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INTRODUCTION

The red refinement is one of techniques widely used for simplicial mesh

generation and adaptivity purposes in various applications.
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NONUNIQUENESS

However, this technique is not uniquely defined in three and higher

dimensions. In particular, in the case of tetrahedral partitions, inside

each tetrahedron, on each refinement level, we have three different

possibilities for dividing the tetrahedron.

Nevertheless, for any strategy selected all produced tetrahedral

partitions stay face-to-face, i.e. conforming.
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NO SIMILARITY PROPERTY

Similarity property holds only for the Sommerville tetrahedron (its two

dihedral angles are right, the other four are 60◦).
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Non-uniqueness in the selection of diagonals and absence of similarity

properties in most of the cases in three (and higher) dimensions makes

an analysis of this refinement technique hard and therefore not so many

(mathematical) results on this topic exist in the literature though the

first results were obtained already in 1982:

M. Kř́ıžek. An equilibrium finite element method in

three-dimensional elasticity, Apl. Mat. 27 (1982)

In what follows we present most important recent results on red

refinements of tetrahedral partitions.
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PRELIMINARIES

• We deal with face-to-face tetrahedral partitions of a bounded

polyhedral domain Ω ⊂ R3. They are denoted by Th, where h is the

so-called discretization parameter defined as h = maxT∈Th
hT with

hT = diamT (1)

for a tetrahedron T ∈ Th.

• We consider families F = {Th}h→0 of tetrahedral partitions.

• The radius rT of the inscribed ball of the tetrahedron T is often called

the inradius of T , and it can be computed as

rT =
3vol3 T

vol2 ∂T
. (2)
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Definition: A family F = {Th}h→0 of partitions into tetrahedra is said

to be regular if there exists a constant κ > 0 such that for any Th ∈ F
and any T ∈ Th we have

κhT ≤ rT . (3)

• In fact, regularity means that tetrahedra cannot shrink.

• Regularity property (for meshes) is used in many FEM convergence

proofs for elliptic and parabolic problems.

• There are some other (equivalent) definitions of regularity (say, the

minimum angle condition).

J. Brandts, S. Korotov, M. Kř́ıžek. Simplicial partitions with

applications to the finite element method. Springer, 2020.
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Definition: Let T be an arbitrary tetrahedron. Then the ratio

σT =
hT

rT
(4)

is called a measure of the degeneracy of T .

• In fact, regularity means that tetrahedra cannot degenerate.

Really, then σT ≤ κ−1 for all tetrahedra.

• But for shrinking (i.e. degenerating) tetrahedra parameter σT

attains large values.

Definition: A family F of partitions is said to be degenerating if for

every positive integer n ∈ N there exist a partition Th ∈ F and a

tetrahedron T ∈ Th whose measure of degeneracy satisfies σT > n.
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Definition: We say that the family F satisfies the maximum angle

condition if there exists a constant γ0 < π such that for any tetrahedron

T ∈ Th and any Th ∈ F we have

γT ≤ γ0 (5)

and

ϕT ≤ γ0, (6)

where γT is the maximum angle of all triangular faces of the tetrahedron

T and ϕT is the maximum dihedral angle between faces of T .

• The maximum angle condition is weaker than the regularity

requirement, but still allows to prove FEM convergence.

• Some of degenerating families can still satisfy the maximum

angle condition (e.g. those consisting of shrinking path

tetrahedra).
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AROUND REGULAR TETRAHEDRON

Let A0B0C0D0 be the regular tetrahedron whose edges have length 1.

For k ∈ {0, 1, 2, . . . } define the following midpoints

Ak+1 =
1

2
(Bk + Ck), Bk+1 =

1

2
(Ak + Ck), Ck+1 =

1

2
(Ak +Bk), (7)

and Dk+1 will be one of the midpoints of AkDk or BkDk or CkDk (it

depends on the diagonal choice strategy).
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Then the lenghts of all six edges of the tetrahedra AkBkCkDk multiplied

by the scaling factor 2k can be divided into the following three groups:

a) If we always choose the shortest diagonal, then we get the periodic

sequence

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1,
√
2), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1,

√
2), . . .

b) If we always choose the second-longest diagonal, we obtain

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1,
√
2), (1, 1, 1, 1,

√
2,
√
3), (1, 1, 1, 1,

√
3,
√
3),

(1, 1, 1, 1,
√
2,
√
3), . . .

