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Let Rd and Rd×d denote the d-dimensional space of real column
vectors and the space of d × d matrices with real entries,
respectively.

Let ‖ · ‖ denote any of the standard lp-norms, 1 ≤ p ≤ ∞, on Rd

and the associated induced matrix norm on Rd×d .

The nonnegative cone Rd
+ is the set of those vectors in Rd which

have nonnegative components. The cone Rd
+ induces a partial

order on Rd by x ≤ y if y − x ∈ Rd
+.

Thus, x ≤ y if and only if xi ≤ yi for all i . We write x < y if x ≤ y
and xi < yi for some i and we write x � y if xi < yi for all i .

A vector x is called nonnegative, positive and strongly positive if
0 ≤ x , 0 < x and 0� x , respectively. A similar notation and
terminology is used for matrices.
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Consider
x ′ = A(t)x , t ≥ t0, (1)

where t0 ∈ R and A : [t0,∞)→ Rd×d is a continuous matrix
function. We will assume the following standing assumptions:

(A1) A is bounded on [t0,∞), i.e.

α = sup
t≥t0

‖A(t)‖ <∞,

(A2) there exists an essentially nonnegative irreducible matrix
M ∈ Rd×d with

M ≤ A(t) for all t ≥ t0.

Recall that a matrix M = (mij) ∈ Rd×d is essentially nonnegative
if the off-diagonal elements of M are nonnegative, i.e. mij ≥ 0
whenever i 6= j . An essentially nonnegative matrix M ∈ Rd×d is
irreducible if eMt � 0 for all t > 0.
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It is known that under assumption (A2), for every t ≥ t0, the
matrix A(t) is essentially nonnegative and irreducible.

As a consequence, Eq. (1) is cooperative and irreducible and
therefore the solutions of Eq. (1) are strongly order preserving, i.e.
x(t0) > 0 implies that x(t)� 0 for all t > t0.

Cooperative systems of ordinary differential equations play an
important role in applications, see

H. Smith, Monotone Dynamical Systems. An Introduction to
the Theory of Competitive and Cooperative Systems. AMS,
Providence, RI, 1996.

T. Malik and H. Smith, Does dormancy increase fitness of
bacterial populations in time-varying environments?, Bull.
Math. Biol. 70, 1140–1162 (2008).
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We will study the weak and strong ergodic properties of the
positive solutions to (1) in the sense of the following definition.

Definition

The positive solutions of (1) are called

weakly ergodic if for any two solutions x and y of (1) with
initial values x(t0) > 0 and y(t0) > 0,

x(t)

‖x(t)‖
− y(t)

‖y(t)‖
−→ 0, t →∞,

strongly ergodic if there exists a strongly positive vector
ve ∈ Rd such that for every solution x of (1) with initial value
x(t0) > 0,

x(t)

‖x(t)‖
−→ ve , t →∞. (2)
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The notions of weak and strong ergodicity originate from discrete
age structured models in demography, where (using the l1-norm)
‖x(t)‖ denotes the total number of people at time t and the
components of the age-structure vector x(t)/‖x(t)‖ describe the
percentage of people in the given age classes at time t.

Roughly speaking, in this case ergodicity means that the age
structure, in the long run, becomes independent of the initial
population size.

Necessary and sufficient conditions for weak and strong ergodicity
for discrete time equations can be found in the paper by

M. Golubitsky, E.B. Keeler and M. Rothschild, Convergence of
the age structure: Application of the projective metric,
Theoret. Population Biol. 7, 84–93 (1975).
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and in the monographs by

E. Seneta, Non-negative Matrices and Markov Chains, Series
in Statistics, Springer, 1973

J. Cushing, An Introduction to Structured Population
Dynamics, SIAM, Philadelphia, 1998.

D.J. Hartfiel, Nonhomogeneous Matrix Products, World
Scientific, New Jersey, 2002.

U. Krause, Positive Dynamical Systems in Discrete Time,
Studies in Mathematics 62, de Gruyter, Berlin, 2015.
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For further related results on weak ergodicity in various continuous
time equations, we refer to

S.D. Tuljapurkar, Population dynamics in variable
environments. IV. Weak ergodicity in the Lotka equation,
J. Math. Biol. 14, 221–230 (1982).

H.R. Thieme, Asymptotic proportionality (weak ergodicity)
and conditional asymptotic equality of solutions to
time-heterogeneous sublinear difference and differential
equations, J. Differential Equations 73, 237–268 (1987).

