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Consider the following problem of integration:

S(f ) := I =

∫
Ud

f (x)dx , where

Ud ≡ [0,1]d , x ≡ (x1, . . . , xd ) ∈ Ud ⊂ IRd , f ∈ C(Ud ).

Quadrature formula A =
∑n

i=1 ci f (x (i)).

Randomized quadrature formula AR =
∑n

i=1 σi f (ξ(i)).

Assume for a given r.v. θ one can prove that Eθ = I.

Monte Carlo approximation to the solution: θ̄n = 1
n

∑n
i=1 θ

(i) ≈ I.

Definition

If I is the exact solution of the problem, then the probability error is the least
possible real number Rn, for which P = Pr

{
|θn − I| ≤ Rn

}
, where 0 < P < 1.
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Definition (sensitivity analysis, SA).

The study of how uncertainty in the output of a model can be appor-
tioned to different sources of uncertainty in the model input.
A. Saltelli et al. Global Sensitivity. The Primer . John Wiley & Sons, Ltd (2008).

variation of input
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measured
quantities

general model,
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Figure: General procedure for sensitivity analysis.
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The mathematical model representation

u = f (x), where x = (x1, x2, . . . , xd ) ∈ Ud ≡ [0,1]d

is a vector of inputs with a joint p.d.f. p(x) = p(x1, . . . , xd ).

Total Sensitivity Index of input parameter xi , i ∈ {1, . . . ,d}:

Stot
xi

= Si +
∑
l1 6=i

Sil1 +
∑

l1,l2 6=i,l1<l2

Sil1 l2 + . . .+ Sil1...ld−1 ,

where

Si - the main effect (first-order sensitivity index) of xi and
Sil1...lj−1 − j th order sensitivity index for parameter xi (2 ≤ j ≤ d).
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Approaches for Sensitivity analysis

Local approach (one-at-a-time experiments)

Screening methods

Variance-based methods - Sobol approach, FAST

Derivative-based global sensitivity measures
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Table: Comparison of variance-based methods for evaluating global
sensitivity indices.

Method Cost (model runs) Sensitivity measures

FAST (1973) O(d2) Si ,∀i

Sobol (1993) N(2d + 2) Si ,Stot
xi
,∀i

EFAST (1999) dN Si ,Stot
xi
,∀i

Saltelli (2002) N(d + 2) Si ,Stot
xi
,∀i ,Dc

−lj ,∀l , j , l 6= j

Saltelli (2002) N(2d + 2) Si ,Stot
xi
,∀i ,Dc

lj ,D
c
−lj ,∀l , j , l 6= j

Dc
l1 = Dl1 , Dc

l1 l2 = Dl1 + Dl2 + Dl1 l2 ,

D−l1 l2 = Dj1 j2...jd−2 , where lp 6= jq for all p ∈ [1,2],q ∈ [1,2, . . . ,d − 2].
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Variance-based Methods: Sobol Approach (1990)

ANalysis Of VAriances (ANOVA) HDMR of a square integrable
function f (x):

f (x) = f0 +
d∑
ν=1

∑
l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), where f0 = const ,

and
∫ 1

0
fl1...lν (xl1 , xl2 , . . . , xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . ,d .

The functions in the right-hand side are defined in a unique way:

f0 =

∫
Ud

f (x)dx, fl1 (xl1 ) =

∫
Ud−1

f (x)
∏
k 6=l1

dxk − f0, l1 ∈ {1, . . . ,d}∫
Ud

fi1...iµ fj1...jν dx = 0, (i1, . . . , iµ) 6= (j1, . . . , jν), µ, ν ∈ {1, . . . ,d}.
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Definition (global Sobol sensitivity indices).

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . ,d},

where

partial variances Dl1 ... lν =

∫
f 2
l1 ... lνdxl1 . . . dxlν ,

total variance D =

∫
Ud

f 2(x)dx− f 2
0 , D =

d∑
ν=1

∑
l1<...<lν

Dl1...lν ,

and the following properties hold:

Sl1 ... ls ≥ 0,
d∑

s=1

d∑
l1<...<ls

Sl1 ... ls = 1.
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Approaches for Evaluating Small Sensitivity Indices

Let x = (y, z) ∈ IRd ,y = (xk1 , . . . , xkm ) ∈ IRm,K = (k1, . . . , km).

