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Overview

1. An introduction to backward error analysis (BEA) for ODEs

2. BEA-based compensation I. – Modifying system parameters

3. BEA-based compensation II. – Choosing a better coordinate system
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Backward error analysis for ODEs



Notation, terminology

Autonomous, d-dimensional ODE (system), initial value problem:

ẏ(t) = f
(
y(t)

)
, y(0) = y0, (1)

where y : R → Rd is the (unknown) solution, f : Rd → Rd is the (sufficiently smooth)
generating vector field (the “system” being simulated), and y0 ∈ Rd is the initial
condition.

Explicit, one-step numerical method on a uniform grid with time step ∆t:

yj+1 = Φ∆t(y
j), j = 0, 1, 2, . . . (2)

where tj := j∆t, with j = 0, 1, 2, . . . as the index of the time step, yj is the
approximate solution at tj . Designed to solve (1) approximately.

Flow of the vector field (integral curves at all points in state space, parametrised by t –
a one-parameter map): φt : R× Rd → Rd
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• The flow corresponds to the exact
solution of the original problem

• The numerical solution is only
approximate

• What is the numerical solution an
exact solution of?

• BEA: constructing the distorted ODE
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Backward error analysis for ODEs

• Backward error analysis: treating the
approximate solution of f by Φ∆t as an
exact solution of a certain system
nearby to the original one, i.e.
ỹ
(
tj
)
= yj .

• This other system is described by its
so-called modified equations or
distorted equations.

• Corresponding distorted vector field
(DVF): f̃

• f̃ is an underlying, continuous-time
counterpart of the discrete-time
numerical method 6/38



Correspondence between the Lie algebra and the Lie group

Lie algebra of vector fields with Lie derivative ?⇔ Lie group of smooth maps?

Exp

X(M) Diff(M)
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The distorted vector field

The distorted vector field (DVF) f̃ :

• ...Does it exist?

• usually, it does [1], but...

• it is not autonomous: f̃(y, t)

• or, it can be approximated via an asymptotic series of an autonomous f̃(y) as:

f̃(ỹ) = f(ỹ) + ∆t f1(ỹ) + ∆t2 f2(ỹ) + ∆t3 f3(ỹ) + · · · (3)

• Truncated version is “good enough” for “long enough” #
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Nice properties of the DVF

f̃(ỹ) = f(ỹ) + ∆t f1(ỹ) + ∆t2 f2(ỹ) + ∆t3 f3(ỹ) + · · · (3)

Nice properties of the DVF include:

• If Φ∆t has order p, then fj(y) ≡ 0 for j = 1, . . . , p− 1

• If Φ∆t is a symmetric method, then fj(y) ≡ 0 for all odd j

• Transfer of structure-preserving properties:
• If Φ∆t exactly conserves a first integral I(y), then the distorted equation also has

I(y) as a first integral
• If Φ∆t is symplectic when applied to a Hamiltonian system of the form

f = Jc DH(y), then the distorted equation is also Hamiltonian
→ with a distorted Hamiltonian: f̃ = Jc DH̃(y)

Central result for symplectic methods: [2]
• etc.

Fruitful for the analysis of structure-preserving numerical methods 9/38



Example

Example: explicit Euler (EE) method, system: ẏ = f(y(t))

Numerical method:

yj+1 = yj +∆t f
(
yj
)
=: Φ∆t

(
yj
)

(4)

Looking for the DVF in the form (ansatz):

f̃(ỹ) = f(ỹ) + ∆t f1(ỹ) + ∆t2 f2(ỹ) + · · · (3)

Taylor expansion of the distorted solution ỹ around t:

ỹ(t+∆t) = ỹ(t) + ∆t
dy

dt
(t) +

∆t2

2!

d2y

dt2
(t) + · · · (5)

Expressing this via f̃(ỹ) (chain rule):

ỹ(t+∆t) = ỹ(t) + ∆t f̃
(
ỹ(t)

)
+

∆t2

2!

(
Df̃ f̃

)(
ỹ(t)

)
+ · · · (6)10/38



Example (cont.)

ỹ(t+∆t) = ỹ(t) + ∆t f̃
(
ỹ(t)

)
+

∆t2

2!

