v) < My|Rl[s, [Iv]ls, (Vh,v € H).

with o, = # for some 1 < M,, < M. Then, the iteration (2.12) con-
verges locally to u* and

F )
ot Ul — 0 < 1, 2.13
)l = © 1)

where Q := limsup ,/1 — #
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Main results

Sketch of proof

* Corollary 1.1:

HI— a,F'(u,)S; ! 1 S On
yields contractivity in the S, '-norms.
* Finally, Proposition 1.1
F h,h
L

U ) = (F/(u)symmh, h)

preserves it asymptotically for the x—norm:

([ (s 1)«
1 () [+

limsup —————— < limsup Q, < 1
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Main results

Remark

The asymptotic estimate

[1F (g 1) [+
|1 () [+

limsup ————— <0< 1, (2.14)

implies

lim sup v/ ||u, — u*|| < Q. (2.15)
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Main results

Theorem 2: More general preconditioner B,

Conditions for B,:

* B, is a self-adjoint, uniformly positive operator with common lower
bound:
A|A|[* < (Buh, h).

* There exists M,,, m,, > 0 such that
(F'(un)h, v) < My|hl5, V], and  m|[hll5, < (F'(ua)h, h)
* B, is spectrally equivalent to S,,. More concretely, there exists € > 0
such that
1

s (Suhoh) < (Buh ) < (14 ) (S, ) (2.16)
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Main results

* The sequence Q,, = /1 — A"Z, Q := lim sup Q,, satisfies
0:=0(1+¢) < 1. 2.17)

Scheme

U1 = ty — B, F(uy,) (2.18)

where o, = J5 and B, : H — H is a self-adjoint operator.

Under these conditions, the iteration (2.18) converges locally to #* and

1 F (1]«

)
P E )

<0. (2.19)
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Main results

Remark

The estimation

1 ()]

<Q0<1, 2.20
)l =2 (220

lim sup

implies

lim sup /|Ju, — u*|| < 0 < 1. (2.21)
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Practical example

Example

* Nonlinear elliptic reaction diffusion system:

—div(K;Vu;) +w; - Vu; + fi(x,uy, ... up) = gis
MifaQ =Y,

where .
ﬁ('x7€15"'7£€) = Ri(x7§1)"'a€f) +;§l (323)

and divw = 0.

Arises from the (implicit) time discretization of

8 .
% = diV(KiVu,‘) +w; - Vu; + R,-(x, U, ... ,ug) = W;.
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Practical example

Assumptions

(a) Small time discretization step: there exists g, > 0 such that

1
inf R, 0-0>—0ou d <
(x,ﬁ)léleRg 5()6, g) = 7 Tmin an = 20'min7
jo|=1
(b) We also assume an upper counterpart of the above:
sup  R(x,£)0 - = Opar < 00.
(x,£)exRE
[6]=n|=1
(c) Global Lipschitz continuity:
Ife(x, &) = fe(x, &)1l < Lylér — &l (3.24)
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Practical example

Arising linear operators

¢ From the weak form:

(F ) Vo = [

1
(KVh-Vv+(w-Vh)-v+R’5(x, u,)h - v+—h-v)
0 T

* Symmetric part:

(S, V)n ) = /

1
KVh - Vv + R} (x, ;) symmh - v+ —h - v).
Q ¢ i T

* Approximation of symmetric part:
1
(Bah, V) () = / (KVh-Vv+D,h-v+ —h-v).
0 Q T

where D, := diag(R;(x, uy)).



Practical example

» Assumptions imply spectral equivalence:
— Opind < ng (X, {)symm < Omaxd. (3.25)
* We also proved:

<
1+ const.- 7 = (S,h, HL(Q)

<1+ const. -, (3.26)

where const = 2(Omin + Omax)-
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Conclusions

o If 1 < , then the iteration
-1
W, = u, —o,B, F(“ﬂ)

converges linearly to the weak solution of (3.22) according to Theo-
rem 2.

* This scheme is cheaper to implement than the Newton Method. Aux-
iliary problems:
B,p, = F(u,). (4.27)
These are discrete linear PDE systems that are independent scalar
equations = they can be solved in parallel.

* Future work: numerical implementation and tests for air pollution
systems.
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