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The original Kermack-McKendrick model



dS(t)

dt
= −aS(t)I (t),

dI (t)

dt
= aS(t)I (t)− bI (t),

dR(t)

dt
= bI (t),

(1)

S(t) - the number of susceptible people (healthy, but can be

ill)

I (t) - the number of ill people

R(t) - the number of recovered people

The size of the population is constant (births = natural

deaths).
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Extend the model with spatial dependence

Previously: an infectious person only infects at a certain

point.

Extension: let us describe the infection with a function

F (x , x ′, y , y ′):

F (x , x ′, y , y ′) =

{
f1(x ′)f2(y ′), (x ′, y ′) ∈ Bδ((x , y))

0 otherwise.

where Bδ((x , y)) denotes the δ radius ball with center at

(x , y).
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The extended model

Let us consider a domain Ω ∈ R2 in which the propagation of

the illness takes place.

From now on, S(t, x , y) denotes the density of the

susceptible people at time t at a point (x , y) ∈ R2.

The �rst equation in extended form:

∂S(t, x , y)

∂t
=

= −
∫ ∞
−∞

∫ ∞
−∞

F (x , x ′, y , y ′)I (t, x ′, y ′)dx ′dy ′ · S(t, x , y).

By the de�nition of F (x , x ′, y , y ′):

∂S(t, x , y)

∂t
=

= −
∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)I (t, x + u1, y + u2)du1du2 · S(t, x , y).
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The extended model



∂S(t, x , y)

∂t
=

= −
∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)I (t, x + u1, y + u2)du1du2 · S(t, x , y)

∂I (t, x , y)

∂t
=

=

∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)I (t, x + u1, y + u2)du1du2 · S(t, x , y)−

− bI (t, x , y)

∂R(t, x , y)

dt
= bI (t, x , y)

(2)
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How to handle the integral?

This is a system of integro-di�erential equations, which we

would like to solve numerically.

How to deal with the integral?

Two methods:

I Use Taylor series to expand the integrant.

I Use numerical integration, e.g. trapezoid rule.
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Properties we would like to preserve

C1 : the numbers of the individuals in classes S , I and R
are nonnegative

C2 : the size of the whole population is constant, i.e.∫
Ω S(t, x , y) + I (t, x , y) + R(t, x , y)dxdy = Constant
for every t

C3 : the size of the population of S is non-increasing in time

C4 : the size of the population of R is non-decreasing in

time
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Using Taylor expansion

Main idea: let us approximate I (t, x + u1, y + u2) using the

Taylor expansion:

I (t,x + u1, y + u2) ≈

≈ I (t, x , y) + u1
∂

∂x
I (t, x , y) + u2

∂

∂y
I (t, x , y)+

+
u2
1

2!

∂2

∂x2
I (t, x , y) +

u2
2

2!

∂2

∂y2
I (t, x , y) + u1u2

∂2

∂x∂y
I (t, x , y).
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Using Taylor expansion

∫ ∞
−∞

∫ ∞
−∞

F (x , x ′, y , y ′)I (t, x ′, y ′)dx ′dy ′ ≈

≈ I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)du1du2+

+
1

2

∂2

∂x2
I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
u21f1(|u1|)f2(|u2|)du1du2+

+
1

2

∂2

∂y2
I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
u22f1(|u1|)f2(|u2|)du1du2
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Using Taylor expansion

∫ ∞
−∞

∫ ∞
−∞

F (x , x ′, y , y ′)I (t, x ′, y ′)dx ′dy ′ ≈

≈ I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)du1du2+

+
1

2

∂2

∂x2
I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
u21f1(|u1|)f2(|u2|)du1du2+

+
1

2

∂2

∂y2
I (t, x , y)

∫ δ1

−δ1

∫ δ2

−δ2
u22f1(|u1|)f2(|u2|)du1du2
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Using Taylor expansion

∫ ∞
−∞

∫ ∞
−∞

F (x , x ′, y , y ′)I (t, x ′, y ′)dx ′dy ′ ≈

≈ I (t, x , y)θ+

+
1

2

∂2

∂x2
I (t, x , y)φ1+

+
1

2

∂2

∂y2
I (t, x , y)φ2
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The new equation

This way our equation takes the form:



∂S

∂t
=

= −S(t, x , y)

(
θI (t, x , y) + φ1

∂2I (t, x , y)

∂x2
+ φ2

∂2I (t, x , y)

∂y2

)
,

∂I

∂t
=

= S(t, x , y)

(
θI (t, x , y) + φ1

∂2I (t, x , y)

∂x2
+ φ2

∂2I (t, x , y)

∂y2

)
−

− bI (t, x , y),

∂R

∂t
= bI (t, x , y).

