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Introduction

Evolution equation, equation of motion, dynamical law,
governing equation, etc...

System of ordinary or partial differential equations, that
determines the time-space evolution of a physical system.



Original and extension

Fourier

0: T — AFOx T =0, AF > 0.

Memory extension: Maxwell-Cattaneo-Vernotte

TattT+8tT—)\F8XXT:O, )\F,7'>O.

Weakly nonlocal and memory extensions: Guyer-Krumhans|
TattT+atT—)\FaXXT—aatXXTZO, AF,T,3>O.

Higher grade fluids (wnl in v'), Korteweg fluids (wnl in p), Cosserat solids

(wnl and memory in €7), rheology of solids (memory in €¥), internal
variables, ...









Engineering, physics and mathematics
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Engineering, physics and mathematics

DS

Mathematics is the light.
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True, unbiased and sharp vision

Mechanics: the nonexisting ideal
o Microscopic, ideal building blocks;

o Variational principles: dissipation is a necessary evil ;

Thermodynamics: the dirty real
o Obscure empirical corrections, confusing basic concepts;

o What is the origin of the evolution equations?

Research strategy

o Mathematical clarity, logical
minimum;

o Physical control: observations and
experiments;

o Engineering flexibility: prediction
machine.



Thermostatics and thermodynamics

Matolcsi (Akadémiai, 2005)
Berezovski-Van (Springer, 2017)



What is entropy ?
Universal and/or absolute: structure independent.

Statistical physics - statics; kinetic theory - dynamics: they are special.

Ordinary thermodynamics

o Thermodynamic bodies. Evolution by ordinary differential equations.

o Second law: S(E, V) is concave and increasing along the d.e.?
Asymptotic stability of the equilibrium? Clear and sound physics.

: " :
o Double meanings. E.g. dE = TdS — pdV versus E =TS — pV

Thermodynamics is a theory of stability

o Interesting and simple math: bifurcations and phase transitions,
generalized gradient systems, metriplectic structures, etc.

o Constructing the evolution.
o Transition to continua: Euler homogeneity.



Thermodynamics and dynamics

Van (in Applied Wave Mechanics, Springer, 2009)
Berezovski-Van (Springer, 2017)



The origin of dissipative evolution

Internal variables: scalar o

o Duhem (1907), Mandelstam and Leontovich (1937), Landau and

Lifshitz, etc...

o Coleman and Gurtin (1967): only local evolution

o Inertial or relaxational i.e. mechanical or thermodynamical evolution?

a evolution? & = f(a, di, 0j)

Local: thermodynamic state variables

: ds . dsS dS
: —a=—f> f=1—,
S(a) S(a) = daa o 0 — do’
o Flux: f, Force: %, constitutive equation.

o nonlinear, /(a): Lagrange theorem. General solution,

>0

o Local and weakly nonlocal extensions: constitutive state space.



Heuristic weak nonlocality

Internal variables: scalar o

o Duhem (1907), Mandelstam and Leontovich (1937), Landau and
Lifshitz, etc...

o Coleman and Gurtin (1967): only local evolution

o Inertial or relaxational i.e. mechanical or thermodynamical evolution?

a evolution? & = f(a, di, 0j)

Weakly nonlocal: o and gradients.

dS S 90§ S dS
i . — _— = = = e h f Y = [—
S(a, 0jc) Ja " 30" 5a 0 0,0) therefore |a 5o

o Second order weakly nonlocal.

o Heuristic combination of mechanics and thermodynamics. Phase-field.



Linear algebra

System of constrained inequalities.