H. Inaba, Weak ergodicity of population evolution processes,
Math. Biosci. 96, 195–219 (1989).
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Weak Ergodicity

First we summarize some well-known consequences of the
Perron-Frobenius theory for nonnegative matrices.

Denote by M the set of essentially nonnegative irreducible
matrices in Rd×d .

Every M ∈M has a unique strongly positive normalized
eigenvector which will be denoted v(M). We shall call it the
Perron vector of M.

The spectral abscissa of M, defined by

s(M) = max{<λ : λ ∈ σ(M))},

is an algebraically simple eigenvalue of M and every other
eigenvalue of M has real part less than s(M).

As usual, σ(M) ⊆ C denotes the spectrum of M.
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The Perron vector corresponds to the spectral abscissa so that

Mv(M) = s(M)v(M), v(M)� 0, ‖v(M)‖ = 1.

Furthermore, every nonnegative eigenvector of M irrespectively of
the eigenvalues is a positive multiple of v(M).

If, in addition, M is nonnegative, then its spectral abscissa s(M)
coincides with the spectral radius ρ(M).

Evidently, every strongly positive matrix M is irreducible.

It is known that the eigenvalues and the eigenvectors
corresponding to algebraically simple eigenvalues depend
continuously on the matrix elements, therefore the mappings
s :M→ R and v :M→ Rd

+ are continuous.
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Recall that the transition matrix of (1), denoted by X (t, s) for t,
s ∈ [t0,∞), is defined by

X (t, s) = Φ(t)Φ−1(s) for all t, s ∈ [t0,∞),

where Φ is a fundamental matrix solution of (1).

The transition matrix is the unique matrix solution of the initial
value problem

D1X (t, s) = A(t)X (t, s), X (s, s) = I ,

where t, s ∈ [t0,∞) and I is the identity matrix. It has the cocycle
property

X (t, s) = X (t, r)X (r , s) for all t, r , s ∈ [t0,∞),

and every solution x of (1) can be represented as

x(t) = X (t, s)x(s) for all t, s ∈ [t0,∞).
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Lemma (Exponental Estimates for the Transition Matrix)

The transition matrix X (t, s) of (1) satisfies

eM(t−s) ≤ X (t, s) ≤ eN(t−s) whenever t ≥ s ≥ t0, (3)

where N = supt≥t0
A(t), the supremum being taken element-wise.

In particular, X (t, s)� 0 for all t > s ≥ t0.

The proofs of the lemma is based on a comparison principle for
Kamke type differential inequalities.
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The next theorem shows that under assumptions (A1) and (A2)
the positive solutions of (1) are weakly ergodic. In fact, we prove a
stronger result which describes the asymptotic behavior of the
normalized positive solutions of (1) as t →∞.

Theorem (Weak Ergodicity)

For every solution x of (1) with x(t0) > 0,

x(t)

‖x(t)‖
− ξ(t) −→ 0, t →∞,

where, for each t > t0, ξ(t) = v(X (t, t0)) is the Perron vector of
the strongly positive transition matrix X (t, t0). In particular, the
positive solutions of (1) are weakly ergodic.
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The proof of the theorem is based on some properties of Hilbert’s
projective metric.

Let Rd
++ denote the set of strongly positive vectors in Rd .

For x , y ∈ Rd
++, we define Hilbert’s projective metric by

p(x , y) = ln
max1≤i≤n

xi
yi

min1≤i≤n
xi
yi

= max
1≤i ,j≤n

ln
xiyj
xjyi

.

The projective metric p has the following properties:
For all x , y and z ∈ Rd

++, we have

(i) p(x , y) ≥ 0,

(ii) p(x , y) = 0 if and only if y = βx for some positive constant β,

(iii) p(x , y) = p(y , x),

(iv) p(x , y) ≤ p(x , z) + p(z , y),

(v) p(βx , γy) = p(x , y) for any positive constants β and γ.
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Recall that a matrix S ∈ Rd×d
+ is row allowable, if it has a positive

entry in each of its rows.

An important property of Hilbert’s projective metric is that
strongly positive matrices act as contractions in this metric.

