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The general age-dependent SIR model

∂s(a, t)
∂t

+ ∂s(a, t)
∂a

= −s(a, t)λ(a, i(., t)) − µ(a)s(a, t) (1)

∂i(a, t)
∂t

+ ∂i(a, t)
∂a

= s(a, t)λ(a, i(., t)) − (µ(a) + γ(a))i(a, t) (2)

∂r(a, t)
∂t

+ ∂r(a, t)
∂a

= γ(a)i(a, t) − µ(a)r(a, t) (3)

where s(a, t) is the density of susceptibles of age a at time t.
i(a, t), r(a, t) are the infected and recovered subpopulations.

● Boundary conditions? what is µ(.)λ(.), λ(.)?
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Derivation of the equations
● Consider a cohort of individuals in an age interval [a, a +∆a]
● The number of susceptibles in that cohort is approx s(a, t)∆a
● after small time ∆t: age a→ a +∆t, time t→ t +∆t
● number of individuals in this same cohort is s(a +∆t, t +∆t)∆a
● Change in the subpopulation by age-specific per-capita death rate
µ(a) and getting infected
● The balance law:

s(a +∆t, t +∆t)∆a − s(a, t)∆a = −µ(a)s(a, t)∆t∆a (4)

− age-spec incidence rates(a, t)∆t∆a
(5)

● dividing by ∆t∆a RHS:

s(a +∆t, t +∆t) − s(a, t +∆t)
∆t

+ s(a, t +∆t) − s(a, t)
∆t

● We suppose some regularity on s(a, t) and take the limit ∆t→ 0.
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Derivation II.

● There is a maximal age a†.
● No one survives the maximal age: lim

a→a†
µ(a) =∞.

● Boundary conditions:

1 s(0,t) is the newborns at time t:

s(0, t) = ∫
a†

0
β(a)(s(a, t) + i(a, t) + r(a, t))da

where β(a) age-spec. per capita birth rate.
2 Initial subpopulation (density)

s(a,0) = s0(a)
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Age-dependent SIR model with vertical transmission

∂s(a, t)
∂t

+ ∂s(a, t)
∂a

= −s(a, t)λ(a, (i(., t)) − µ(a)s(a, t) (6)

∂i(a, t)
∂t

+ ∂i(a, t)
∂a

= s(a, t)λ(a, (i(., t)) − (µ(a) + γ(a))i(a, t) (7)

∂r(a, t)
∂t

+ ∂i(a, t)
∂a

= γ(a)i(a, t) − µ(a)r(a, t) (8)

s(a,0) = s0(a), i(a,0) = i0(a), r(a,0) = r0(a) (9)

s(0, t) = ∫
a†

0
β(a)(s(a, t) + r(a, t) + (1 − q)i(a, t))da (10)

i(0, t) = q∫
a†

0
β(a)i(a, t)da (11)

r(0, t) = 0, (12)

what are γ(a), q? what is λ?
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Incidence rate λ
In the literature the force of infection is

s(a, t)λ(a, (i(., t)) = s(a, t)∫
a†

0
κ(a, ξ)i(ξ, t)dξ

which is sometimes simplified into the separable case/proportional mixing
case:

k(a, ξ) = k1(a)k2(ξ)
possibilities to generalize:

Case 1.

s(a, t)λ(a, (i(., t)) = s(a, t)κ1(a)g(∫
a†

0
κ2(a)i(ξ, t)dξ) (13)

Case 2.

s(a, t)λ(a, (i(., t)) = s(a, t)∫
a†

0
K(a, ξ)g(i(ξ, t))dξ, (14)

where g(.) is some function (g = id case).
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Remarks

2. Other way to heterogenize the population: Time-since Infection
models

dS(t)
dt

= Λ − S(t)∫
∞

0
β(τ)i(τ, t)dτ − µS(t) (15)

∂i(τ, t)
∂τ

+ ∂i(τ, t)
∂t

= −γ(τ)i(τ, t) − µi(τ, t) (16)

i(0, t) = S(t)∫
∞

0
β(τ)i(τ, t)dτ (17)

dR(t)
dt

= ∫
∞

0
γ(τ)iτ, t)dτ − µR(t) (18)

Used tools are more similar to ODE case.
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Remarks II.
2. The equations for the total population denoted by
p(a, t) ∶= s(a, t) + i(a, t) + r(a, t) is