(
Df̃ f̃

)(
ỹ(t)

)
+ · · · (6)

Substituting the ansatz:

ỹ(t+∆t) = ỹ(t) + ∆t f
(
ỹ(t)

)
+∆t2

(
f1 +

1

2
Dff

)(
ỹ(t)

)
+ · · · (7)

Set t = tj , apply the defining condition ỹ
(
tj
)
= yj , ∀j,

yj+1 = yj +∆t f
(
yj
)
+∆t2

(
f1 +

1

2
Dff

)(
yj
)
+ · · · (8)

and compare with the formula for the EE method:

yj+1 = yj +∆t f
(
yj
)

(4)

⇒ f1 = −1
2Dff , f2 = . . ., etc.
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Example (cont.)

DVF of the EE method in general (consistent, first-order):

f̃ = f − ∆t

2
Dff +

∆t2

12
D2(f , f) +

∆t2

3
DfDff + · · · (9)

Mass-spring system (harmonic oscillator):

mẍ(t) + kx(t) = 0 ⇔

(
ẋ

v̇

)
︸ ︷︷ ︸

ẏ

=

(
0 1

−ω2 0

)
︸ ︷︷ ︸

A

(
x

v

)
︸ ︷︷ ︸

y

, with ω :=

√
k

m
(10)

DVF of this system simulated via the EE method:

˙̃x = ṽ +
∆t

2
ω2x̃− ∆t2

3
ω2ṽ +O

(
∆t3

)
, (11)

˙̃v = −ω2x̃+
∆t

2
ω2ṽ +

∆t2

3
ω4x̃+O

(
∆t3

)
. (12)
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Example (cont.)

Solution of DVF truncated up to O
(
∆t2

)
, position:

x̃(t) = C1 e
∆t
2
ω2t cos

[(
ω − ∆t2

3
ω3

)
t

]
+ C2 e

∆t
2
ω2t sin

[(
ω − ∆t2

3
ω3

)
t

]
, (13)

→ notice: numerical anti-dissipation, shift in frequency (dispersion error) 13/38



BEA in practice: how to do it?

• Some more examples of this approach based on Taylor series: [3]

• Equivalent, but different approaches also exist [4, 5, 6] → sometimes better suited
for proofs

• Usually, the calculation quickly becomes tedious

• Quite algorithmic: original computer algebra implementation [3], extended in [7]

14/38



BEA-based compensation I. –
Modifying system parameters



• BEA: tool for the analysis of
structure-preserving numerical
methods

• Can it also be applied constructively?

• Compensating the system being
simulated

• Compensation purely through system
parameters?

• Potential advantages:
• Rectification of existing methods
• No need to modify existing software

implementations

• Existing similar approaches [8, 9, 10]
modify the vector field directly, not the
parameters
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Analysis and improvement of the Newmark method

• Demonstration: compensating the Newmark method [7]

• Newmark method: widely used time integration method
for dynamics, available in commercial engineering
software (ANSYS, Abaqus)

• Time-dependent finite element method (FEM)
simulations for dynamics (direct time integration)

• Wave propagation, crash simulations...

• Generally, numerical dissipation is present (absent only
in special cases) – can be a (dis)advantage

• BEA-based compensation: opportunity to achieve better
results with existing software

→ More accurate / less computationally intensive, more
reliable numerical simulations 16/38



Analysis and improvement of the Newmark method

ODE: second-order linear system, corresponding to the semi-discrete equation of motion
from the FEM model, with time-dependent external excitation

Mq̈(t) +Cq̇(t) +Kq(t) = F(t), q(0) = q0, q̇(0) = v0. (14)

To solve this numerically, the Newmark method is applied:

Maj+1 +Cvj+1 +Kqj+1 = Fj+1, (15)

qj+1 = qj +∆tvj +
∆t2

2

[
(1− 2β)aj + 2βaj+1

]
, (16)

vj+1 = vj +∆t
[
(1− γ)aj + γaj+1

]
, (17)

where γ, β are parameters of the Newmark method. γ = 1/2 → symmetric,
second-order

17/38



Analysis and improvement of the Newmark method

Rewriting (14) to an autonomous, first-order form is needed for BEA:τ̇

q̇

v̇


︸ ︷︷ ︸

ẏ

=

 1

v

−M−1 (Cv +Kq− F(τ))


︸ ︷︷ ︸

f(y)

, (18)

⇒ the corresponding DVF f̃ has been derived (margin on this slide too narrow)

⇒ remarkably, the resulting DVF can be re-written in a second-order form with
distorted matrices

Mq̈(t) + C̃q̇(t) + K̃q(t) = F̃(t), (19)

⇒ this means that the Newmark method simulates a very similar system with different
parameters: opportunity for compensation!