Lemma (Contractivity of Strongly Positive Matrices)

Let S = (sij) ∈ Rd×d be a nonnegative row allowable matrix. Then
for any x and y ∈ Rd

++, we have

p(Sx , Sy) ≤ τB(S)p(x , y),

where τB(S) is Birkhoff’s contractivity coefficient defined by

τB(S) =
1−

√
φ(S)

1 +
√
φ(S)

, φ(S) = min
1≤i ,j ,k,l≤n

siksjl
sjksil

,

if S � 0 and τB(S) = 1 if S has at least one 0 entry.
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Now we can give a proof of the theorem.

By the lemma, the transition matrix X (t, t0) of (1) is strongly
positive for t > t0 and hence x(t) = X (t, t0)x(t0)� 0 for all
t > t0.

It is known that

‖x − y‖ ≤ 3(1− e−p(x ,y)), x , y ∈ Rd
++, ‖x‖ = ‖y‖ = 1.

This, together with property (v) of p, implies that it is enough to
show that

lim
t→∞

p(x(t), ξ(t)) = 0.

By the lemma, the transition matrix of (1) satisfies

0� eM ≤ X (t + 1, t) ≤ eN for all t ≥ t0.

Since K = {S ∈ Rd×d | eM ≤ S ≤ eN} is a compact set of
strongly positive matrices on which τB is continuous, τB achieves
its maximum θ < 1 on K.
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Let t > t0 and n = [t − t0], where [·] denotes the greatest integer
part. Using property (v) of p and the cocycle property of the
transition matrix X (t, s), we obtain

p(x(t), ξ(t)) = p(X (t, t0)x(t0),X (t, t0)ξ(t))

= p(X (t, t0 + n)X (t0 + n, t0)x(t0),X (t, t0 + n)X (t0 + n, t0)ξ(t)).

From this, by the application of lemma, we find that

p(x(t), ξ(t)) ≤ p(X (t0 + n, t0)x(t0),X (t0 + n, t0)ξ(t)).

Since

X (t0+n, t0) = X (t0+n, t0+n−1)X (t0+n−1, t0+n−2) . . .X (t0+1, t0)

and each factor of the last product belongs to K, we can
repeatedly use the θ-contraction property of p, which yields

p(x(t), ξ(t)) ≤ θn−1p(X (t0 + 1, t0)x(t0),X (t0 + 1, t0)ξ(t)). (4)
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If U+ = {x ∈ Rd
+ | ‖x‖ = 1}, then due to S = X (t0 + 1, t0)� 0,

the image set S(U+) consists of strongly positive vectors.

Since S : U+ → Rd
++ is continuous and U+ compact, S(U+) is a

compact subset of Rd
++.

Let v0 = X (t0 + 1, t0)x(t0)� 0. Because p(v0, ·) : Rd
++ → [0,∞)

is continuous and S(U+) ⊂ Rd
++ is compact, we have that

K = supx∈U+
p(v0, Sx) <∞.

Hence

p(X (t0+1, t0)x(t0),X (t0+1, t0)ξ(t)) = p(v0, Sξ(t)) ≤ K , t > t0.

This, together with (4), implies p(x(t), ξ(t))→ 0 exponentially as
t →∞.
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The theorem implies that for the strong ergodicity of the positive
solutions of (1) it is necessary and sufficient that the Perron
vectors ξ(t) of the transition matrix X (t, t0) converge to a strongly
positive vector as t →∞.

However, in most cases we do not have an explicit formula for the
transition matrix X (t, t0) and its Perron vector ξ(t).

In the next theorem, under an additional assumption, we give a
necessary and sufficient condition for the strong ergodicity of the
positive solutions of (1) in terms of the Perron vectors of the
coefficient matrix function A.
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Theorem (Strong Ergodicity)

If additionally A is uniformly continuous on [t0,∞), then for the
strong ergodicity of the positive solutions of (1) with limiting
vector ve � 0 it is necessary and sufficient that

ν(t) −→ ve , t →∞, (5)

where ν(t) = v(A(t)) is the Perron vector of A(t) for t ≥ t0.
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Proof of Sufficiency. Suppose that ν(t) −→ ve as t →∞. holds.

For t ≥ t0, define σ(t) = s(A(t)), the spectral abscissa of A(t).

For each t ≥ t0, A(t) belongs to the compact set of essentially
nonnegative irreducible matrices K = {S ∈ Rd×d | M ≤ S ≤ N}
with N as in the lemma about exponential estimates for the
transition matrix.

As noted before, s :M→ R is continuous and therefore it is
uniformly continuous on the compact subset K of M.