∂p(a, t)
∂t

+ ∂p(a, t)
∂a

= −µ(a)p(a, t) (19)

with boundary-values

p(a,0) = s0(a) + i0(a) + r0(a) (20)

p(0, t) = ∫
a†

0
β(a)p(a, t)da (21)

which is called the (linear) Lotka-McKendrick model. 3 possible
cases: population size constant, converges to a stationary age-distr/
exponentially dies out/ explodes

Depending on

∫
a†

0
β(a)e− ∫

a
0 µ(s)dsda
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The Foerster McKendrick model without age dependence in its
parameters, by integration simplifies to the Malthus population model:

dP (t)
dt

= βP (t) − µP (t)

i.e. the population grows exponentially. No competition for resources.
A model with competition for resources is the Verhulst/Logistic model:

dP (t)
dt

= ((β − µ) − ωP (t))P (t)

The population growth depend on the size of the population.
In the age-dependent case, the Curtin-MacCamy equations model of this
phenonema:

∂p

∂t
+ ∂p
∂a
= −µ(a,P )p(a, t)

p(0, t) = B(t) = ∫
A

0
β(a,P )p(a, t)da

p(a,0) = p0(a); P (t) ∶= ∫
A

0
p(a, t)da
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Back to our model

∂s(a, t)
∂t

+ ∂s(a, t)
∂a

= −s(a, t)λ(a, (i(., t)) − µ(a)s(a, t) (22)

∂i(a, t)
∂t

+ ∂i(a, t)
∂a

= s(a, t)λ(a, (i(., t)) − (µ(a) + γ(a))i(a, t) (23)

∂r(a, t)
∂t

+ ∂i(a, t)
∂a

= γ(a)i(a, t) − µ(a)r(a, t) (24)

s(a,0) = s0(a), i(a,0) = i0(a), r(a,0) = r0(a) (25)

s(0, t) = ∫
a†

0
β(a)(s(a, t) + r(a, t) + (1 − q)i(a, t))da (26)

i(0, t) = q∫
a†

0
β(a)i(a, t)da (27)

r(0, t) = 0, (28)
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with force of infection:

Case 1.

s(a, t)λ(a, (i(., t)) = s(a, t)κ1(a)g(∫
a†

0
κ2(a)i(ξ, t)dξ) (29)

Case 2.

s(a, t)λ(a, (i(., t)) = s(a, t)∫
a†

0
K(a, ξ)g(i(ξ, t))dξ, (30)
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Assumptions

(A0) q ∈ [0,1]

(A1) µ ∈ L∞loc,+(0, a†), ∫
a†

0
µ(a)da =∞, with 0 < µ ≤ µ(a) a.e.

where µ ∶= essinfa∈[0,a†]µ(a)
(A2) β ∈ L∞

+
(0, a†), where β(a) ≤ β̄ ∶= essupa∈[0,a†] β(a) a.e.

(A3) γ, θ ∈W 1,∞(0, a†) where 0 ≤ γ(a) ≤ γ ∶= essupa∈[0,a†]γ(a) and
0 ≤ θ(a) ≤ θ ∶= essupa∈[0,a†]θ(a)

B g ∶ [0,∞)→ [0,∞) such that

(B1) g(0) = 0,
(B2) g is continuously differentiable

(B3) g is strictly monotone increasing for x ≥ 0 and concave.

(C1) κ1, κ2 ∈ L∞+ (0, a†) or K ∈ L∞+ ((0, a†) × (0, a†)) such that κ1, κ2 /≡0
a.e. or K/≡0 a.e., respectively.
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Remarks

1 assumptions on g implies the (local) lipschitz cont. on bounded sets.

2 Thus g(∣∣i∣∣1) ≤ c(r)∣∣i∣∣1 (∀0 < ∣∣i∣∣ ≤ r)
3 Without age depenedence we get back the non-linear SIR

4 g is fairly general considering useful epidemic models
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Questions

We search for solutions in the state space X ∶= (L1(0, a†))3 with norm

∣∣(s, i, r)T ∣∣X = ∣∣s∣∣1 + ∣∣i∣∣1 + ∣∣r∣∣1. We denote the positive cone of X as X+,
which is ≥ 0a.e., which is a Banach-Lattice.

● Does the solution uniquely exists?

● Does it exists globally?

● Does it stays non-negative if init. conds are non-negative.

Ô⇒ Answers through Semigroup theory.

