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Overview

1. An introduction to backward error analysis (BEA) for ODEs
2. BEA-based compensation |. — Modifying system parameters

3. BEA-based compensation II. — Choosing a better coordinate system
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Backward error analysis for ODEs



Notation, terminology

Autonomous, d-dimensional ODE (system), initial value problem:

y(t) =£(y(®),  ¥(0)=yo, (1)
where y : R — R% is the (unknown) solution, f : R? — R? is the (sufficiently smooth)

generating vector field (the “system” being simulated), and yo € R is the initial
condition.

Explicit, one-step numerical method on a uniform grid with time step At:

vyl =d,G7), j=01,2,... (2)
where tJ := jAt, with 7 = 0,1,2, ... as the index of the time step, y’ is the
approximate solution at #/. Designed to solve (1) approximately.

Flow of the vector field (integral curves at all points in state space, parametrised by ¢ —

a one-parameter map): ¢, : R x R? — RY .



Vector field f
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original ODE

y=f(y)
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e The flow corresponds to the exact
exact solution

original ODE W ®t(Y0)
y=fy)

solution of the original problem
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e The flow corresponds to the exact
solution of the original problem

e The numerical solution is only

approximate

exact solution

. ¢t(yo)
X
original ODE o 528

¥ = f(y) &y,
\‘{27@1?
R

numerical solution

oy =da(y)
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e The flow corresponds to the exact

. . exact solution
solution of the original problem

e The numerical solution is only original ODE__act #1(yo)
approximate ¥=f(y) "3213{;7%. numerical solution
. . . e
e What is the numerical solution an Rt

. oyt = d ()
exact solution of 7

5/38



The flow corresponds to the exact

. . exact solution
solution of the original problem

The numerical solution is only original ODE s #1(yo)
approximate ) =
pp 9= f(y) - !Zl{{h ey numerical solution
. . . ~{e
What is the numerical solution an Ui ;
i ¥ =2ay)
. distorted ODE s t
exact solution of 7 B

BEA: constructing the distorted ODE y=faul)

5/38



Backward error analysis for ODEs

e Backward error analysis: treating the
approximate solution of f by ®,, as an
exact solution of a certain system

nearby to the original one, i.e.
exact solution

y(tj) = y7.

e This other system is described by its original ODE_~ act #i(v0)
so-called modified equations or y=fly) < 2, o umerical solution
distorted equations. 7 .

: : . distorted ODE & > v =2

e Corresponding distorted vector field L %

(DVF): f y=farld)

e fisan underlying, continuous-time
counterpart of the discrete-time
numerical method 6/38



Correspondence between the Lie algebra and the Lie group

Lie algebra of vector fields with Lie derivative & Lie group of smooth maps?
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The distorted vector field

The distorted vector field (DVF) f:

o ...Does it exist?
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The distorted vector field

The distorted vector field (DVF) f:

e ...Does it exist?
e usually, it does [1], but...
e it is not autonomous: f(y, t)
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£(7) = £(F) + Athi(F) + AP H(F) + AP f3(F) + - - (3)

8/38



The distorted vector field

The distorted vector field (DVF) f:

o ...Does it exist?

usually, it does [1], but...

it is not autonomous: f(y, t)

or, it can be approximated via an asymptotic series of an autonomous f'(y) as:

£(7) = £(F) + Athi(F) + AP H(F) + AP f3(F) + - - (3)

Truncated version is “good enough” for “long enough” ¢
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Nice properties of the DVF

£(F7) =£(F) + Athi(F) + AP E(F) + AP f(F) + - - (3)
Nice properties of the DVF include:

o If ®,, has order p, then f;(y) =0forj=1,....,p—1
o If ®,, is a symmetric method, then f;(y) = 0 for all odd j
e Transfer of structure-preserving properties:
o If ®,, exactly conserves a first integral I(y), then the distorted equation also has
I(y) as a first integral
e If ®,, is symplectic when applied to a Hamiltonian system of the form
f = J.DH(y), then the distorted equation is also Hamiltonian
— with a distorted Hamiltonian: f = J. DH(y)
Central result for symplectic methods: [2]
e etc.