Whence, σ is a composition of two uniformly continuous functions,
the restriction of s to K and A. This implies that σ is also
uniformly continuous on [t0,∞).
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Then

y(t) = x(t) exp

(
−
∫ t

t0

σ(u) du

)
, t ≥ t0

is a solution of the differential equation

y ′ = B(t)y , B(t) = A(t)− σ(t)I , t ≥ t0. (6)

Clearly, B is uniformly continuous on [t0,∞). For t ≥ t0, we have

|σ(t)| = |s(A(t))| ≤ ρ(A(t)) ≤ ‖A(t)‖ ≤ α

with α as in (A1). Hence,

sup
t≥t0

‖B(t)‖ ≤ 2α

and
M̃ ≤ B(t) ≤ Ñ for all t ≥ t0, (7)

where M̃ = M − αI is essentially nonnegative and irreducible and
Ñ = N + αI .
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Since the Perron vector ν(t) of A(t) corresponds to the the
spectral abscissa σ(t) of A(t), we have

B(t)ν(t) = 0 for all t ≥ t0. (8)

In view of the identity x(t)
‖x(t)‖ = y(t)

‖y(t)‖ for t ≥ t0, it is enough to
show that

y(t)

‖y(t)‖
−→ ve , t →∞. (9)

Let w be an arbitrary accumulation point of y(t)
‖y(t)‖ as t →∞, i.e.

y(tn)

‖y(tn)‖
−→ w , n→∞,

for some tn →∞. We need to show that w = ve .
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Define

zn(t) =
y(tn + t)

‖y(tn‖
Bn(t) = B(tn + t)

for each t satisfying tn + t ≥ t0. From (6), we find that

z ′n(t) = Bn(t)zn(t) (10)

for every t for which tn + t ≥ t0. By known estimates for the
growth of the solutions of ODE’s, we have

‖y(τ)‖ exp

(
−
∫ t

τ
(µ◦(−B))

)
≤ ‖y(t)‖ ≤ ‖y(τ)‖ exp

(∫ t

τ
(µ◦B)

)
for all t ≥ τ ≥ t0, where µ : Rd×d → R is the logarithmic norm.
Due to the estimate |µ(B(t))| ≤ ‖B(t)‖ for t ≥ t0, we have

‖y(τ)‖e−2α(t−τ) ≤ ‖y(t)‖ ≤ ‖y(τ)‖e2α(t−τ) for all t ≥ τ ≥ t0.
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From this and (10), we find that

e−2α|t| ≤ ‖zn(t)‖ ≤ e2α|t|, (11)

‖z ′n(t)‖ ≤ 2αe2α|t| (12)

for each t such that tn + t ≥ t0. From (11) and (12) and from the
boundedness and uniform continuity of B, it follows that the
functions zn and Bn are uniformly bounded and equicontinuous on
every compact subinterval of (−∞,∞). Referring to the
Arzelà-Ascoli theorem, combined with Cantor’s diagonalization
argument, it follows that there exists a subsequence (tnk ) of (tn)
such that for every t ∈ R the limits

z(t) = lim
k→∞

znk (t) = lim
k→∞

y(tnk + t)

‖y(tnk‖
C (t) = lim

k→∞
Bnk (t) = lim

k→∞
B(tnk + t)

exist and the convergence is uniform on every compact subinterval
of (−∞,∞).



Outline Introduction Weak Ergodicity Strong Ergodicity

By passing to the limit in the integrated form of (10),

zn(t) = zn(0) +

∫ t

0
Bn(u)zn(u) du,

we find that

z(t) = z(0) +

∫ t

0
C (u)z(u) du, t ∈ R.

Therefore, z : R→ Rd is an entire solution of the equation

z ′ = C (t)z , t ∈ R. (13)

Clearly, z(t) ≥ 0 for all t ∈ R and z(0) = w . Since ‖z(0)‖ = 1, z
is a nontrivial solution and hence z(t) > 0 for all t ∈ R. The
limiting function C (t) inherits the estimates in (7) for all t ∈ R.
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Consequently, by the lemma, the transition matrix Z (t, s) of (13)
satisfies

0� eM̃(t−s) ≤ Z (t, s) ≤ eÑ(t−s) for all t > s. (14)

Hence z(t) = Z (t, s)z(s)� 0 for all t > s. For all t ∈ R, we have

z(t + 1) = Z (t + 1, t)z(t).

