Introduction Main results Practical example Conclusions

Quasi-Newton variable preconditioning for non-symmetric nonlinear elliptic PDE systems

Author: Sebastian Josué Castillo Jaramillo

Advisor: Dr. Karátson János

Eötvös Loránd University, Budapest

May 2025

Outline

- Introduction
- Main results
- Practical example
- 4 Conclusions

Earlier results: symmetric case

Let H be a real Hilbert space and $F: H \to H$ a nonlinear operator. Abstract equation

$$F(u)=0.$$

Suppose F' is Lipschitz continuous and F'(u) is a self-adjoint operator for all $u \in H$.

Variable preconditioning: Quasi-Newton method

$$u_{n+1} = u_n - \frac{2}{m_n + M_n} D_n^{-1} F(u_n)$$
 (1.1)

where D_n are SPD operators **spectrally equivalent** to $F'(u_n)$:

$$m_n\langle D_n h, h\rangle \leq \langle F'(u_n)h, h\rangle \leq M_n\langle D_n h, h\rangle.$$

Main idea: D_n suitable cheap approximations of the Jacobians.

Objectives

- To construct an appropriate preconditioner and prove linear convergence for the non-symmetric case. This will extend the previous results done in [4].
- Test our scheme on a nonlinear elliptic reaction-diffusion system.

Assumptions

Conditions for *F*:

• F is Gâteux differentiable such that F' is Lipschitz continuous:

$$||F'(u) - F'(v)|| \le L||u - v||.$$
 (1.2)

• There exists $\lambda > 0$ such that

$$\lambda ||h||^2 \le \langle F'(u)h, h \rangle \quad (\forall u, h \in H). \tag{1.3}$$

• There exists $\Lambda > 0$ such that

$$\langle F'(u)h, v \rangle \le \Lambda ||h|| ||v|| \quad (\forall u, h, v \in H). \tag{1.4}$$

Variable preconditioning iteration

Let $B_n : H \to H$ be a self-adjoint, uniformly positive operator and $\alpha_n > 0$:

$$u_{n+1} = u_n - \alpha_n B_n^{-1} F(u_n) \qquad (n \in \mathbf{N}),$$
 (1.5)

Additional conditions for B_n :

• Common lower bound:

$$\lambda ||h||^2 \le \langle B_n h, h \rangle. \tag{1.6}$$

• There exists $M_n, m_n > 0$ such that

$$\langle F'(u_n)h, v \rangle \le M_n ||h||_{B_n} ||v||_{B_n} \quad \text{and} \quad m_n ||h||_{B_n}^2 \le \langle F'(u_n)h, h \rangle$$
(1.7)

Preliminary results: contractivity estimates

LEMMA 1.1

There exists $\alpha_n \geq 0$, $Q_n < 1$ such that

$$||I - \alpha_n B_n^{-1} F'(u_n)||_{B_n} \le Q_n.$$
 (1.8)

Moreover, Q_n takes its smallest value $Q_n = \sqrt{1 - \frac{m_n^2}{M_n^2}}$ when $\alpha_n = \frac{m_n}{M_n^2}$.

COROLLARY 1.1

$$\left\| I - \alpha_n F'(u_n) B_n^{-1} \right\|_{B_n^{-1}} \le Q_n. \tag{1.9}$$

We define the norms

$$||h||_{u, symm} = \langle (F'(u)_{symm})^{-1}h, h \rangle^{1/2}, \quad ||h||_* = ||h||_{u^*, symm}.$$

LEMMA 1.2

Let $u, h \in H$. Then

$$\lambda \|h\|_{u,symm}^2 \le \|h\|^2 \le \Lambda \|h\|_{u,symm}^2.$$
 (1.10)

Proposition 1.1

If $F(u^*) = 0$, then for any $u \in H$ there holds

$$\frac{1}{1+\mu(u)} \le \frac{\|h\|_{u^*,symm}^2}{\|h\|_{u,symm}^2} \le 1+\mu(u),\tag{1.11}$$

where
$$\mu(u) = \frac{L\Lambda^{\frac{1}{2}}}{\lambda^2} ||F(u)||_*$$
.