Variance of the subset y (Sobol) : Dy =
∑m

n=1
∑

(i1<...<in)∈K Di1,...,in .

Stot
y = 1− Sz ,

Loss of accuracy if Dy << f 2
0 ,

Choose a constant c ∼ f0 and set the function ϕ(x) = f (x)− c,

ω =
∫
ϕ(x)dx.
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Approaches for Evaluating Small Sensitivity Indices

Initial Sobol Approach (I.M. Sobol, 1990)

Dy =
∫

f (x) f (y, z′)dxdz′ − f 2
0 , D =

∫
Ud f 2(x)dx− f 2

0 .

Reducing the Mean Value (I.M. Sobol, 1990)

Dy =
∫
ϕ(x) ϕ(y, z′)dxdz′ − ω2, D =

∫
ϕ2(x)dx− ω2.

Correlated Sampling (A. Saltelli, 2002)

Dy =
∫

f (x) [f (y, z′)− f (x′)]dxdx′, D =
∫

f (x)[f (x)− f (x′)] dxdx′.

Combined Approach (A. Saltelli, 2002, S. Kucherenko, 2007)

Dy =
∫
ϕ(x)[ϕ(y, z′)dxdz′−ϕ(x′)]dxdx′,D =

∫
ϕ(x)[ϕ(x)−ϕ(x′)] dxdx′.
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Consider the following integration problem:

S(f ) := I =

∫
Ud

f (x)dx,

where x ≡ (x1, . . . , xd ) ∈ Ud ⊂ IRd and f ∈ C(Ud ) is an integrable
function on Ud .

Deterministic algorithms and Randomized (Monte Carlo)
algorithms

The quadrature formula AD(f ,n) =
∑n

i=1 ci f (x(i)),
defines an algorithm AD(f ,n) that approximates the integral S(f )
with an integration error err(f ,AD) ≡

∫
Ud f (x)dx− AD(f ,n)

The randomized quadrature formula AR(f ,n) =
∑n

i=1 σi f (ξ(i)),
defines an algorithm AR(f ,n) that belongs to the class of
randomized (Monte Carlo) denoted by AR.
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Definition.
Let d and k be integers, d, k ≥ 1. We consider the class F0 ≡ Wk (‖f‖; Ud ) (sometimes abbre-
viated to Wk ) of real functions f defined over the unit cube Ud = [0, 1)d , possessing all the partial

derivatives
∂r f (x)

∂xα1
1 . . . ∂xαd

d

, α1 + · · · + αd = r ≤ k, which are continuous when r < k and

bounded in sup norm when r = k. The semi-norm ‖·‖ on Wk is defined as

‖f‖ = sup

{∣∣∣∣ ∂k f (x)

∂x
α1
1 ...∂x

αd
d

∣∣∣∣ , α1 + · · · + αd = k, x ≡ (x1, ..., xd ) ∈ Ud
}
.

Definition.
Given a randomized (Monte Carlo) integration formula for the functions from the space Wk we define

the integration error err(f ,AR) ≡
∫

Ud f (x)dx − AR(f , n) by the probability error εP (f ) in

the sense that εP (f ) is the least possible real number, such that Pr
(∣∣∣err(f ,AR)

∣∣∣ < εP (f )
)
≥ P,

and the mean square error r(f ) =
{

E
[
err2(f ,AR)

]}1/2
.

Definition.
Consider the set A of algorithms A:

A = {A : Pr(|err(f ,A)| ≤ ε) ≥ c}, A ∈ {AD,AR}, 0 < c < 1

that solve a given problem with an integration error err(f ,A).
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Uniformly distributed sequences

Definition ( H. Weyl, 1916 ).

The sequence x1, x2, . . . is called an uniformly distributed sequence
(u.d.s.) if, for an arbitrary region Ω ⊂ Us,

lim
n→∞

[Sn(Ω)/n] = V (Ω),

where Sn(Ω) is the number of points with 1 ≤ i ≤ n that lie inside Ω
and V (Ω) is the s-dimensional volume of Ω.

Theorem ( H. Weyl, 1916 ).