● questions considerg the equilibria

Szemenyei Adrián László December 5, 2024 15 / 34



Semilinear ACPs1

Proposition

Let the ACP be

du(t)
dt

= Âu + F̂ (u) (31)

u(0) = x ∈ Y (32)

where (Â,Dom(Â)) is the infinitesimal generator of a C0 semigroup

(T (t))
t≥0

on the Banach space Y. Then

1 If F̂ is locally Lipschitz continuous (on bounded sets), then for each
x ∈ Y there exist a maximal interval of existence [0, Tx) and a unique
continuous function t↦ u(t) from [0, Tx) to Y such that it is a mild
solution of the ACP, namely

1from the book: Theory of nonlinear age-dependent population dynamics by Webb
Glenn (1985),Proposition 4.16.
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Proposition (cont)

1

u(t) = T (t)x + ∫
t

0
T (t − s)F̂ (u(s))ds (33)

for all t ∈ [0, Tx). In addition the solution either exist globally, or
blows up in finite time, i.e. Tx =∞ or lim sup

t→Tx

∥u(t)∥Y =∞,

respectively.

2 There is a continuous dependence on the initial conditions, namely: if
x ∈ Y and 0 ≤ t < Tx, then exists C, ε > 0 such that if x̂ ∈ Y and
∥x− x̂∥Y<ε then t < Tx̂ and ∥u(s)− û(s)∥ ≤ C∥x− x̂∥Y for all 0 ≤ s ≤ t,
where û(t) is the mild solution of the ACP (31)-(32) with initial
condition x̂.

1 If F̂ is continuously Fréchet differentiable, then for all
x ∈ Dom(Â),u(t) is a classical solution, namely: u(t) ∈ Dom(Â)
(∀t ∈ [0, Tx)) and t↦ u(t) continously differentiable and satisfies the
ACP (31)-(32) for t ∈ [0, Tx).
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Semilinear Abstract Cauchy Problem formulation

Denote S = diag(− d

da
,− d

da
,− d

da
) with domain

Dom(S) = (W 1,1(0, a†))3, Mµ = diag(−µ,−µ,−µ) with domain
Dom(Mµ) = {ψ ∈ X ∣µψ ∈ X} and

Mrest =
⎛
⎜
⎝

0 0 0
0 −γ 0
0 γ 0

⎞
⎟
⎠

(34)

which is a bounded linear operator in X (i.e. Mrest ∈ L(X)). Denote

B(a) =
⎛
⎜
⎝

β(a) (1 − q)β(a) β(a)
0 qβ(a) 0
0 0 0

⎞
⎟
⎠
; Bψ = ∫

a†

0
B(a)ψ(a)da ∈ L(X,R3)

(35)
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cont.

Finally, denote

A ∶= S +Mµ, Dom(A) = {ψ ∈Dom(S) ∩Dom(Mµ) ∣ψ(0) = Bψ} (36)

Then equation (22)-(28) can be rewritten as an ACP:

du(t)
dt

= Au +Mrestu + F (u) (37)

u(0) = u0 ∈ X (38)

where the nonlinear part, F (u) is with u = (s, i, r)T ∈ X

F ((s, i, r)T ) =
⎛
⎜
⎝

−λ(., i)s
λ(., i)s

0

⎞
⎟
⎠

(39)

which maps from X to X.
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Proposition

1 The linear operator A generates a C0 operator semigroup in X, denoted
by (etA)

t≥0
such that

∣∣etA∣∣L(X) ≤ e(β̄−µ)t (∀t ≥ 0).

Proposition (from bounded perturbation thm. and Mentzler matrix struct.)

(A +Mrest,Dom(A)) generates a positive C0 operator semigroup in X,
denoted by (et(A+Mrest))

t≥0
such that

∣∣et(A+Mrest)∣∣L(X) ≤ e(β̄−µ)t (∀t ≥ 0). (40)

Proposition

F , defined in (39) is locally Lipschitz continuous on X.
1very similar to Solvability of Age-Structured Epidemiological Models(...),
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Proposition

F in (37) defined as (39) in Case 1. is also continuously Fréchet
differentiable.

Proposition

The ACP (37)-(38) is positivity preserving, namely if x ∈ X+, then its
solution u(t) ∈ X+ for all t ∈ [0, Tx.

