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x(t) = F(x(t), p)

discretizing with a Mickens’ type non-standard finite difference scheme
e

Xni1 =Xn + @(h)F(xp,p)  (n€N)
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Previously on My Doctoral Research

Proposition:

Supppose that d € N, A € R4 B := |;+ hA, furthermore

conditions

—max?(J(A)) — 2s(A)
s?(A)

A€ o(A) and ©(h) <
hold. Then s(A) < 0 implies p(B) < 1.

Proposition:
Suppose that d € N, A € R9%9,

B:= s+ @(h)A.

Then s(A) > 0 implies p(B) > 1 independent of @(h).
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Previously on My Doctoral Research

(X(p) + B(p)l S O'(Jacobian of the RHS at any EP in the CS)

=
1+ (p(h)oc(p) + (p(h)ﬁ(p)l S U(Jacobiall of the RHS at the same EP in the DS)
=

Proposition:

If Hopf bifurcation occurs from an EP with py critical
value, then Neimark-Sacker bifurcation cannot occur from
the same EP with the same critical value.

A Discretized System Modelling So



NS Bifurcation after discretization

(NSy) +/det(Jr(pns))@(h)2 + Tr(Jr(pus))@(h) +1 =1

04 /det (J; h)? r(J, h
(NS,) /det(r(p)) @ )a:m AITIGEE N

(NS3) +/det(Jr(pns))@(h)? + Tr(Je(ps)) @ (h) + I #1 (ke{1,2,3,4)

A Discretized Syste



Finding the critical value of the the Neimark-Sacker
bifurcation parameter pys after distretization

D(p) = det(.lacobian of the RHS at any EP in the CS)

T(p) = TI‘(Jacobian of the RHS at any EP in the CS)

=

D(p)e(h) + T(p) =0
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Background of the model describing somitogenesis

Based on the chemical scheme:

k
ASR 24+ B8 34, Bk%R
3

Annie Lemarchand and Bogdan Nowakowski proposed the following
reaction-diffusion system

0:A

dalA+ fa(A, B),

2.B ds/A:B + fz(A, B)

where

e da, dg > 0 represent the diffusion coefficients,
e A(r,t) and B(r,t) are the concentrations of the species;

e & >0 and 6 > 0 are annihilation rates of the species A and B
respectively, v > 0 represents the input of the species B and 3 >0
is the conversion rate.
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The kinetic system

The kinetic part of the above system

A = f(AB) = —xA+pA2B,
, (2)
B = fg(AB) = y—06B—BA’B
inspired from the Schnakenberg model
A=A’B— A, B =—A?B + ks (3)

and the Gray-Schott model
A=—AB® —kisA+ ki, B=AB>—kiB—kis, (4

was examined earlier by

Sandor Kovacs, Szilvia Gyorgy and Noémi Gyuré-Magyar.




The discretized system

Using the nonstandard discretization method developed by Mickens we
obtain the following discrete model

An+1 = Apt (P(h) (_CXAn + ﬁA%Bn) )
(5)
BnJrl - Bn+(p(h) ('Y—SB,,—BA,%B”)
where h > 0 is the time step size and the nonnegative function satisfies

0<@(h)=h+0O(h) (h—D0).

Clearly, if @ is the identity function then we have the continuous system
(2) discretized by the explicit Euler method:

A1 = An+h (—ocA,, + BA%BH) ,

Bri1 = Bn+h(y—05B,—BA2B,).




Biological feasibility of the discretized system

Proposition:
If Ag >0, By >0 and

@(h) < h* :=min{l/x, 1/8} (7)

then the for solutions of (5) (and of (6), too) A, > 0, B, > 0 hold
for any n € N.

Proposition:
If condition @(h) < 1/c holds then there is a suitable constant
k >0 s.t.

k
{(A,B)eRi:A+B§u+s,foranys>0} (8)

is positively invariant where 0 < @ < ¢ := min{«, 0}.
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Equilibria (fixed points) of (5), resp. (6)

The sign of
K == By? — 4035

decides on the number of interior equilibria. If

- (0.)

and no interior equilibrium.

e K <0~ we have only

e K =0 ~ there is a unique interior equilibrium:
W 4B Y Y
E:=(AB) = (— —);
(4, B) 2a’ 28
e K >0 ~» there are two interior equilibria: E4 := (A4, B+) where

_ By £VBK

A
- 2af3

and By = %‘ A
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Stability of the boundary equilibrium E,

For system (2) E, is asymptotically stable. but discretizing ~ Ep, is

e a sink, if

0<@(h)<2/a and 0< @(h) <2/

e a source, if

@(h) >2/x and @(h) >2/0
e a saddle, if

0< @(h)<2/x,p(h) >2/6 or @(h)>2/x,0< @(h)<2/d

e nonhyperbolic, if

@(h) =2/ or @(h)=2/3




Stability of the equilibrium E, E,, E_
For system (2)
e E may or may be not stable, but discretizing ~» E unstable
e E, unstable, and its is unstable with respect (5), resp. (6), too

e the stability of E_ depends on the sign of  — 1#16), but

2 2
discretizing ~+ depends on B — %
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Bifurcation around E,

o If
@(h)=— and o >0

then Ej, undergoes a period-doubling (flip) bifurcation.

e saddle-node bifurcation cannot occur.

e Neimark-Sacker bifurcation cannot occur
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Bifurcation around E

o If
BY? = 4a’s

then a saddle-node bifurcation occurs independent of the step
size/step function.

e flip bifurcation cannot occur

e Neimark-Sacker bifurcation cannot occur
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Bifurcation around E_

o If 203 <y (VBK+BY) and

22 202 o

v(VBR+By)—20° +\/(Y(\/B*KHW)20‘3>2 2(K+vvBK)

@(h) =

K+vVBK
2x

flip bifurcation may occur.

Proposition:

If
o? (o —26¢(h)))?

Y (o —8—38¢(h))

Neimark-Sacker bifurcation occurs

B:

e saddle-node bifurcation cannot occur
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closed invariant curve remains after discretization
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Andronov-Hopf bifurcation: Neimark-Sacker bifurcation: h = Z;

a =229 b =585 c = 1.58195: d = 0.44 a = 3.29, b = 18.0339, ¢ = 1.58195, d = 0.686499
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Thank you for your attention!
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