Theorem of Liu (1972) needs special affine Farkas (1918)

Let a; # 0 be vectors in a finite dimensional vector space V and «; real
numbers, i = 1...nand S; = {p € V¥*|p-a; = «;,i = 1...n}. The following
statements are equivalent for a b € V and a real number §:

i)p-b>p forallpe s,

(ii) There are real numbers Aq, ..., A, such that

b= zn:)\,-a,-, and 5 < Zn:)\,'a,'.
i=1 i=1

n n n
0 < (p~b—ﬁ)—z )\,-(p-a,-—a,-) = p'(b—z )\,--a,-)—ﬁ—kz )\,-a,-, Vp e V*.
i=1 i=1 i=1
Process directions, Liu equations, Lagrange-Farkas multipliers, dissipation
inequality, ...



Internal variables: rigorous evolution

Coleman-Gurtin: with constitutive state space («, 0;«)

£2, if S(av, 9;c0) > 0, whenever & — f(a, dja) = 0.

S(a, i) — M — F(@, 9;0)) = (0aS — N)& + 0.0 S Dict + Af > 0

o Process directions: ¢, 0;c
o Liu equations: 9,5 — A =0, 05,5 =0.
o Dissipation inequality: 9,Sf >0 — ff=19,S, (/>0)

Where is Ginzburg-Landau?
o Higher order constitutive state space: («a, dicx, Ojjcv);
o Arbitrary, constitutive entropy flux;

o Gradient constraint: d;& = O;f



Weakly nonlocal internal variables

o Higher order constitutive state space: («a, 0ja, 0jjv);
o Arbitrary, constitutive entropy flux;
o Gradient constraint: 0;& = 0O;f
Constitutive state space («, 0;ar, 0;c)
£2, if S(a, D, D) + ;S (v, Brv, Djjcx) > 0, whenever
& — f(a, Oiar, Ojjar) = 0 and ;& — Oif (v, Ojev, Ojjx) = 0.

S+8;J = Na—f) = N(dia — 8;f) >0

o Process directions: &, 0;c, 0;ic, Ojjkx

o Liu equations: 9,5 = A, 09,05 =N, 09;0S = 0j
Entropy flux: J' = —95.4S f + J'(c, i),

Dissipation inequality |0 < f (0,5 — 0i(09,a5)) | = f%

©

©




Diffusion. Internal variables or CIT

The constraint is a balance, the flux, j/, is constitutive.

S(a, dia) + 90 (v, Bix) > 0,

whenever Oro + 8iji(047 diar) = 0,

S+ 8,-Jf — MOra + 8iji) >0

o Process directions: ¢, 0;c

o Liu equations: 3,5 — A =0,

o Dissipation inequality:

01(0,S) j > 0

—

J' =k 0'(045)

)

95,08 =0, J' = 0,5/ + J'(a)

(x> 0)
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Internal variables: rigorous Cahn-Hilliard

Cahn-Hilliard equation: extended diffusion.

o+ 0 =0, j=rd (22) = k' (0aS — 0(09,0S)),  K>0.

The problem
o The order of the constitutive state space: (o, Ojcv, 0, Ojjkcy, ...) 77

o How many gradient constraints: 9;(0:a + 9;j') =0, ...?

A solution
o Fourth order constitutive state space and a single gradient constraint.

o A repeated application of the Liu conditions. Further specifications for
the extra entropy flux: J'(3) — J'(2).

= (025 ~ 0(95.05) ) 5 + (99,05)04]" + (0, 0y, 05)

Dissipation inequality: |0 < 9; [(%5 — ak(aakQS)]ji



Verification: Non-Fourier heat conduction

Van-Fiilsp (AdP, 2012)
Kovacs-Van (IJHMT, 2015)
Van et al (EPL, 2017)



Second sound, ballistic propagation

Second sound - wavelike propagation of internal energy (temperature);

Ballistic propagation - temperature disturbances with the speed of the
sound?

o New kind of dissipation: hierarchical balances of extended
thermodynamics

o Entropy density and entropy flux: internal variables and Nyiri
multipliers

o Experimental observation: low temperatures, microscopic explanation

o Universality: does heterogeneity leads to non-Fourier heat conduction?