The relation lim
n→∞

1
n

n∑
i=1

f (ξj ) =

∫
Es

f (x)dx

holds for all Riemann integrable functions f if and only if the sequence
x1, x2, . . . is u.d.s.
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Uniformly distributed sequences

Definition ( H. Weyl, 1916 ).

The sequence x1, x2, . . . is called an uniformly distributed sequence
(u.d.s.) if, for an arbitrary region Ω ⊂ Us,

lim
n→∞

[Sn(Ω)/n] = V (Ω),

where Sn(Ω) is the number of points with 1 ≤ i ≤ n that lie inside Ω
and V (Ω) is the s-dimensional volume of Ω.

A u.d.s. should satisfy three additional requirements:
(i) the best asymptote as n→∞;
(ii) well distributed points for small n;
(iii) a computationally inexpensive algorithm.
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(t ,m, s)-nets and (t , s)-sequences in base b ( H. Niederreiter, 1988 )

The sum to converge towards the integral, the points xi should fill
Us minimizing the holes. Another good property would be that
the projections of xi on a lower-dimensional face of Us leave very
few holes as well.

An elementary s-interval in base b is a subset of Es of the form
s∏

j=0

[
aj

bdj
,

aj + 1
bdj

]
,

where aj , dj are integers and aj < dj for all j ∈ {1, ..., s}.

Definition ( H. Niederreiter, 1988 ).

Given a non-negative integer t , a (t , s)-sequence in base b is an infi-
nite sequence of points xn such that for all integers k ≥ 0,m ≥ t , the
sequence {xkbm

, . . . , x (k+1)bm−1} is a (t ,m, s)-net in base b.
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ΛΠτ sequences
Choose a primitive polynomial of degree sj over the Galois field

Pj = xsj + a1,jxsj−1 + a2,jxsj−2 + . . .+ asj−1,jx + 1,

where the coefficients a1,j , . . . , asj−1,j ∈ {0, 1}.
A sequence of positive integers {m1,j ,m2,j , . . .} is defined by

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ · · · ⊕ 2sj mk−sj ,j ⊕mk−sj ,j ,

where the initial values mk,j , 1 ≤ k ≤ sj are odd and less than 2k .

The direction numbers {v1,j , v2,j , . . . }: vk,j =
mk,j

2k .

The j-th component of the i-th point in a Sobol’ sequence

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . ,

where ik is the k -th binary digit of i = (. . . i3i2i1)2.

I. Sobol’ (1979), P. Bradley, B. Fox (1988)
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Randomized Quasi-Monte Carlo turns QMC into a variance
reduction method by carefully randomizing well distributed points
xi ≡ (xi,1, xi,2 . . . xi,s).

Examples of RQMC point sets include
randomly shifted lattice rules,

scrambled digital nets,

digital nets with a random digital shift,

a Latin hypercube sample or a stratified sample followed by a
random permutation of the points.

Array-RQMC.
P. L’Ecuyer, C. Lecot, B. Tuffin (2008)
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Owen Nested Scrambling Algorithm

Let xn = (x (1)
n , x (2)

n , . . . , x (s)
n ) be a quasi-random number in [0,1)s, and let

zn = (z(1)
n , z(2)

n , . . . , x (s)
n ) be the scrambled version of the point xn. Let

each x (j)
n is represented in base b as x (j)

n = (0.x (j)
n1 x (j)

n2 . . . x
(j)
nK . . .)b, K is

the number of digits to be scrambled. Then nested scrambling proposed
by Owen ( Owen, 1995 , Owen, 2002 ) can be defined as follows: z(j)

n1 = π•(x
(j)
n1 ),

and z(j)
ni = π•x (j)

n1 x (j)
n2 ...x

(j)
ni−1

(x (j)
ni ), with independent permutations

π•x (j)
n1 x (j)

n2 ...x
(j)
ni−1

for i ≥ 2.