From (5) and (8), we find that

C (t)ve = 0 for all t ∈ R,

which implies that z̃(t) ≡ ve is a constant solution of (13).
Whence,

ve = Z (t + 1, t)ve for all t ∈ R

and applying the projective metric, we find

p(z(t + 1), ve) = p(Z (t + 1, t)z(t),Z (t + 1, t)ve) for all t ∈ R.
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By virtue of (14), for each t ∈ R, Z (t + 1, t) belongs to the
compact set of strongly positive matrices

K̃ = {S ∈ Rd×d | eM̃ ≤ S ≤ eÑ}

on which Birkhoff’s contractivity function τB achieves its
maximum θ̃ < 1. By the lemma on contractivity, we have

p(z(t + 1), ve) ≤ θ̃p(z(t), ve) for all t ∈ R. (15)

From (14), we obtain

eM̃z(t) ≤ Z (t + 1, t)z(t) ≤ eÑz(t)

and hence

eM̃
z(t)

‖z(t)‖
≤ z(t + 1)

‖z(t)‖
≤ eÑ

z(t)

‖z(t)‖
for all t ∈ R.
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Let

δi = min
x∈U+

(eM̃x)i and ηi = max
x∈U+

(eÑx)i , 1 ≤ i ≤ d ,

where U+ = {x ∈ Rd
+ | ‖x‖ = 1}. Taking into account that

eM̃ � 0, we have

0� δ ≤ z(t + 1)

‖z(t)‖
≤ η for all t ∈ R,

with δ = (δ1, . . . , δd)T and η = (η1, . . . , ηd)T . The continuity of
p(·, ve) on the compact order interval [δ, η] ⊂ Rd

++, combined with
property (v) of p, implies

∆ = sup
t∈R

p(z(t + 1), ve) = sup
t∈R

p

(
z(t + 1)

‖z(t)‖
, ve

)
<∞.

From (15), we get ∆ ≤ θ̃∆ with θ̃ < 1. Hence ∆ = 0 and thus
p(z(0), ve) = 0. Since ‖z(0)‖ = ‖ve‖ = 1, this yields
w = z(0) = ve .
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We give an example which illustrates the importance of the
assumption of uniform continuity of A in the theorem about strong
ergodicity.

Example. Let

B =

(
1 1
1 1

)
and C =

(
1 1
2 2

)
such that the corresponding spectral abscissae and Perron vectors
with respect to the l1-norm are

s(B) = 2, v(B) =

(
1
2
1
2

)
and s(C ) = 3, v(C ) =

(
1
3
2
3

)
.
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Define the entries of a continuous matrix function
A : [0,∞)→ R2×2 such that a11(t) = a12(t) = 1 for all t ≥ 0 and
the entries a21(t) = a22(t) are defined as suggested in the figure

1 2 3 4 5 6 70

1

t

1
2

1
4

1
8

1
16

2

a12(t) = a22(t)

The entries a21 and a22 of the matrix function A. The areas of the shaded

triangles with peaks at the odd numbers 2n−1 forms a geometric sequence
1
2n , n ∈ N.
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In this manner, we can construct a continuous function A with the
following properties:

B ≤ A(t), t ≥ 0,

A(2n) = B, v(A(2n)) = v(B), n ∈ N, (16)

A(2n + 1) = C , v(A(2n + 1)) = v(C ), n ∈ N, (17)∫ t+1

t
‖A(s)− B‖ ds −→ 0, t →∞,∫ ∞

0
‖A(s)− B‖ ds <∞.

Because of v(B) 6= v(C ), the relations (16) and (17) guarantee
that the limit limt→∞ ν(t) = limt→∞ v(A(t)) does not exist.
Nevertheless, we can show that the positive solutions of (1) are
strongly ergodic with limiting vector ve = v(B).
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Indeed, by a Perron type theorem for positive solutions, for every
solution x of (1) with x(0) > 0, we have

lim
t→∞

ln ‖x(t)‖
t

= 2

and therefore, according to an asymptotic result due to Coppel,
there exists a γ > 0 so that

x(t) = γe2tv(B) + o(e2t), t →∞.

Hence x(t)e−2t −→ γv(B) as t →∞, which readily implies

x(t)

‖x(t)‖
=

e−2tx(t)

‖e−2tx(t)‖
−→ γv(B)

‖γv(B)‖
= v(B), t →∞.

Thus, the positive solutions of (1) are strongly ergodic.
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