18/38



Distorted matrices

C̃ = C+W(∆t, γ)
(
M−1K−M−1CM−1C

)
+∆t2

(
η − 1

12

)
KM−1C, (20)

K̃ = K−W(∆t, γ)M−1CM−1K+∆t2
(
η − 1

12

)
KM−1K, (21)

F̃(t) = F(t)−W(∆t, γ)
(
M−1CM−1F(t)−M−1F′(t)

)
+

+∆t2
(
η − 1

12

) (
KM−1F(t)− F′′(t)

)
, (22)

up to O
(
∆t2

)
, with

η = 1
2γ − β − 1

12 , W(∆t, γ) = ∆t
(
γ − 1

2

)
M−∆t2

((
γ − 1

2

)2
+ 1

12

)
C, (23)

and distorted initial conditions

q(0) = q0, (24)

q̇(0) = v0 +∆t2η
(
−M−1CM−1Kq0 +

(
M−1K−M−1CM−1C

)
v0 +

+ M−1CM−1F(0)−M−1F′(0)
)
. (25)
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Analysis and improvement of the Newmark method

Compensated system:

Mq̈(t) + Ĉq̇(t) + K̂q(t) = F̂(t), q(0) = q0, q̇(0) = v0, (26)

Two compensations introduced:

• Eliminating numerical damping (not shown here)

• Achieving fourth-order accuracy
• for γ = 1/2, only the O

(
∆t2

)
terms need to be eliminated

20/38



Fourth-order compensation of the Newmark method

Result of derivation for the fourth-order compensation:

Ĉ = C+
1

12
∆t2

(
CM−1K+KM−1C−CM−1CM−1C

)
, (27)

K̂ = K+
1

12
∆t2

(
KM−1K−CM−1CM−1K

)
, (28)

F̂(t) = F(t) +
1

12
∆t2

(
CM−1

(
CM−1F(t)− F′(t)

)
−KM−1F(t) + F′′(t)

)
, (29)

and γ = 1/2, β = 1/6 is required.

Once calculated, these can be used through the entire computation.
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Fourth-order compensation of the Newmark method

Convergence with ∆t is indeed fourth-order:

Derivatives of F(t) can also be calculated/estimated numerically with an at least
second-order accurate formula. 22/38



Fourth-order compensation of the Newmark method

Non-continuous excitation (square wave), total energy of the system:

23/38



Structure of the compensated matrices

M does not change in the compensated system, but K → K̂ does – how does this
change the sparsity structure of the FEM matrices?

K K̂

The derived DVF is underdetermined up to a matrix multiplier of M
→ opportunity for a better structure

24/38
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Structure of the compensated matrices

Computation time vs. accuracy (∼ 750 DoF)

25/38



Open questions, future work

Open questions, future work

• How does the computational time / accuracy tradeoff scale with the number of
DoFs? (ongoing work with D. Borza)

• How do the eigenfrequencies change from K to K̂?
• Can this approach be extended for more complex (nonlinear) excitation?
• Can a more favourable rewriting into second-order form be achieved with respect

to the sparsity structure?
• Extension of this approach to extensions of the Newmark method: HHT-α,

generalised-α

More details on this topic: [7] D. M. Takács and T. Fülöp. “Improving the accuracy
of the Newmark method through backward error analysis”. In: Computational

Mechanics 75.5 (2025), pp. 1585–1606.
26/38



BEA-based compensation II. –
Choosing a better coordinate
system



Accuracy of a numerical method and the applied coordinate system

• We have seen so far that, through BEA, the DVF corresponding to a numerical
method as applied to a system can be constructed

• For structure-preserving methods: the DVF is associated with a system of the same
structure (detailed above)

• Specifically, for symplectic numerical methods: the DVF is Hamiltonian; there is a
distorted Hamiltonian H̃ associated

• But: is the DVF invariant to a coordinate transformation of the original system?
• Is the distorted Hamiltonian?

• Can this be exploited to achieve better accuracy?