Computational complexity of implementation - nested scrambling requires bi−1

permutations to scramble the i-th digit.
Various versions of scrambling methods based on the definitions of the πi ’s:
Owen nested scrambling ( Owen, 1995 , Owen, 2002 ), Tezuka’s generalized Faure
sequences ( Tezuka, 1995 ), and Matousek’s linear scrambling ( Matousek, 1998 ).
The rate for scrambled net Monte Carlo is n−3/2(log n)(s−1)/2 in probability while
the rate for unscrambled nets is n−1(log n)s−1 or n−1(log n)s along (t , s)

sequences ( Owen, 1997 ).
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If

xi = (xi,1, xi,2 . . . xi,s) ∈ Es
i

- the i-th ΛΠτ point,

then

the i-th random point ξi (ρ)
with a p.d.f. p(x):

ξi (ρ) = xi + ρωi ,

where ωi is a u.u.d vector
in Us and ρ is the “shaking
radius“.

Example:

ωi = {cosφi , sinφi} ∈ E2
i

xi
ρ

ξi

Figure: Generation of a
random point ξi ∈ E2

i .
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Theorem.

The quadrature formula I(f ) ≈ 1
md

∑n
j=1 f (ξ(x (j)) satisfies

ε(f , d) ≤ c
′
d ‖f‖ n

− 1
2−

1
d and r(f , d) ≤ c

′′
d ‖f‖ n

− 1
2−

1
d
,

where the constants c
′
d and c

′′
d do not depend on n.

Remark.
One can see that the Monte Carlo algorithm MCA-MSS-1 has an optimal rate
of convergence for functions with continuous and bounded first derivative [1].
This means that the rate of convergence (n−

1
2−

1
d ) can not be improved for the

functional class W1 in the class of the randomized algorithms AR.
[1] I. T. Dimov, Monte Carlo Methods for Applied Scientists. World Scientific, London, Singapore (2008).
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The first pseudorandom point
ξi is selected during the
procedure used in
MCA-MSS-1.

The second pseudorandom
point ξ

′
i is chosen to be

symmetric to ξi according to
the central point si in each
elementary subinterval Ei .

The value of the integral can
be approximated in the
following way:

I(f ) ≈ 1
2md

2n∑
i=1

[
f (ξi ) + f (ξ

′
i )
]
.

Example:

ωi = {cosφi , sinφi} ∈ E2
i

xi

ρ

ξ ii

iξ

s i

’

Figure: Generation of a
random point ξ

′
i ∈ E2

i .
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Theorem.

The quadrature formula I(f ) ≈ 1
2md

∑2n
i=1

[
f (ξi ) + f (ξ

′
i )
]

constructed for inte-

grands f from W2(L; Ud ) satisfies

err(f , d) ≤ c̃ ′d ‖f‖ n
− 1

2−
2
d and r(f , d) ≤ c̃ ′′d ‖f‖ n

− 1
2−

2
d
,

where the constants c̃ ′d and c̃ ′′d do not depend on n.

Remark.
One can see that the Monte Carlo algorithm MCA-MSS-2 has an optimal rate
of convergence for functions with continuous and bounded second derivative.
This means that the rate of convergence (n−

1
2−

2
d ) can not be improved for the

functional class W2 in the class of the randomized algorithms AR.
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Sketch of proof. (1)
One can use the d-dimensional Taylor formula to present the function
f (x(j)) in Ej around the central point s(j):

f (x(j)) = f (s(j)) + ∇f (s(j)) (x(j) − s(j))

+ 1
2 (x(j) − s(j))T [D2f (η(j))](x(j) − s(j)),

where ∇f (x) =

[
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xd

]
and [D2f (x)] =

[
∂2f (x)

∂xi∂xk

]d

i,k=1
.

Thus, we get the following estimate of the variance

D[f (ξ) + f (ξ′)] =

≤ E
{

1
2

[
(ξ − s)T [D2f (η)](ξ − s) + (ξ′ − s)T [D2f (η′)](ξ′ − s)

]}2
.

Since f ∈ W2(L; Ud ):

D[f (ξ) + f (ξ′)] ≤ L2 sup
x(j)

1 ,x(j)
2

∣∣∣x (j)
1 − x (j)

2

∣∣∣4 ≤ L2(c(j)
2 )4n−4/d .
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Sketch of proof. (2)
Now the variance of θn =

∑n
j=1 θ

(j) can be estimated:

Dθn =
∑n

j=1 p2
j D[f (ξ) + f (ξ′)] ≤

(
Lc(j)

1 c(j)2
2

)2
n−1−4/d ,

where the following assumption holds for the probability density function∫
Ej

p(x)dx = pj ≤
c(j)

1

n
,

where c(j)
1 are constants.