Theorem 1: Symmetric part preconditioning $(B_n = S_n)$

Let $u^* \in H$ be the unique solution of F(u) = 0. We define the iterative sequence

$$u_{n+1} = u_n - \alpha_n S_n^{-1} F(u_n), \quad (n \in \mathbb{N})$$
 (2.12)

where $S_n = F'(u_n)_{symm} := \frac{1}{2} \left(F'(u_n) + F'(u_n)^* \right)$ satisfies:

$$\langle F'(u_n)h, v \rangle \leq M_n \|h\|_{S_n} \|v\|_{S_n} \quad (\forall h, v \in H).$$

with $\alpha_n = \frac{1}{M_n^2}$ for some $1 < M_n < M$. Then, the iteration (2.12) converges locally to u^* and

$$\limsup \frac{\|F(u_{n+1})\|_*}{\|F(u_n)\|_*} \le Q < 1, \tag{2.13}$$

where
$$Q := \limsup \sqrt{1 - \frac{1}{M_n^2}}$$
.

Sketch of proof

• Corollary 1.1:

$$\left\|I - \alpha_n F'(u_n) S_n^{-1}\right\|_{S_n^{-1}} \leq Q_n$$

yields contractivity in the S_n^{-1} -norms.

• Finally, Proposition 1.1

$$\frac{1}{1+\mu(u)} \leq \frac{\langle F'(u^*)_{symm}^{-1}h, h\rangle}{\langle F'(u)_{symm}^{-1}h, h\rangle} \leq 1+\mu(u),$$

preserves it asymptotically for the *-norm:

$$\limsup \frac{\|F(u_{n+1})\|_*}{\|F(u_n)\|_*} \le \limsup Q_n < 1$$

Remark

The asymptotic estimate

$$\limsup \frac{\|F(u_{n+1})\|_*}{\|F(u_n)\|_*} \le Q < 1, \tag{2.14}$$

implies

$$\limsup \sqrt[n]{\|u_n - u^*\|} \le Q. \tag{2.15}$$

Theorem 2: More general preconditioner B_n

Conditions for B_n :

• B_n is a self-adjoint, uniformly positive operator with common lower bound:

$$\lambda ||h||^2 \leq \langle B_n h, h \rangle.$$

• There exists $M_n, m_n > 0$ such that

$$\langle F'(u_n)h, v \rangle \leq M_n \|h\|_{B_n} \|v\|_{B_n}, \quad \text{and} \quad m_n \|h\|_{B_n}^2 \leq \langle F'(u_n)h, h \rangle$$

• B_n is spectrally equivalent to S_n . More concretely, there exists $\epsilon > 0$ such that

$$\frac{1}{1+\epsilon} \langle S_n h, h \rangle \le \langle B_n h, h \rangle \le (1+\epsilon) \langle S_n h, h \rangle \tag{2.16}$$

• The sequence $Q_n = \sqrt{1 - \frac{m_n^2}{M_n^2}}$, $Q := \limsup Q_n$ satisfies

$$\overline{Q} := Q(1 + \epsilon) < 1. \tag{2.17}$$

Scheme

$$u_{n+1} = u_n - \alpha_n B_n^{-1} F(u_n)$$
 (2.18)

where $\alpha_n = \frac{m_n}{M^2}$ and $B_n : H \to H$ is a self-adjoint operator.

Under these conditions, the iteration (2.18) converges locally to u^* and

$$\lim \sup \frac{\|F(u_{n+1})\|_*}{\|F(u_n)\|_*} \le \overline{Q}. \tag{2.19}$$

Remark

The estimation

$$\lim \sup \frac{\|F(u_{n+1})\|_*}{\|F(u_n)\|_*} \le \overline{Q} < 1, \tag{2.20}$$

implies

$$\lim \sup \sqrt[n]{\|u_n - u^*\|} \le \overline{Q} < 1. \tag{2.21}$$

Example

• Nonlinear elliptic reaction diffusion system:

$$\begin{cases}
-\operatorname{div}(K_i \nabla u_i) + \mathbf{w}_i \cdot \nabla u_i + f_i(x, u_1, \dots, u_\ell) &= g_i; \\
u_i|_{\partial\Omega} &= 0,
\end{cases}$$
(3.22)

where

$$f_i(x,\xi_1,\ldots,\xi_\ell) := R_i(x,\xi_1,\ldots,\xi_\ell) + \frac{1}{\tau}\,\xi_i$$
 (3.23)

and $div \mathbf{w} = 0$.