Fruitful for the analysis of structure-preserving numerical methods 9/38



Example: explicit Euler (EE) method, system: y = f(y(t))
Numerical method:
Yy =y + Atf(y?) = Pac(y’) (4)

Looking for the DVF in the form (ansatz):

£(3) = £(7) + AtRL(F) + AP (F) + -+ (3)
Taylor expansion of the distorted solution ¥ around ¢:
dy At? A%y
yit+At) =y ()+Atdt()+7@(ﬂ+m (5)

Expressing this via £(§) (chain rule):
2
F(t+ At) = §(t) + AtE(F(t)) + AT]; <fo> (y@) +-- (6)10/38



Example (cont.)

F(t+ At) = (1) + Atf(F(1) + Aj (fo) (F@®) +- (6)

Substituting the ansatz:
F(t+ At) = §(t) + Atf(§(t)) + At (fl + ;fo> (y(t) +--- (7)
Set t = tJ, apply the defining condition Sr(tj) =yJ, vy,
yit =yl + Atf(y7) + A2 <f1 + ;D&) (y/) +- (8)
and compare with the formula for the EE method:

yItl =yl 4 Atf(y-j) (4)

= fi = —1Dff, f, = .., etc. 11/38



Example (cont.)

DVF of the EE method in general (consistent, first-order):

At

- At
P— J— - —_— 2 — ...
f= f- 5 Dff + - D*(£.f) + - DIDAf +

At?

Mass-spring system (harmonic oscillator):

2

[ 0 1
mi(t) + kz(t) =0 < <5”> - ( ,
v —w* 0
—— N——
y A y
DVF of this system simulated via the EE method:
: At At?
=0+ 7&5; — Tw% +0(Af?),
: At At?
K 2~ 2~ 4~ 3
V= —w m—|—7w v—i—?w :E—i—O(At )

(9)

) <i> with w = \/z (10)
NS

(11)

(12)
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Example (cont.)

Solution of DVF truncated up to (’)(AtQ), position:
At?

2
- At 2 . At, 2, . At
:L‘(t):ClezwtCoS w_43 w3 t +02€2Wt81n W_7(")3 t, (13)
O  explicit Euler _?_ (Czihtut Euler
/%? 1 exact - 21 —— distorted
—q‘:) —— distorted é -
.é 2 A -g
3] O 2\ N ~ i
s 01 p 7 =
2 ./ N/ N N 3
£ -2 z
= S
.g §
A —4 A
0 10 20 30 40 50 60

Time (dimensionless) Position (dimensionless)

— notice: numerical anti-dissipation, shift in frequency (dispersion error) 13/38



BEA in practice: how to do it?

Some more examples of this approach based on Taylor series: [3]

Equivalent, but different approaches also exist [4, 5, 6] — sometimes better suited
for proofs

Usually, the calculation quickly becomes tedious

Quite algorithmic: original computer algebra implementation [3], extended in [7]
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BEA-based compensation |. —
Modifying system parameters




e BEA: tool for the analysis of
structure-preserving numerical
methods

exact solution

i ®t(Y0)
original ODE e‘l;‘)c'\
y=fv) \Izlflb . numerical solution
Zerye
N G+l _ i
distorted ODE & ¥y =2a(y)
y=f At(g)
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e BEA: tool for the analysis of
structure-preserving numerical
methods

e Can it also be applied constructively?

exact solution

i ®t(Y0)
X
original ODE e$ag
y=fv) N!Zlflbe ) numerical solution
\!!Qa/
N J+1 7
distorted ODE & ¥y =2a(y)
40

i = far()
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e BEA: tool for the analysis of
structure-preserving numerical
methods

e Can it also be applied constructively?

e Compensating the system being
simulated

compensated ODE
U= fad) Ty,
RS
A
igi X
original ODE o 428
9= f(y) &y,
\‘{bGIH
ey
A

distorted ODE &
%

i = far()

exact solution

®t(Y0)

numerical solution

Y = @ p(y)



BEA: tool for the analysis of
structure-preserving numerical
methods

Can it also be applied constructively?
Compensating the system being

simulated

Compensation purely through system

parameters?

compensated ODE
U= fae(9) \Qlfl?ze . exact solution
My
“a
igi ¢t(yo)
3
original ODE e$ag
v=fW) \Izlflbe ) numerical solution
\!!Qa/
A J+1 7
distorted ODE & ¥y =2a(y)

i = far()
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BEA: tool for the analysis of
structure-preserving numerical
methods

Can it also be applied constructively?