The application of the Tchebychev’s inequality to the variance yields

ε(f , d) ≤ c̃ ′d ‖f‖ n
− 1

2−
2
d

for the probable error ε, where c̃ ′d =
√

2d , which concludes the proof.
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The first pseudorandom point
ξi is generated uniformly
distributed inside Ei .

The second point ξ
′
i is

chosen to be symmetric to ξi

according to the central point
si in each elementary
subinterval Ei .

The value of the integral can
be approximated in the
following way:

I(f ) ≈ 1
2md

2n∑
i=1

[
f (ξi ) + f (ξ

′
i )
]
.

Example:
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Figure: Generation of a
random point ξ
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i ∈ E2
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Example of
a non-smooth integrand:

f1(x1, x2, x3, x4) =
4∑

i=1

|(xi−0.5)−1/3|,

S(f1) ≈ 7.55953. 0
0.2
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Figure: The integrand function in
two-dimensional case.
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Table: Radius ρ of spheres of the random points (radius coefficient κ = ρ/δ)

n Min. dist., δ κ ρ κ ρ κ ρ

10 0.43301 0.001 0.00043 0.09 0.03897 0.4 0.17321

102 0.13166 0.001 0.00013 0.09 0.01185 0.4 0.05266

103 0.06392 0.001 0.00006 0.09 0.00575 0.4 0.02557

104 0.02812 0.001 0.00003 0.09 0.00253 0.4 0.01125

50.103 0.01400 0.001 0.00001 0.09 0.00126 0.4 0.00560
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Table: Relative error and computational time for numerical integration

n SFMT Sobol’ MCA

Rel. err. Time Rel. err. Time δ κ ρ Rel. err. Time

(s) (s) ×103 (s)

10 0.0001 < 0.01 0.2813 < 0.01 0.433 0.03 13 0.0438 < 0.01

0.45 195 0.0509 < 0.01

102 0.0114 0.01 0.0565 < 0.01 0.132 0.03 3.9 0.0038 0.01

0.45 59 0.0050 0.01

103 0.0023 0.06 0.0114 0.01 0.064 0.03 1.9 0.0016 0.10

0.45 29 0.0004 0.11

104 0.0006 0.53 0.0023 0.06 0.028 0.03 0.8 4e-05 3.56

0.45 12.7 0.0002 3.58

30.103 0.0002 1.63 0.0011 0.19 0.019 0.03 0.6 0.0002 28.5

0.45 8.3 0.0003 28.8

50.103 0.0009 2.67 0.0008 0.29 0.014 0.03 0.4 0.0002 74.8

0.45 6.3 2e-05 75.7

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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Figure: Relative error according to the "shaking radius".
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Table: Difference of relative errors for Sobol’ algorithm and the proposed
Monte Carlo algorithm

@
@@n
κ 0.009 0.03 0.2 0.45

10 0.07709 0.23746 0.20639 0.23037

102 0.03594 0.05277 0.05214 0.05155

103 0.01014 0.00976 0.00940 0.01099

104 0.00197 0.00225 0.00228 0.00212

30.103 0.00102 0.00094 0.00084 0.00079

50.103 0.00077 0.00062 0.00077 0.00078
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Example of
a smooth integrand:

f2(x1, x2, x3, x4) = ex1+2x2 cos(x3)

1 + x2 + x3 + x4
,

S(f2) ≈ 1.83690.
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Figure: The integrand function in
two-dimensional case.
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Table: Relative error and computational time for numerical integration of a
smooth function (S(f2) ≈ 0.10897).

n SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time

error (s) error (s) error (s) ×103 error (s)

102 0.0562 0.002 0.0365 < 0.001 0.0280 0.001 3.9 0.0363 0.001

13 0.0036 0.001

103 0.0244 0.004 0.0023 0.001 0.0016 0.001 1.9 0.0038 0.010

6.4 0.0019 0.010

104 0.0097 0.019 0.0009 0.002 0.0003 0.003 0.8 0.0007 0.070

2.8 0.0006 0.065
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Table: Relative error and computational time for numerical integration of a
smooth function (S(f2) ≈ 0.10897).