27/38



Hamiltonian systems, symplectic methods, coordinate transformations

Hamiltonian system (autonomous): described by the Hamiltonian H(q,p),
H : Rd × Rd → R

Equations of motion: (
q̇

ṗ

)
︸ ︷︷ ︸

ẏ

=

(
0 I

−I 0

)
︸ ︷︷ ︸

Jc

(
Hq(q,p)

Hp(q,p)

)
︸ ︷︷ ︸

DH(y)

, (30)

Symplectic property: (
∂φt

∂y

)T
J −1
c

(
∂φt

∂y

)
= J −1

c (31)

For a numerical method: (
∂Φ∆t

∂y

)T
J −1
c

(
∂Φ∆t

∂y

)
= J −1

c (32)
28/38



Hamiltonian systems, symplectic methods, coordinate transformations

Explicit Euler vs. Symplectic Euler method, harmonic oscillator:

29/38



Hamiltonian systems, symplectic methods, coordinate transformations

To canonical transformations(
q

p

)
7→

(
q̄

p̄

)
=

(
Q(q,p)

P(q,p)

)
, (33)

the Hamiltonian is invariant, i.e.

H̄
(
q̄, p̄

)
:= H

(
Q−1(q̄, p̄),P−1(q̄, p̄)

)
; H̄ = H (34)

From here on, we restrict ourselves to the subset of canonical transformations induced
by a coordinate transformation q̄ = Q(q):

q̄α = Qα(q); p̄α = pi

(
∂
(
Q−1

)i
∂q̄α

)
◦Q(q) (35)

Does this change of coordinates change the numerical results in a meaningful way?

30/38



Distorted Hamiltonian of a symplectic method

Symplectic Euler (SE) method (first-order):

qj+1 = qj +∆tHp

(
qj+1,pj

)
,

pj+1 = pj −∆tHq

(
qj+1,pj

)
.

(36)

Distorted Hamiltonian from BEA:

H̃ = H − ∆t

2
HpHq +O

(
∆t2

)
, (37)

Similarly, in the transformed coordinate system:

˜̄H = H̄ − ∆t

2
H̄p̄H̄q̄ +O

(
∆t2

)
. (38)

→ are these actually the same, i.e., is H̃ invariant to coordinate transformations?
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Distorted Hamiltonian of a symplectic method

H H̃

H̄ ˜̄H

discretisation

Q−1Q ?

discretisation

32/38



Distorted Hamiltonian of a symplectic method

˜̄H = H̄ − ∆t

2
H̄p̄H̄q̄ +O

(
∆t2

)
. (38)

Let us consider the second term in (38), HpHq (first elementary Hamiltonian):

H̄p̄H̄q̄ ≡
∂H̄

∂p̄α

∂H̄

∂q̄α
= . . . =

∂H

∂pi

∂H

∂pk
pl
∂
(
Q−1

)l
∂q̄β

∂2Qβ

∂qk ∂qi︸ ︷︷ ︸
=:ΞHpHq,Q

+
∂H

∂pi

∂H

∂qi
. (39)

→ necessary condition for the invariance of the distorted Hamiltonian:

ΞHpHq ,Q = 0 (40)

• trivially fulfilled for affine coordinate transformations, can also be fulfilled
nontrivially

• non-invariant in general
• can this be exploited to eliminate the first-order term in H̃ to raise accuracy? 33/38



Second-order accuracy with the symplectic Euler method

Condition for second-order accuracy of SE in the transformed coordinate system:

H̄p̄H̄q̄ ≡ 0 ⇔ ΞHpHq ,Q = −∂H

∂pi

∂H

∂qi
(41)

• trivially fulfilled in fully cyclic (action-angle) coordinates.
• achieving this is usually not possible

• are there any other, non-trivial Q coordinate transformations that achieve this?
• not guaranteed, but sometimes possible
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Demonstration: harmonic oscillator, symplectic Euler method

Harmonic oscillator:

H(q, p) =
1

2
p2 +

1

2
q2, (42)

Condition (41) for second-order SE in this case, after calculations:

(
1− q2

)(∂Q

∂q

)−1 ∂2Q

∂q2
+ q = 0. (43)

Appropriate coordinate transformation fulfilling this condition:

Q(q) =
2

π

(
q̂
√
1− q̂2 + arcsin(q̂)

)
, where q̂ =

q

1 + 2∆t2
, (44)

35/38



Demonstration
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Demonstration

Trajectory of the numerical results in the two coordinate systems:
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Open questions, future work, other results

• When does a better coordinate system exist in general?

• Extension of this approach beyond the SE method? (Størmer–Verlet might be a
good candidate)

• Extension to the entire class of canonical transformations?

• Additional result not explored here: preservation of first integrals in the SE method

More details on this topic: [11] D. M. Takács and T. Fülöp. “On the coordinate
system-dependence of the accuracy of symplectic methods”. In: Journal of

Numerical Analysis and Approximation Theory (2025). In press.
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