Compensating the system being
simulated

Compensation purely through system
parameters?
Potential advantages:

e Rectification of existing methods
e No need to modify existing software
implementations

compensated ODE

exact solution

= fau® ‘!3‘!{27%.
e,

a
i ®t(Y0)
X
original ODE e$ag
y=fv) \Izlflbe ) numerical solution
\!!Qa/
N J+1 7
distorted ODE & ¥y =2a(y)

i = far()
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BEA: tool for the analysis of
structure-preserving numerical
methods

Can it also be applied constructively?

Compensating the system being
simulated

Compensation purely through system
parameters?
Potential advantages:

e Rectification of existing methods

e No need to modify existing software

implementations

Existing similar approaches [8, 9, 10]
modify the vector field directly, not the
parameters

compensated ODE

exact solution

= fau® ‘!3‘!{27%.
e,

a
i ®t(Y0)
X
original ODE e$ag
y=fv) \Izlflbe ) numerical solution
\!!Qa/
N J+1 7
distorted ODE & ¥y =2a(y)
40

i = far()
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Analysis and improvement of the Newmark method

e Demonstration: compensating the Newmark method [7]

e Newmark method: widely used time integration method
for dynamics, available in commercial engineering
software (ANSYS, Abaqus)

e Time-dependent finite element method (FEM)
simulations for dynamics (direct time integration)

e Wave propagation, crash simulations...

e Generally, numerical dissipation is present (absent only
in special cases) — can be a (dis)advantage

e BEA-based compensation: opportunity to achieve better
results with existing software

— More accurate / less computationally intensive, more

reliable numerical simulations 16/38



Analysis and improvement of the Newmark method

ODE: second-order linear system, corresponding to the semi-discrete equation of motion
from the FEM model, with time-dependent external excitation

Mq(t) + Cq(t) + Kq(t) = F(t), q(0) = qo, 4(0) = vo. (14)

To solve this numerically, the Newmark method is applied:

Ma/t! + Cvit! 4+ Ko/t = Fith, (15)
Jj+l _ 7 At J A7t2 1—92 J 1 98a711 16

ot =g’ + V+2[( B)a’ +2pa’ "], (16)
vITh=vI + At[(1—)al +~a/t!], (17)

where ~, [3 are parameters of the Newmark method. v = 1/2 — symmetric,
second-order
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Analysis and improvement of the Newmark method

Rewriting (14) to an autonomous, first-order form is needed for BEA:
T 1
ql| = v , (18)
v ~M~1(Cv +Kq - F(7))

y f(y)
= the corresponding DVF f has been derived (margin on this slide too narrow)

= remarkably, the resulting DVF can be re-written in a second-order form with
distorted matrices

Mq(t) + Calt) + Ka(t) = F(1), (19)

= this means that the Newmark method simulates a very similar system with different

parameters: opportunity for compensation!
18/38



Distorted matrices

C=C+W(Aty) (M 'K-M'CM'C) + A2 (n— L) KM~'C, (20)
K = K- W(At,7 )M 'CM 'K + A¢? (n — ) KM 'K, (21)
F(t) = F(t) - W(At,7) (MT'CM'F(t) - M'F'(1)) +
+ A8 (- 13) (KMT'F(t) - F'(1)) (22)
up to O(AtQ), with

n=dy-B—1 WALy =At(r-HM-al (-5 +L)c, ()

and distorted initial conditions

q(0) = qo, (24)
q(0) = vo + At*n (-M'CM'Kqo + (M'K - M'CM™'C) vq +
+ M 'CM'F(0) - M'F/(0)). (25)



Analysis and improvement of the Newmark method

Compensated system:

o~ ~

Mq(t) + Ca(t) + Kq(t) = F(t),  q(0)=qo, a(0)= v, (26)

Two compensations introduced:

e Eliminating numerical damping (not shown here)
e Achieving fourth-order accuracy
e for v =1/2, only the O(Atz) terms need to be eliminated
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Fourth-order compensation of the Newmark method

Result of derivation for the fourth-order compensation:
~ 1
C=C+ EAtQ (CM'K+ KM 'C-CM'CM™'C), (27)

- 1
K=K+ EAR (KM'K - CM'CM'K), (28)

)

(t) = F(t) + %AtQ (CM™' (CM™'F(t) - F'(t)) — KM 'F(t) + F"(t)), (29)

and v =1/2, f =1/6 is required.