(3)
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The new equation - in a more simpler form

If we use the notation

J(t, x , y) :=

(
θI (t, x , y) + φ1

∂2I (t, x , y)

∂x2
+ φ2

∂2I (t, x , y)

∂y2

)
then the equation reduces to:

∂S

∂t
= −S(t, x , y)J(t, x , y),

∂I

∂t
= S(t, x , y)J(t, x , y)− bI (t, x , y),

∂R

∂t
= bI (t, x , y)

(4)
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The required properties for this new equation

Theorem

If the condition

0 ≤ J(t, x , y) = θI (t, x , y) + φ1
∂2I (t, x , y)

∂x2
+ φ2

∂2I (t, x , y)

∂y2

(5)

is satis�ed, then the properties C1, C3 and C4 are true for the

solutions of (4). In this case I (t, x , y) also tends to zero as t
tends to in�nity. C2 is true without any restrictions.
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Time discretisation using the forward Euler
method
Our (continuous) equation was:

∂S

∂t
= −S(t, x , y)J(t, x , y),

∂I

∂t
= S(t, x , y)J(t, x , y)− bI (t, x , y),

∂R

∂t
= bI (t, x , y)

Applying the forward Euler method, we get:

Sn+1

k,l − Sn
k,l

τ
= −aSn

k,lJ
n
k,l ,

I n+1

k,l − I nk,l
τ

= aSn
k,lJ

n
k,l − bI nk,l ,

Rn+1

k,l − Rn
k,l

τ
= bI nk,l .

(6)
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Time discretisation using the forward Euler
method

Applying the forward Euler method, we get:

Sn+1

k,l − Sn
k,l

τ
= −aSn

k,lJ
n
k,l ,

I n+1

k,l − I nk,l
τ

= aSn
k,lJ

n
k,l − bI nk,l ,

Rn+1

k,l − Rn
k,l

τ
= bI nk,l .

in which we used the notation

Jnk,l :=

(
θI nk,l + φ1

I nk−1,l − 2I nk,l + I nk+1,l

h2x
+ φ2

I nk,l−1 − 2I nk,l + I nk,l+1

h2y

)
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A su�cient condition for the required properties

Theorem

Property D2 holds without restrictions, and if the step size

satis�es

τ ≤ min


1

b + 2M

(
φ1
h2x

+
φ2
h2y

) , 1

M

(
θ + 2

(
φ1
h2x

+
φ2
h2y

))


in which

M := max(x ,y)∈Ω{S(0, x , y) + I (0, x , y) + R(0, x , y)}, then
properties D1, D3 and D4 also hold.
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Time discretisation using an IMEX method

Our (continuous) equation was:

∂S

∂t
= −S(t, x , y)J(t, x , y),

∂I

∂t
= S(t, x , y)J(t, x , y)− bI (t, x , y),

∂R

∂t
= bI (t, x , y)

Applying an IMEX method, we get:

Sn+1

k,l − Sn
k,l

τ
= −aSn

k,lJ
n
k,l ,

I n+1

k,l − I nk,l
τ

= aSn
k,lJ

n
k,l − bI n+1

k,l ,

Rn+1

k,l − Rn
k,l

τ
= bI n+1

k,l .
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Time discretisation using an IMEX method

Applying an IMEX method, we get:

Sn+1

k,l − Sn
k,l

τ
= −aSn

k,lJ
n
k,l ,

I n+1

k,l − I nk,l
τ

= aSn
k,lJ

n
k,l − bI n+1

k,l ,

Rn+1

k,l − Rn
k,l

τ
= bI n+1

k,l .

in which we used the notation

Jnk,l :=

(
θI nk,l + φ1

I nk−1,l − 2I nk,l + I nk+1,l

h2x
+ φ2

I nk,l−1 − 2I nk,l + I nk,l+1

h2y

)
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A su�cient condition for the required properties

Theorem

Property D2 holds without restrictions, and if the step size

satis�es

τ ≤ min


1

b + 2M

(
φ1
h2x

+
φ2
h2y

) , 1

M

(
θ + 2

(
φ1
h2x

+
φ2
h2y

))


in which

M := max(x ,y)∈Ω{S(0, x , y) + I (0, x , y) + R(0, x , y)}, then
properties D1, D3 and D4 also hold.
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Using numerical integration

Let us consider the rectangle [−δ1, δ1]× [−δ2, δ2], and
examine an equidistant split of it:

xi = −δ1 + ih, i = 0, 1, . . . ,m, h =
2δ1
m
, (7)

yj = −δ2 + jk, j = 0, 1, . . . , n, k =
2δ2
n
, (8)

We approximate the integrals of our initial equation:

T (t, h, k) ≈ −
∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)I (t, x+u1, y+u2)du1du2
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Using the two dimensional trapezoidal rule

T (t, h, k) ≈ −
∫ δ1

−δ1

∫ δ2

−δ2
f1(|u1|)f2(|u2|)I (t, x+u1, y+u2)du1du2

Let us use the notation

FI (t, u1, u2) := f1(|u1|)f2(|u2|)I (t, x + u1, y + u2).