Rewrite the ACP (37)-(38) as

du(t)
dt

= (A +Mrest − κ̂I)u + (κ̂I + F)(u) (41)

u(0) = x ∈ X+, (42)

where I ∈ L(X) is the identity operator on X and κ̂ ≥ 0 will have to be
determined later. The mild-solution for (41)-(42) is

u(t) = e−κ̂te(A+Mrest)tx+∫
t

0
eκ̂(t−s)e(A+Mrest)(t−s)(κ̂I +F )(u(s))ds (43)

for 0 ≤ t < Tx.
Szemenyei Adrián László December 5, 2024 21 / 34



Let B(r) ∶= {y ∈ X ∣ ∥x∥X ≤ r} and x ∈ X+ ∩B(r). Then if we show that

(κ̂I + F (X+ ∩B(r)) ⊂ X+. (44)

for some κ̂ ≥ 0, which depends on r, then we are done, since the positivity
of the mild solution (43) follows from the positivity of its Picard iterates.
from1

Proposition

For any x ∈ X+ the unique mild solution of (37)-(38) in Case 1. exists for
all t ∈ [0,∞).

1from Solvability of Age-Structured Epidemiological Models with Intracohort
Transmission, by Banasiak, Massoukou
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Questions considering the equilibria
Extra assumptions:
● Stationary population case (already at the initial time)
p(a, t) = p∞(a)
● No vertical transmission (right now)

Usual trick:

x(a, t) ∶= s(a, t)
p∞(a)

, y(a, t) ∶= i(a, t)
p∞(a)

, z(a, t) ∶= r(a, t)
p∞(a)

(45)

∂x(a, t)
∂t

+ ∂x(a, t)
∂a

= −x(a, t)λ(a, (y(., t)) (46)

∂y(a, t)
∂t

+ ∂y(a, t)
∂a

= x(a, t)λ(a, (y(., t)) − γ(a)y(a, t) (47)

∂z(a, t)
∂t

+ ∂z(a, t)
∂a

= γ(a)y(a, t) (48)

λ(a, (y(., t)) = κ1(a)g(∫
a†

0
κ2(a)p∞(ξ)y(ξ, t)dξ) (49)
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Question of equilibria simplifies to a fixed-point problem

λ̂ = g(λ̂∫
a†

0
x∗(a)h(a)da), where T is a linear majorant.

Proposition

If T < 1, then the only stationary solution/equilibrium is the trivial
solution, i.e. λ̂ = 0.

If T > 1, then there is a unique positive equilibria.

where

T ∶= g′(0)(∫
a†

0
h(a)da) (50)

and

h(a) = κ1(a)∫
a†

a
p∞(η)exp( − ∫

a

η
γ(ξ)dξ)dη. (51)
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Stability of the equilibria
Possible tools:

● Lyapunov functional for global stability

● Local stability through perturbation and cont. dep. on initial
conditions

● Other tools like persistence theory etc.

Proposition

If T < 1, then the disease-free equilibrium is locally assymptotically stable,
while for T > 1 it is unstable.

We search for solutions in the form of

x1(a, t) =H1(a)eρ etc.

where x1(a, t) is a perturbation of the equilibria (x∗(a), ...). The question
is the sign of ρ.
Fixed-point problem.
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Global stability for the SIS model1

Monotone dynamical systems approach:
E+ be its positive cone. Let z(t) be a population vector that takes a value
in a closed convex subset C ⊂ E+. Suppose that the dynamics of the
population vector z(t) are written as a semilinear Cauchy problem:

dz(t)
dt
= Az(t) + F (z(t)), t > 0, z(0) = z0

We assume:

● A is a generator of a positive C0 semigroup {etA}t≥0 on E that
satisfies etA(C) ⊂ C
● F is cont. Fréchet differentiable
● there exist α > 0:

● (I − αA)−1(C) ⊂ C; (I + αF )(C) ⊂ C
● (monotonicity of Resolvent)(I −αA)−1φ ≥ (I −αA)−1ψ (∀φ ≥ ψ ∈ C)
● (monotonicity of F )(I + αF )φ ≥ (I + αF )ψ (∀φ ≥ ψ ∈ C)
● (concavity of F ) ξ(I + αF )φ ≤ (I + αF )ξφ (∀φ ∈ C) (∀ξ ∈ (0,1))

1Busenberg
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Existence of mild solution
One can rewrite the ACP as:

d

dt
z(t) = (A − 1

α
) z(t) + 1

α
(I + αF )z(t), t > 0, z(0) = z0,

with its mild solution

z(t) = e−
1
α
tetAz0 +

1

α
∫

t

0
e−

1
α
(t−σ)e(t−σ)A(I + αF )z(σ)dσ.