Once calculated, these can be used through the entire computation.
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Fourth-order compensation of the Newmark method

Convergence with At is indeed fourth-order:

0
10 10° 4
5
10 10-2 -
4
1077 A 1074 4
2 106 =
2 10771 g 107 4
s .
—107% +  10°® 4
10-1° 4 4 —O— Newmark 10-10 Newmark
- N4C N4C
-f1- RK4 © RK4
—12 ] _
10 —A- gen.-a 107" 4 - gen.-a
— T T — — T
10°° 1072 107! 107 1072 107"

At At

Derivatives of F(t) can also be calculated/estimated numerically with an at least
22/38
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Fourth-order compensation of the Newmark method

Non-continuous excitation (square wave), total energy of the system:

0.06 1

0.05 1

0.04

Total energy (dimensionless)

0.03 1

0.02

—— Newmark
— N4C

RK4

—— gen.-«a

reference

Time (dimensionless)
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Structure of the compensated matrices

M does not change in the compensated system, but K — K does — how does this
change the sparsity structure of the FEM matrices?

K

=~
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Structure of the compensated matrices

M does not change in the compensated system, but K — K does — how does this
change the sparsity structure of the FEM matrices?

K

=~

The derived DVF is underdetermined up to a matrix multiplier of M
— opportunity for a better structure 24/38



Structure of the compensated matrices

Computation time vs. accuracy (~ 750 DoF)

-8 -8 |
107° 3 A<, - N4C 10 A‘*“ﬁ -5 N4C
A .
~ _A ~
A ¢t gen.-av A =A- gen.-a
~ .
o ‘A N\,
1077 5 < 107° 4 A
'y N\,
B N - N
3 N B
2 —10 5 _ .
2‘ 10 A 3 1010 4 \.
< N\, G A
= A =
1071 4 10-1 4
10712 4 10-12 4
107! 10° 107! 10°
Normalized computation time

Normalized computation time
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Open questions, future work

Open questions, future work

e How does the computational time / accuracy tradeoff scale with the number of
DoFs? (ongoing work with D. Borza)

e How do the eigenfrequencies change from K to K?

e Can this approach be extended for more complex (nonlinear) excitation?

e Can a more favourable rewriting into second-order form be achieved with respect
to the sparsity structure?

e Extension of this approach to extensions of the Newmark method: HHT-q,

generalised-a

More details on this topic: [7] D. M. Takacs and T. Fiilop. “Improving the accuracy
of the Newmark method through backward error analysis”. In: Computational

Mechanics 75.5 (2025), pp. 1585-1606.
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BEA-based compensation Il. —
Choosing a better coordinate

system




Accuracy of a numerical method and the applied coordinate system

e We have seen so far that, through BEA, the DVF corresponding to a numerical
method as applied to a system can be constructed

e For structure-preserving methods: the DVF is associated with a system of the same
structure (detailed above)

e Specifically, for symplectic numerical methods: the DVF is Hamiltonian; there is a
distorted Hamiltonian H associated

e But: is the DVF invariant to a coordinate transformation of the original system?

e |s the distorted Hamiltonian?

e Can this be exploited to achieve better accuracy?