Applying the trapezoidal rule for the integral:

T (t, h, k) =
1

4
hk

( ∑
corners

FI (t, u
i
1, u

j
2
))+

+2
∑
edges

FI (t, u
i
1, u

j
2
)) + 4

∑
inner

FI (t, u
i
1, u

j
2
))
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The new equation

This way, our new equation takes the form:

dS(t, x , y)

dt
= −aS(t, x , y)T (t, h, k),

dI (t, x , y)

dt
= aS(t, x , y)T (t, h, k)− bI (t, x , y),

dR(t, x , y)

dt
= bI (t, x , y),

Theorem

Properties C1, C2, C3 and C4 hold without any restrictions.
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Using forward Euler method



dS(t, x , y)

dt
= −aS(t, x , y)T (t, h, k),

dI (t, x , y)

dt
= aS(t, x , y)T (t, h, k)− bI (t, x , y),

dR(t, x , y)

dt
= bI (t, x , y),

Using forward Euler method, we get
Sn+1 = Sn − aτSnT n,

I n+1 = I n + aτSnT n − bτ I n,

Rn+1 = Rn + bτ I n,

(9)
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A su�cient condition for the required properties

Theorem

Property D2 holds without restrictions, and if the step size

satis�es

τ ≤ min

{
1

1

4
hkNM̃

,
1

b

}

for every n, where

M̃ = max
(x,y)∈Ω

(
max

u1,u2∈Bmax(δ1,δ2)(x,y)
f (|u1|)f (|u2|)I (0, x + u1, y + u2)

)
and N is the number of the interpolation points in the numerical

integral, then properties D1, D3 and D4 also hold.
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Using an IMEX method



dS(t, x , y)

dt
= −aS(t, x , y)T (t, h, k),

dI (t, x , y)

dt
= aS(t, x , y)T (t, h, k)− bI (t, x , y),

dR(t, x , y)

dt
= bI (t, x , y),

Using an IMEX method, we get
Sn+1 = Sn − aτSnT n,

I n+1 = I n + aτSnT n − bτ I n+1,

Rn+1 = Rn + bτ I n+1,

(10)
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A su�cient condition for the required properties

Theorem

Property D2 holds without restrictions, and if the step size

satis�es

τ ≤ 1
1

4
hkNM̃

for every n, where

M̃ = max
(x,y)∈Ω

(
max

u1,u2∈Bmax(δ1,δ2)(x,y)
f (|u1|)f (|u2|)I (0, x + u1, y + u2)

)
and N is the number of the interpolation points in the numerical

integral, then properties D1, D3 and D4 also hold.
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A good step size, T=20

b = 0.1, h = k = 0.1, τ = T/3000,Ω = [0, 3]2, a = 1300
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A good step size, T=35

b = 0.1, h = k = 0.1, τ = T/3000,Ω = [0, 3]2, a = 1300
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A good step size, T=50

b = 0.1, h = k = 0.1, τ = T/3000,Ω = [0, 3]2, a = 1300
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A good step size, T=100

b = 0.1, h = k = 0.1, τ = T/3000,Ω = [0, 3]2, a = 1300
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A bad step size (R at (40,32))

b = 0.1, h = k = 0.1,T = 200, τ = T/13,Ω = [0, 3]2, a = 10
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How it should look like (R at (40,32))

b = 0.1, h = k = 0.1,T = 200, τ = T/1300,Ω = [0, 3]2, a = 10
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A bad step size (I at (37,32))

b = 0.1, h = k = 0.1,T = 200, τ = T/13,Ω = [0, 3]2, a = 10
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How it should look like (I at (37,32))

b = 0.1, h = k = 0.1,T = 200, τ = T/1300,Ω = [0, 3]2, a = 10
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Conclusions

I Two approaches were investigated.

I Necessary conditions of proper behavior were given.

I Numerical experiments were conducted.
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Future work

I Investigate other behaviors (i.e. the stability of the

wave)

I Adding a di�usion term to the equation

I Applying to an arbitrary domain

=⇒ Shortley-Weller method or �nite element methods

(presented by M. Polner)

I Adding delay to the equation

=⇒ system of delayed integro-di�erential equations
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.

Thank you for your attention!
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