# of points n Sobol QMCA MCA-MSS-1 MCA-SMS-2 MCA-SMS-2-S

(# of double Rel. Time ρ Rel. Time Rel. Time Rel. Time

points 2n) error (s) ×103 error (s) error (s) error (s)

29 0.0059 < 0.001 2.1 0.0064 0.009 0.0033 0.010 0.0016 0.005

(2 × 29) 6.4 0.0061 0.010 0.0032 0.010

210 0.0035 0.002 1.9 0.0037 0.010 9e-05 0.020 0.0002 0.007

(2 × 210) 6.4 0.0048 0.010 0.0002 0.020

216 2e-05 0.027 0.4 3e-05 1.580 7e-06 1.340 9e-06 0.494

(2 × 216) 1.2 0.0001 1.630 5e-06 1.380
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Table: Relative error and computational time for numerical integration

n SFMT Sobol’ MCA

Rel. err. Time Rel. err. Time δ κ ρ Rel. err. Time

(s) (s) ×103 (s)

102 0.0350 < 0.01 0.0155 < 0.01 0.132 0.03 3.9 0.0160 0.01

0.45 59 0.0264 0.01

103 0.0045 0.01 0.0023 < 0.01 0.064 0.03 1.9 0.0025 0.06

0.45 29 0.0058 0.06

104 0.0016 0.10 0.0002 0.02 0.028 0.03 0.8 0.0003 3.29

0.45 12.7 0.0016 3.28

30.103 0.0006 0.28 0.0001 0.04 0.019 0.03 0.6 0.0002 28.5

0.45 8.3 0.0011 28.4

50.103 0.0004 0.46 6e-05 0.07 0.014 0.03 0.4 0.0001 76.0

0.45 6.3 0.0008 76.1

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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Example of a non-smooth integrand:

f1(x1, x2, x3, x4) =
4∑

i=1

|(xi − 0.8)−1/3|, S(f1) ≈ 7.22261.

Example of a smooth integrand:

f2(x1, x2, x3, x4) = x1 x2
2 ex1x2 sin x3 cos x4, S(f2) ≈ 0.10897.
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Example of a non-smooth integrand:

f1(x1, x2, x3, x4) =
4∑

i=1

|(xi − 0.8)−1/3|, S(f1) ≈ 7.22261.

Example of a smooth integrand:

f2(x1, x2, x3, x4) = x1 x2
2 ex1x2 sin x3 cos x4, S(f2) ≈ 0.10897.
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Table: Relative error and computational time for numerical integration of a
smooth function (S(f2) ≈ 0.10897)

n Sobol QMCA MCA-MSS-1 MCA-MSS-2-S

Rel. Time ρ Rel. Time Rel. Time

×103 error (s) error (s) error (s)

2 × 44 0.0076 < 0.001 2.1 0.0079 < 0.001 0.0016 0.005

(512) 6.4 0.0048 < 0.001

2 × 64 0.0028 0.001 1.2 0.0046 0.030 0.0004 0.009

(2592) 4.1 0.0046 0.030

2 × 84 0.0004 0.004 0.9 0.0008 0.090 0.0002 0.025

(8192) 2.9 0.0024 0.090

2 × 104 0.0002 0.008 0.6 0.0001 0.220 5e-05 0.070

(20000) 2.0 0.0013 0.230

2 × 134 0.0001 0.022 0.4 0.0001 0.630 4e-06 0.178

(57122) 1.2 0.0007 0.640

2 × 144 5e-06 0.029 0.4 1e-05 0.860 1e-05 0.237

(76832) 1.2 0.0005 0.880

2 × 154 8e-06 0.036 0.4 0.0001 1.220 9e-07 0.313

(101250) 1.2 0.0005 1.250
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Table: Relative error and computational time for numerical integration of a
non-smooth function (S(f1) ≈ 7.22261).

n SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time

error (s) error (s) error (s) ×103 error (s)