27/38



Hamiltonian systems, symplectic methods, coordinate transformations

Hamiltonian system (autonomous): described by the Hamiltonian H(q, p),
H:R*xR*— R

Equations of motion:

~——
y Je DH(y)
Symplectic property:
O, ' _1 [ Opy -1
E— — p— 1
(52) 7 (%) -~ (31)
For a numerical method:
0P 5, ' 1 [(0Pp, -1
= 2
< dy ) Je dy Je G )28/38



Hamiltonian systems, symplectic methods, coordinate transformations

Explicit Euler vs. Symplectic Euler method, harmonic oscillator:

2
4 -

§ 3 »\7 g
£ 97 Z
S 4 .
= Tm % : & .
=2 0 t A = 04 !
g \ / ¢ « ,
R A 2 /i
g & g 4
£ 27 & iy W@ g 14 SR %
0 _3 &0 ﬁ'
=Y 4 =

T T T T T T T T T _2 T T T

—-4-3-2-101 2 3 4 -2 -1 0 1 2
q, generalised coordinate q, generalised coordinate
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Hamiltonian systems, symplectic methods, coordinate transformations

To canonical transformations

q q Q(a,p)
= , 33
<p> v <1‘>> (P(q,p)> (33)
the Hamiltonian is invariant, i.e.

H(g,p) :=H(Q '(@p),P '(@p); H=H (34)

From here on, we restrict ourselves to the subset of canonical transformations induced
by a coordinate transformation g = Q(q):

—1\%
7" =Q%a); Pa=pi (%) 0 Q(q) (35)

Does this change of coordinates change the numerical results in a meaningful way?
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Distorted Hamiltonian of a symplectic method

Symplectic Euler (SE) method (first-order):

o't —qj + AtH, (g, p),

b1 = i — AtH, (i, p?). (36)
Distorted Hamiltonian from BEA:

H=H-—H,H, + O(At?), (37)
Similarly, in the transformed coordinate system:

H=H—="HyH;+ O(A#). (38)

At
2
— are these actually the same, i.e., is H invariant to coordinate transformations?
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Distorted Hamiltonian of a symplectic method

I ___discretisation 77
QlQt

!
!
!
1
[ ___discretisation . gy
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Distorted Hamiltonian of a symplectic method

i = 1~ L0, + 0(Ar), (38)
Let us consider the second term in (38), H,H, (first elementary Hamiltonian):
_ _ OHOH oHOH 0(QY 92Q° oHOH
PR a0 Opioplt 04° 0qFoq ' op; O (39)
—Zn,Hy.Q

— necessary condition for the invariance of the distorted Hamiltonian:

=H,H,Q =0 (40)
e trivially fulfilled for affine coordinate transformations, can also be fulfilled
nontrivially

e non-invariant in general

e can this be exploited to eliminate the first-order term in H to raise accuracy? 33/38



Second-order accuracy with the symplectic Euler method

Condition for second-order accuracy of SE in the transformed coordinate system:

PN )/
plg = SHHLQ = T

(41)

e trivially fulfilled in fully cyclic (action-angle) coordinates.
e achieving this is usually not possible
e are there any other, non-trivial Q coordinate transformations that achieve this?

e not guaranteed, but sometimes possible
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Demonstration: harmonic oscillator, symplectic Euler method

Harmonic oscillator:
15 15

H(q,p) = P 50 (42)

Condition (41) for second-order SE in this case, after calculations:

o0\ ! 52Q
(t-4) <8q> o T (43)
Appropriate coordinate transformation fulfilling this condition:
2 . 4q
I A o /\2 - A~ A —
Qq) = - (q 1—-4¢°+ arcsm(q)) ) where § T oA (44)
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Demonstration

—@— sE, original

sE, transformed

1072 4 o
-

1073

1074

107°

absolute error of H

10°¢

1077
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Demonstration

Trajectory of the numerical results in the two coordinate systems:

""" =gt
| |
1.0 4 s 1
| :
_ - i
I
H |
- i ‘ 4
exact A exact
sE, original —4 - = 0.0 sE, original
sE, transformed | / sE, transformed
—0.5 1
~1.0
T T T T
-1.0 —0.5 0.0 0.5 1.0 X
q q
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Open questions, future work, other results

When does a better coordinate system exist in general?

Extension of this approach beyond the SE method? (Stgrmer—Verlet might be a
good candidate)

Extension to the entire class of canonical transformations?

Additional result not explored here: preservation of first integrals in the SE method

More details on this topic: [11] D. M. Takacs and T. Fiilép. “On the coordinate
system-dependence of the accuracy of symplectic methods”. In: Journal of
Numerical Analysis and Approximation Theory (2025). In press.
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Thank you for your kind attention!



Non-invariance of the distorted Hamiltonian

x10~5

E(r,0) ~ E(x,y)
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