Heuristic heat conduction

Heuristic: functions are determined along the calculations.

as ; q'

OtE + 0;q' =0, dE =TdS, J = Eq -

| q' (1
H ! —_ - H R p— ! H e >
; 1
q D <T> )\Fﬁ
Internal (7) variables with Nyiri multipliers:
2

8:S(E, ?) + 8:.Ji(...) = B, <50(E)—m"2> +0:(biq;) =

(bU — T5U> 0iqj — (mo:q" — 8;b”)qj >0

Fluxes and forces again.



A practical tool

(b — ;_) Oxq — (mOrq — Oxb)g > 0

1
(b — ) = /axq, matq — Oxb = _kq7 l7 k > 0.

T

A convenient solution.

=
70:q+ G+ ArOx T — a0cq = 0|

mdrq — Ox <1 + laxq) = kq

Fourier, Maxwell-Cattaneo-Vernotte, Guyer-Krumhans|
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Guyer-Krumhansl| secrets

Balance + constitutive, nondimensional

atT+ 8Xq = 07
TOtq+ q+ AFOx T — adiq =

Where is the wave?

TattT—)\FaXXT+atT—aatXXT:O

Hierarchy
a
70; (0:T = 20uT) + 0T = AT = 0

TA = a: exact Fourier solutions!

24 /59




Heat pulse experiments

front face rear face

preamplifier

heterogeneous specimen
radiation shield

heat
pulse

opaque layer

silver layer
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Guyer-Krumhansl| evaluation

Fourier vs.
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Samples

2

Capacitor, limestone from Villany, metal foam, leucocratic rock
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Numerical aspects (R. Kovacs)

©

©

Boundary conditions:

natural for heat flux,

o Shifted fields, explicit and implicit schemes,

©

Tested by analytical and exact solutions (Zhukovskii),

o Fast. Commercial solutions (ComSol) do not work,

©

Temperature [-]

0 0.2 0.4 0.6
Time [-]

Rieth,

Easy to generalize: ballistic propagation, acoustics, ...

Explicit finite differences with stability (Jury) and convergence.

= analylicél I
— numerical r
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Kovacs and Filop, manuscript
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Theoretical aspects (T. Ruggeri)

Rational extended thermodynamics

o Special structure of local balances: state space is (F, F', F¥,...)

O:F + 8;F" =0,
OF' + 9;FY =0,
O¢FY + Ok F* = P

+ main field.
o Concave entropy is a generator of a gradient system: symmetry.

o Zero entropy production: hyperbolicity.

Problem 1: Energy is the trace of F¥: the pressure.

Problem 2: Spacetime compatibility.

Problem 3: Experiments?

Internal variables and Nyiri multipliers can do a better job. (We think that,)



Summary

Thermodynamic compatibility of evolution
o Thermodynamics is connected to stability

o Heuristic and rigorous constructive methods: fluxes and forces vs. Liu
procedure

o New and extended equations: Ginzburg-Landau and Cahn-Hilliard

Further aspects
o Spacetime is essential: covectors and higher order tensors, ...

o Dual internal variables for mechanics, generalized entropy flux, ...

o Generalized continua, Korteweg fluids, etc...

Heat conduction: verification and prediction
o Discovery of room temperature heat conduction beyond MCV,
o Hierarchical structure,

o Numerical methods.



Thank you for your attention!




Generalizations of Fourier

Ballistic-conductive system:

pcO: T +0xqg = 0,
Tg0tq + q+ XOx T + k0xQ = 0,
7Q0:Q + Q + KOxq 0,—

TqTQatttT + (Tq + TQ)att T -+ 61_- T = CY@XX T + (,{2 + TQ)atXX T

Special cases:
o Maxwell-Cattaneo-Vernotte: 7404+ T + 0: T = aOxx T

o Guyer-Krumhansl| (7¢ = 0):
TqattT aF 8tT S a@XXT aF I2atXXT
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Kaminski, 1990