103 0.0010 0.011 0.0027 0.001 0.0021 0.002 1.9 0.0024 0.020

6.4 0.0004 0.025

7.103 0.0009 0.072 0.0013 0.009 0.0003 0.011 1.0 0.0004 0.110

3.4 0.0005 0.114

3.104 0.0005 0.304 0.0003 0.032 0.0003 0.041 0.6 0.0001 0.440

1.9 0.0002 0.480

5.104 0.0007 0.513 0.0002 0.053 2e-05 0.066 0.4 7e-05 0.775

1.4 0.0001 0.788
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∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
+

+
∂

∂x

(
Kx
∂cs

∂x

)
+

∂

∂y

(
Ky
∂cs

∂y

)
+

∂

∂z

(
Kz
∂cs

∂z

)
+

+Es + Qs(c1, c2, . . . , cq)− (k1s + k2s)cs, s = 1,2, . . . ,q.

q − number of equations = number of chemical species,

cs − concentrations of the chemical species,

u, v ,w − components of the wind along the coordinate axes,

Kx ,Ky ,Kz − diffusion coefficients,

Es − emissions in the space domain,

k1s, k2s − coefficients of dry and wet deposition respectively,

Qs(c1, c2, . . . , cq) − non-linear functions that describe

the chemical reactions between species.
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Table: Relative error (in absolute value) and computational time for estimation
of sensitivity indices of input parameters using various Monte Carlo and
quasi-Monte Carlo approaches (n = 6600, c ≈ 0.51365, δ ≈ 0.08).

Estimated Sobol QMCA Owen scrambling MCA-MSS-1

quantity ρ Rel. error

g0 1e-05 0.0001 0.0007 0.0001

0.007 6e-05

D 0.0007 0.0013 0.0007 0.0003

0.007 0.0140

Stot
1 0.0036 0.0006 0.0007 0.0009

0.007 0.0013

Stot
2 0.0049 6e-05 0.0007 2e-05

0.007 0.0034

Stot
3 0.0259 0.0102 0.0007 0.0099

0.007 0.0211

Ivan Dimov, BAS Monte Carlo Efficient Monte Carlo algorithms for sensitivity analysis



Outline
Problem setting

Monte Carlo algorithms based on modified Sobol sequences
Numerical results

Discussion of applicability and concluding remarks

Example of a non-smooth integrand
Example of a smooth integrand
Mathematical Representation of UNI-DEM

Example (integrand with computational irregularities).

f (x) = (1 +
d∑

i=1

ai xi )
−(d+1)

||a||1 =
600
d2

I[f ] =

∫
Ud

f (x)dx

0

0.2

0.4

0.6

0.8

1

x1

0
0.2

0.4
0.6

0.8
1

x2

0

0.2

0.4

0.6

0.8

1

Figure: Genz integrand function
with a corner peak in two
dimensions.
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Table: Relative error and CPU time for dimension d = 5,
I[f ] = 0.21214e− 05, a = (5, 5, 5, 5, 4).

Adaptive Monte Carlo Algorithm Plain Monte Carlo Algorithm

N IN [f ] Rel. Time N IN [f ] Rel. Time

×105 error (s) ×105 error (s)

100 0.213 0.008 0.01 94.102 0.18 0.13 0.01

1000 0.211 0.007 0.13 94.103 0.19 0.08 0.06

10000 0.212 0.001 1.42 94.104 0.22 0.02 0.55

100000 0.212 0.0009 14.05 94.105 0.20 0.04 5.38

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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Table: Relative error and CPU time for dimension d = 18,
I[f ] = 0.99186e− 05, a =(

1
9
,

2
27
,

2
27
,

1
9
,

2
27
,

1
9
,

1
9
,

4
27
,

2
27
,

1
9
,

1
9
,

2
27
,

2
27
,

1
9
,

1
9
,

4
27
,

1
9
,

1
9

)
.

Adaptive Monte Carlo Algorithm Plain Monte Carlo Algorithm

N IN [f ] Rel. Time N IN [f ] Rel. Time

×105 error (s) ×105 error (s)

10 0.9923 0.0005 7 2621440 0.989 0.002 6

100 0.9918 0.00005 75 26214400 0.909 0.084 60

1000 0.9919 0.00008 758 262144000 0.510 0.48 600

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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TSI(x ) = 81%
TSI(x ) = 78%

1

5

Figure: Total sensitivity indices of input parameters.