Since the third term is the same as the fifth term, this sequence is also

periodic starting from its third term.

We observe that, in cases a) and b) one produces sequences of

nondegenerating tetrahedra only.
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c) If we always choose the longest diagonal, we find

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1,
√
2), (1, 1, 1, 1,

√
2,
√
3), (1, 1, 1,

√
2,
√
3,
√
5),

(1, 1, 1,
√
3,
√
5,
√
7), (1, 1, 1,

√
5,
√
7,
√
11), . . . (8)

All terms in this sequence are different and the measure of degeneracy

grows to ∞ as k → ∞ (shown in the table later on).

In this case, the point Dk+1 is actually selected as follows:

Dk+1 =
1

2
(Ak+Dk) if k is odd, or Dk+1 =

1

2
(Bk+Dk) if k is even.

(9)

In the case c), all AkBkCkDk, k = 1, 2, . . . , are called the Zhang

tetrahedra. (They are called in this way also under any translation,

rotation, reflection, and scaling.)

S. Zhang. Successive subdivisions of tetrahedra and multigrid

methods on tetrahedral meshes, Houston J. Math. 21 (1995)
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Edge k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

AkBk 70.53 54.74 70.53 54.74 70.53 54.74

AkCk 70.53 109.47 35.26 144.74 22.00 158.00

BkCk 70.53 54.74 125.26 29.50 150.50 19.47

AkDk 70.53 54.74 90.00 45.00 97.61 46.51

BkDk 70.53 90.00 54.74 107.55 58.52 114.09

CkDk 70.53 54.74 45.00 31.48 25.94 20.51

rk 0.204 0.189 0.171 0.143 0.127 0.109

σk 4.899 7.464 10.156 15.617 20.840 29.046

Dihedral angles in degrees ◦ at particular edges of the Zhang

tetrahedra AkBkCkDk, their inradii rk multiplied by the scaling

factor 2k, and the corresponding measures of degeneracy σk.
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ARBITRARY TETRAHEDRON

Now let T be an arbitrary tetrahedron. Consider a linear affine mapping

from the regular reference tetrahedron A0B0C0D0 to T . Red refinements

of T can be then defined via this mapping.

This idea was used to construct regular partitions by the red-type

refinements in the works by Kř́ıžek, Ong, Zhang, Bey.
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MAIN RESULTS

Theorem: There exists only one type of tetrahedron T (up to

similarity) whose red refinement produces eight congruent subtetrahedra

similar to T . It is the Sommerville tetrahedron.

The next result immediately follows from the fact that the four

“exterior” subtetrahedra arising from the red refinement algorithm are

similar to the original tetrahedron.

Theorem: The maximum (minimum) dihedral angles between faces and

also the maximum (minimum) angles in all triangular faces of all

tetrahedra T ∈ Th ∈ F generated by the red-type refinements form

nondecreasing (nonincreasing) sequences as h → 0.
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Theorem: For any selection of diagonals we always produce a family of

partitions with h → 0.

Theorem: The measure of degeneracy of the Zhang tetrahedra tends to

∞ when k → ∞ and their maximum dihedral angle tends to 180◦, and

the maximum angle between edges tends to 180◦ as well.

• We have to be careful while using the red refinements !

S. Korotov, M. Kř́ıžek. On degenerating tetrahedra resulting from

red refinements of tetrahedal partitions, Num. Anal. Appl., 14

(2021)
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WHAT ABOUT HIGHER DIMENSIONS ?

Theorem: The red refinement of an acute simplex in three and higher

dimensions never yields subsimplices that would be all mutually

congruent.

Its proof for tetrahedra follows immediately if we notice that for any

choice of diagonal for red refinement we have four subtetrahedra sharing

this diagonal. Therefore, four adjacent dihedral angles sum up 2π, and

at least one of them is not acute, meaning that the associated

subtetrahedron is not acute, and therefore not congruent to the four

corner subtetrahedra.

S. Korotov, M. Kř́ıžek. Red refinements of simplices into congruent

subsimplices, Comput. Math. Appl. 67 (2014)
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