Resistance wire ~ Thermocouple

Particulate materials:
sand, glass balottini, ion exchanger

t=20-60s

glass tallotini

-1

DIMENSIONLESS
TEMPERATURE

[EE

D 100 200 300 400 SO0 600 700 SO0G 90O 1000 1900
t
TIME
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Mitra et al., 1995

Mitra-Kumar-Vedavarz-Moallemi. 1995

~ 00 . ‘ . —
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Korteweg fluids: PY(p, 9ip, D;p, Oiv/)
Classical, istropic, polynomial Korteweg:

P = [p(p) — adfp — BO* pdkpldT — dyp — 50 pV p + MY

A Liu based approach
o Second order constitutive state space in p: (e, d;e, p, d;p, djjp, VY.

o Constraints: balance of mass, total energy, momentum, gradient of
balance of mass, comoving frame ((9;a) = 0;a — 0;v*0ka)

J=(q - VJ-PJ"') g (D0,p SOV + D, pSOkV') +
i iia. 1
(s=Slp): (a' = wPOF-

Dissipation inequality

1

y T p? i T
T{PU‘<”+§8k(aakps)> 59 = L2200 9,)] o0 = 0.



Internal variables: various concepts

Short story: Muschik and Maugin I-I1l. (JNET, 1994)
o Thermodynamic state variables: local, first order;
o Internal degrees of freedom: Lagrangian mechanics and dissipation
potentials, second order in time;
o Dynamic degrees of freedom (Verhas): local, generalized entropy flux;
o Weakly nonlocal;
o Dual and weakly nonlocal: Van-Berezovski-Engelbrecht (JNET, 2008).

Duality: o, 5;

Second order weakly nonlocal state space («, 0ja, 0jicv, 8, 03, 0ji ) ;
Constitutive entropy flux;

Evolution equations are constraints:

© ©6 0 ©

é—|—8;qi:0, d:f, B:g

-1
0< ﬁ'ai? +f (8a5 — 8;(63ia5)) + g (8/35 — 8,'(((931./55))




Solid Mechanics and I1s Applications

Arkadi Berezovski
PeterVan

Internal
Variables in

Thermoelasticity

@ Springer
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Essential aspects

Content
@ Internal variables in thermomechanics;
@ Dispersive elastic waves in one spatial dimension;
@ Thermal effects;

@ Weakly nonlocal thermoelasticity of microstructured solids

Content
o A systematic method to extend classical continuum theories;
o Mechanics and thermodynamics;

o Simple and constructive.

Perticular aspects
o Wave propagation in 14+1D;
o Material manifolds, small strains;

o Numerical algorithms;



The role of heterogeneity
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Aspects of space-time

Matolcsi-Van (PLA, 2006)
Fiilsp-Van (MMAS, 2012)
Van (CMaT, 2017)



Objectivity and relativity

Transformation rules
o Galilei invariance

o Rigid body motion

Transformation rule of Noll (1958):

= ()= (oo 00

where Q7! = Q7 is an orthogonal tensor, a is abstract index.

Jakobian: )
g X2 (1 v
b= ok W+ QT @

Transformation rule:

C/a _ Jabcb



Four-velocity vs. three velocity

Transformation of four-vectors (AP) vs. three-vectors (a'):

a0 L O\ (o) _( 0
JILA® = <hi_|_QiJ_Xj Qij> (ai) = <Q’ja’>

Three-vector transformation rule:
a/i _ Qijaj

Velocity is a vector:

Transformation by the Jakobian:

la _ qa . b __ . 1 OJ 1 = . . L
ve=Jpv = hi+Qinj QY vi] hi+Qinj+QijVj 42/59



The four dimensions of Galilean relativistic space-time

M E

.




Mathematical structure of Galilean relativistic space-time

@

©

The space-time M is an oriented four dimensional vector space of the
x? € M world points or events. There are no Euclidean or
pseudoeuclidean structures on M: the length of a space-time vector
does not exist.

The time 1 is a one dimensional oriented vector space of t € I instants.
T, - Ml — T is the timing or time evaluation, a linear surjection.