The classical iterative procedure with the above assumptions gives the
existence of the mild solution.

Under the above assumptions the mild solution z(t) = U(t)z0 satisfies the
following monotonicity and concavity:

U(t)(C) ⊂ C and U(t)φ ≤ U(t)ψ for all φ,ψ ∈ C such that φ ≤ ψ,
ξU(t)φ ≤ U(t)ξφ for all φ ∈ C and ξ ∈ (0,1).
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Existence and stability of equilibria
Let z∗ denote an equilibrium. Then, we have

(A − 1

α
I) z∗ + 1

α
(I + αF )z∗ = 0.

Because −(A − (1/α)I) is positively invertible, we have the fixed point
equation for z∗ :

z∗ = − 1
α
(A − 1

α
I)
−1

(I + αF )z∗ = (I − αA)−1(I + αF )z∗ =∶ Φ (z∗) ,

where Φ is a positive nonlinear operator preserving the invariance of the
subset C. If Φ has a positive fixed point, it gives a positive equilibrium.
Define the Fréchet derivative at the origin:

Kα ∶= Φ′[0] ∶=Kα = (I − αA)−1 (I + αF ′[0]) ,

where F ′[0] is the Fréchet derivative of the operator F at the origin.
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Stability of equilibria

We can expect the spectral radius Φ′[0] to determine the existence and
stability of the endemic and disease-free equilibrium. For this, the
following is useful:
Lemma: The sign of r(Kα) − 1 is independent of α > 0 and coincides with
the sign of R0 ∶= r(F ′[0](−A)−1) − 1. which can be interpreted as the
asymptotic exponential growth rate of infective population.

The main theorem:

● for R0 < 1 the DFE 0 is globally attractive in C.

● for R0 > 1 the system has a unique equilibrium i∗ ∈ (D(A) ∩C) − {0}
which is globally attractive in C − {0}.

Remarks:

● By the above theorem periodic solutions do not exist

● Local stability of the equilibria (if I haven’t said it yet)
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To show that for r(Kα) > 1 there is at least one endemic equilibrium, one
can show that Kα is

● E+ −E+ dense in E ( for Riesz spaces E+ −E+ = E since x = x+ − x−)
● positive operator

● bounded

● compact (by the Kolmogorov-Fréchet thm.)

Thus one can use the Krein-Rutman theorem i.e. r(Kα) is an eigenvalue
of Kα associated with a positive eigenvector φ ∈ C ⊂ E+. For this
eigenvalue showing that for 0 < ξ small enough

Φ(ξφ)(a) ≥ ξφ(a)

Thus φn = Φn(ξφ) converges to a nontrivial fixed point.
For the uniqueness, suppose that we do not have u∞ ≤ v∞, we show that
they can be compared, then show that they equal also by order relations.
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For the convergence of the equilibria:

di(t)
dt
≤ (A + F ′[0])i(t), t > 0, i(0) ∈ C

where
F ′[0](φ)(a) = λ[a∣φ]φ(a) − γ(a)φ(a)

The spectral bound ω(A + F ′[0]) gives the Malthusian parameter of
infective population (we won’t prove) and

sign(R0 − 1) = sign(ω(A + F ′[0])) = sign(r(Kα) − 1)

thus for r(Kα) < 1 the global stability of the trivial equilibrium follows.
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For the r(Kα) > 1, if one shows that:

● the endemic equilibria i∗ is eventually positive, that is there exists
ξ ∈ (0,1) and t∗ > 0 such that

ξi∗ ≤ U(t∗)i0

provided that i0 ∈ C − {0}
Which only means, that the solution is comparable with the steady
state for one time instance.

● there exist a maximal point of C denoted by î (which in our case is
î ≡ 1 a.e.)

From the monotonic and concave properties of the operator:

ξi∗ = ξU(t)i∗ ≤ U(t)ξi∗ ≤ U(t)U(t∗)i0 ≤ U(t)̂i ≤ î.

Hence, we can construct a nondecreasing sequence {U(t)nξi∗}+∞n=0 and a

nonincreasing sequence {U(t)nî}+∞
n=0

, both of which are bounded and
converge to the unique i∗. Consequently, U(t)U (t∗) i0 = U (t + t∗) i0 also
converges to i∗ as t→ +∞.
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Above theorems can be used for the finite difference discretization.
for K(., ) we get fixed point problems for operators and functions
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Köszönöm a figyelmet!

Thank you for your attention!
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