Ivan Dimov, BAS Monte Carlo Efficient Monte Carlo algorithms for sensitivity analysis



Outline
Problem setting

Monte Carlo algorithms based on modified Sobol sequences
Numerical results

Discussion of applicability and concluding remarks

Example of a non-smooth integrand
Example of a smooth integrand
Mathematical Representation of UNI-DEM

SI(ijk) = 6,6%

SI(ij) = 5,8%

SI(i) = 0,6%

SI(ijklm) = 23%

SI(ijkl) = 64%

Figure: First-, second-, third-, fourth-, fifth-order effects.
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Figure: European nitrogen oxides
concentrations

Figure: European ozone
concentrations
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Table: Total sensitivity indices of input parameters obtained using different
variance-based approaches for sensitivity analysis.

HHH
HH

estimated
quantity

approach

Standard (Sobol’) Approaches for small indices

red. of the m.v. combined

x ∈ [0.1; 2.0]3x ∈ [0.6; 1.4]3 x ∈ [0.6; 1.4]3 x ∈ [0.6; 1.4]3

integrand g(x) f (x) f (x) f (x)− c f (x)− c

c - - 0.51737 0.51737

g0 0.51520 0.51634 0.25145 0.25145

D 0.26181 0.26446 0.07061 0.00530

S1 0.26386 0.26530 0.27354 0.52979

S2 0.26447 0.26359 0.26713 0.46142

S3 0.25348 0.25209 0.22406 0.00222∑3
i=1 Si 0.78182 0.78097 0.76474 0.99342
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Table: Total sensitivity indices of input parameters obtained using different
variance-based approaches for sensitivity analysis.

H
HHHH

estimated
quantity

approach

Standard (Sobol’) Approaches for small indices

red. of the m.v. combined

x ∈ [0.1; 2.0]3 x ∈ [0.6; 1.4]3 x ∈ [0.6; 1.4]3 x ∈ [0.6; 1.4]3

S12 0.06885 0.06941 0.07994 0.00628

S13 0.06598 0.06634 0.06845 0.00009

S23 0.06613 0.06592 0.06686 0.00021∑3
i,j=1,i≤j Sij 0.20096 0.20167 0.21525 0.00658

S123 0.01722 0.01736 0.02001 0.000003

Stot
x1 0.41592 0.41841 0.44195 0.53615

Stot
x2 0.41667 0.41627 0.43395 0.46791

Stot
x3 0.40281 0.40170 0.37938 0.00252
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The proposed algorithms improves the error estimates for non-smooth integrands
when the radius ρ is smaller than the minimal distance between ΛΠτ points δ.
Strongly speaking the proposed approach is applicable if ρ is much smaller than
δ. The implementation of the algorithms shows that this requirement is not very
strong. Even for relatively large radiuses ρ the results are good. The reason is
that centers of spheres are very well uniformly distributed by definition. So that,
even for large values of radiuses of shaking the generated random points
continue to be well distributed.

For relatively low number of points (< 1000) the proposed algorithms gives
results with a high accuracy. The relative error is approximately equal to 0.0038
for n = 100. For the same sample size the Sobol’ algorithm gives more than 10
times higher error. For n = 1000 our algorithms gives relative error
0.0004 − 0.0016 depending on the parameter κ while the Sobol’ algorithm gives
0.0114. This is an important fact because one has a possibility to estimate the
value of the integral with a relatively high accuracy using a small number of
random points.
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The algorithms based on modified Sobol sequences combines
properties of two of the best available approaches - Sobol
quasi-Monte Carlo integration and a high quality pseudorandom
number SIMD-oriented Fast Mersenne Twister (SFMT) generator.
It has been proven that the Monte Carlo algorithm MCA-MSS-1
has an optimal rate of convergence for functions with continuous
and bounded first derivatives in terms of probability and mean
square error.
It has been proven that the Monte Carlo algorithm MCA-MSS-2
has an optimal rate of convergence for functions with continuous
and bounded second derivatives in terms of probability and
mean square error.
All algorithms under consideration are efficient and converge
with the expected rate of convergence. It is important to notice
that the Monte Carlo algorithm MCA-MSS-2 based on modified
Sobol sequences when symmetrised shaking is used has a
unimprovable rate of convergence and gives reliable numerical
results.
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