Arises from the (implicit) time discretization of

$$\frac{\partial u_i}{\partial t} - \operatorname{div}(K_i \nabla u_i) + \mathbf{w}_i \cdot \nabla u_i + R_i(x, u_1, \dots, u_\ell) = \omega_i.$$

Assumptions

(a) Small time discretization step: there exists $\sigma_{min} > 0$ such that

$$\inf_{\substack{(x,\xi) \in \Omega \times \mathbf{R}^{\ell} \\ |\theta| = 1}} R'_{\xi}(x,\xi)\theta \cdot \theta \ge -\sigma_{min} \quad \text{and} \quad \tau \le \frac{1}{2\sigma_{min}},$$

(b) We also assume an upper counterpart of the above:

$$\sup_{\substack{(x,\xi)\in\Omega\times\mathbf{R}^{\ell}\\|\theta|=|\eta|=1}} R'_{\xi}(x,\xi)\theta\cdot\eta = \sigma_{max} < \infty.$$

(c) Global Lipschitz continuity:

$$||f'_{\xi}(x,\xi_1) - f'_{\xi}(x,\xi_2)|| \le L_f |\xi_1 - \xi_2|. \tag{3.24}$$

Arising linear operators

• From the weak form:

$$\langle F'(\mathbf{u}_n)\mathbf{h}, \mathbf{v}\rangle_{\mathrm{H}_0^1(\Omega)} = \int_{\Omega} \left(\mathbf{K} \nabla \mathbf{h} \cdot \nabla \mathbf{v} + (\mathbf{w} \cdot \nabla \mathbf{h}) \cdot \mathbf{v} + R'_{\xi}(x, \mathbf{u}_n) \mathbf{h} \cdot \mathbf{v} + \frac{1}{\tau} \mathbf{h} \cdot \mathbf{v} \right)$$

• Symmetric part:

$$\langle S_n \mathbf{h}, \mathbf{v} \rangle_{\mathbf{H}_0^1(\Omega)} = \int_{\Omega} \Big(\mathbf{K} \nabla \mathbf{h} \cdot \nabla \mathbf{v} + R'_{\xi}(x, \mathbf{u}_n)_{symm} \, \mathbf{h} \cdot \mathbf{v} + \frac{1}{\tau} \mathbf{h} \cdot \mathbf{v} \Big).$$

• Approximation of symmetric part:

$$\langle B_n \mathbf{h}, \mathbf{v} \rangle_{\mathbf{H}_0^1(\Omega)} = \int_{\Omega} \Big(\mathbf{K} \nabla \mathbf{h} \cdot \nabla \mathbf{v} + \mathbf{D}_n \, \mathbf{h} \cdot \mathbf{v} + \frac{1}{\tau} \mathbf{h} \cdot \mathbf{v} \Big).$$

where
$$D_n := diag(R'_{\varepsilon}(x, \mathbf{u}_n)).$$

• Assumptions imply spectral equivalence:

$$-\sigma_{min}I \le R'_{\xi}(x,\xi)_{symm} \le \sigma_{max}I. \tag{3.25}$$

• We also proved:

$$\frac{1}{1 + const. \cdot \tau} \le \frac{\langle B_n \mathbf{h}, \mathbf{h} \rangle_{\mathbf{H}_0^1(\Omega)}}{\langle S_n \mathbf{h}, \mathbf{h} \rangle_{\mathbf{H}_0^1(\Omega)}} \le 1 + const. \cdot \tau, \tag{3.26}$$

where $const = 2(\sigma_{min} + \sigma_{max})$.

Conclusions

• If $\tau \leq \frac{1}{2\sigma_{min}}$, then the iteration

$$\mathbf{u}_{n+1} = \mathbf{u}_n - \alpha_n B_n^{-1} F(\mathbf{u}_n)$$

converges linearly to the weak solution of (3.22) according to Theorem 2.

• This scheme is cheaper to implement than the Newton Method. Auxiliary problems:

$$B_n \mathbf{p}_n = F(\mathbf{u}_n). \tag{4.27}$$

These are discrete linear PDE systems that are independent scalar equations \implies they can be solved in parallel.

• Future work: numerical implementation and tests for air pollution systems.

REFERENCES

B. BORSOS AND J. KARÁTSON, *Quasi-Newton variable preconditioning for nonlinear nonuniformly monotone elliptic problems posed in Banach spaces*, IMA Journal of Numerical Analysis, 42 (2022), pp. 1806–1830.

I. FARAGÓ AND J. KARÁTSON, Numerical solution of nonlinear elliptic problems via preconditioning operators: Theory and applications, vol. 11, Nova Publishers, 2002.

I. FARAGÓ, J. KARÁTSON, AND S. KOROTOV, *Discrete maximum principles for nonlinear parabolic PDE systems*, IMA Journal of Numerical Analysis, 32 (2012), pp. 1541–1573.

J. KARÁTSON AND I. FARAGÓ, *Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space*, SIAM journal on numerical analysis, 41 (2003), pp. 1242–1262.

Z. ZLATEV, *Numerical treatment of large air pollution models*, Computer treatment of large air pollution models, (1995), pp. 69–109.

Introduction
Main results
Practical example
Conclusions

Thank you for your attention!