0j 1 Ex E — R ®R Euclidean structure is a symmetric bilinear
mapping, where E := Ker(7) C M is the three dimensional vector
space of space vectors.

Reference frames are global and smooth velocity fields.
Transformation rules can be derived between any reference frames.

Thinking in space—time: momentum balance is a constraint,
density and flux, gradients are covectors,...



Thermostatics of elasticity: S(E, €jj, p)

From discrete to continuum: extensivity.

AS(E, V, M) = S(AE,A\V,AM) + Is(e,v) <> E=TS — pV + uM
Gibbs relation for elasticity: specific quantities

de:9d5+ﬂde’7, e=0s+ 20 Vel 4 p.
p P

Gibbs relation for elasticity: densities

dE:0d5+UUd6ij+(u+ p )dp7 E:95+UU€U+MP-

Gibbs relation for elasticity: free energy

dW = —Sdf + oydell + < 7 > dp, W =ayel + pp.
)



Vectors an covectors are different

M E t'\ t
X" \X + vt

Vector transformations (extensives):

I ) <,f\\’/'> - <A" fva)

Covector transformations (derivatives):

A?B! = A%B, = AB + A'B;

(B’ B//) = (B — Bkvk B,-)
Balances: absolute, local and substantial
—  u?: DA+OA = dA+9A =0,

(a,b,c€{0,1,2,3}) U2 DA+ AT = 8A+9AT =0.
Transformed: (d; — v/0;)A + 0;(A" + Av) = di A + Adjv/ + 9;A" = 0

/59
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From relative to absolute fluids

Usual substantial balances

p+poiv = 0,
oV + B P o,
é+e8;vi+8;qi+PU8;vj 0.

Energy-momentum-density does not work in Galilean relativity.

Entropy production rate
1

ij ij ig 1
7(PJ—P5J)3i‘/j+q3i7ZO

Products of relative and absolute quantities.



Mass, energy and momentum

What kind of quantity is the energy?
o Square of the relative velocity — 2nd order tensor
o Kinetic theory: trace of a contravariant second order tensor.

o Energy density and flux: additional order

Basic field:

Z73be = zbey2 4 Zibe mass-energy-momentum density-flux tensor

a,b,c€{0,1,2,3}, i, j, ke {123}

be p P ibe joPY _i
z —><pk ejk)v z —><Pik gk ) €= 5




Galilean transformation

Z/abc — GjGé)G;:Zdef

i k ki i i
be _ ([P P P 10 _ €
z7°°¢ = ((p, eji> <ij qkij>> , G = <Vj 5ji>7 e=—"

Transformation rules follow:

Fo=p
pl o= p'+pv,
2
r_ i, v
€ - e+pvl+p7a
=V
P = Pitpvivi4 v+ plv,
. . . . . . . . 2
" = g eV Pyt plyvi (4 pv)

2



Galiean transformation of energy

Transitivity:
Vi
€ = e + p1viz + p>5* V2
— e =€+ pL1vi3 +P¥

2
V.
&3 = & + pava3 + p5°

p2 = p1 + pvi2, Vi3 = vi2 + V23
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Balance transformations

Absolute

aazabc _ Z-bc + Zbcaaua + aazibc -0

Rest frame

p + 8iji = O)
P+ oP* = 0,
é+8,-qi = 0.
Inertial reference frame
p+poivi + 01 = 0,
B+ POk + O P* 4 v + *Ov = 0

é+ediv' +0;,q' + p'vi + Pigiy; = 0.



Further consequences

Fluid mechanics, thermodynamics, including entropy production,
are absolute: independent of reference and flow-frames.

Four-tensors are useful. Transformation rules can be calculated
easily. For inertial frames those are the same as in RET.
Thermodynamics of motion: four-cotensor of intensive quantities.
Absolute entropy production with absolute thermodynamic fluxes
and forces.

Second law: (linear) asymptotic stability of homogeneous
equilibrium.

Key concept: flow-frame.



Verification: Generalized mechanics

Berezovski-Engelbrecht-Maugin (AAM, 2011)
Van-Papenfuss-Berezovski (CMaT, 2014)



Thermostatics of internal variables: S(E, €j, p, o, 0j)

Gibbs relation for elasticity: free energy

dW = —Sdb + o;de + <u + "f;) dp, W =oyel + pp.

Gibbs relation: internal variables and gradients

. w
dW = —Sdf + o;;de’ — Ada — A?dd;a + —dp,
P

W = a,-J-eij + pp — Ao — —A%9

= aW d_ aW .. .
A= 87(576U7p)a781a)7 Ai — a(aia)(57eu,p,a,8,a).



Dissipative Hamiltonian dynamics

Solution with free energy density W

Qo

Qo

Qo

Qo

Qo

Qo

©

C.}/ T (aaW - aI(
B =L T@sw - ax
qi — 8a,a Wa — —03,5 Wﬁ —8,-T

Linear solution (¢, 3, ¢).

Single local variable: rheology;

Single weakly nonlocal variable: phase field;

Dual weakly nonlocal variables: microdeformation;
Antisymmetry: no dissipation, Hamiltonian evolution.
Prediction: there is no need of reciprocity.

Coupling with temperature.



Micromorphic linear elasticity

micro displacement: d; and micro-strain 1);;:

1 1 .. o
€jj = 5(8,-uj + 8ju,-) Yij = 5(8,-uj + 8ju,~)
Quadratic, isotropic free energy:

A by by
W(e,-j, @ZJU, akd),'j) = 56,2, + %Eije,j + ?ﬂ)ﬁ + 5%% + l4terms

Macrostress, microstresses: Cauchy, relative and double stress:
ojj = 05,.]. W, = 8%. W, pjjk = 83“1,0. Ww.
Evolution (e.g. variational, Mindlin)
piii = Oj0ji + fi, iy = Ouprije — T + P

microinertia pdZ, double-force density ®;

o

6 /59



Mechanics and dual internal variables
Weakly nonlocal constitutive state space:
e, 0je, €ij, Okejj, Vij, Okij, Oij, Bij, Ok Bij, Okt Bij
Constraints:
&+ 0kqi = 0vi, €5 =0Gviy, bi="f; Bi= gy

Entropy production, linear isotropic solution, evolution:

1 1 . . .
0 < qidi— + (0 + po TOys)éis + poAitbij + po By

Ajj = 8%.5 — Ok (6@@5) , Bj= 3@.}.5 — Ok (8@(@.}.5)
1 .
qgi = /\8,7, aij + po T&EUS = h1€éjj + h2Ajj + h3Bjj,
potii = b1 + boAij + b3Bij,  pofij = hi1éjj + oAy + h3B;

Casimir (gyroscopic) coupling, zero dissipation: h3 = —hp # 0

/59



Classification of continuum theories:

Simple .

AI materials

Local
A

action ,_l

Nonsimple
Y materials

|_I Higher grade medla
(weakly nonlocal)l_|

Cauchy continuum u,
(Cauchy 1823)

Higher order media

Cosserat U,
(C. and C. 1909)

Micromorphic u;, ¥;
(Eringen, Mindlin 1964)

Second gradient F;,0,F;
(Mindlin and Eshel 1968)

Gradient internal variable
(Maugin, 1990) u;,Q

Encyclopedia of materials (2005)
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Classification of continuum theories:

Simple _, Cauchy continuum

AI materials  (Cauchy 1823)

Local
A

action ,_u

Nonsimple
Y materials

Cosserat U;,§,

: ! (C. and C. 1909)
igher order media

v Micromorphic #;, ¥;
(Eringen, Mindlin 196

Second gradient F,0,F,

| s
), Higher grade media (Mindlin and Eshel 1968
(weakly nonlocal)l_|

Encyclopedia of materials (2005)
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