## Mathematical Models For Malaria Disease

Rahele Mosleh

7 December,2017 BME university

Malaria is an epedemic and vector borne disease that has been plaguing mankind since before recorded history. The disease is carried by female Anopheles mosquitoes.

### Modelling

#### SIR model

One of the bisc models for epidemic deases is SIR model. For convenience this model is considered in a closed host population of total size N .

## The total population is divided into three classes:

- >S: the class of suceptibles
- > I: the class of infectives
- R:the class of removed individuals



**b**: the number of contacts that each infected individual has with sesuceptibles per day



#### Mathematical models

#### **SIR MODEL**

$$\frac{dS(t)}{dt} = -bS(t)I(t)$$

$$\frac{dI(t)}{dt} = bS(t)I(t) - kI(t)$$

$$\frac{dR}{dt} = kI(t)$$





#### Interpretation of SIR model

8 according to SIR model in epidemic.

$$\frac{dS}{dt} \le 0;$$

$$\frac{dI}{dt} \ge 0;$$

$$\frac{dR}{dt} \ge 0$$

Consequently:

If 
$$S(0)=S_0 \ge \frac{k}{b} = \rho$$

If 
$$S = \frac{k}{b} = \rho$$

$$I = -S + \frac{k}{b} \ln S + c$$

$$I_{max} = -\frac{k}{b} + \frac{k}{b} \ln \frac{k}{b} + S_0 + I_0 - \frac{k}{b} \ln S_0$$

if 
$$S_0 < \frac{k}{b} = \boldsymbol{\rho}$$

$$\frac{dI}{dt} \leq 0 \ \forall \ t \geq 0, \lim_{t \to \infty} I(t) = 0$$

In this case no epidemic can occur.



# Mathematical Model SIS MODEL

Since S+I=1 then,

$$\begin{cases} \frac{dS}{dt} = \gamma I - aSI \\ \frac{dI}{dt} = aSI - \gamma I \end{cases}$$

$$\begin{cases} \frac{dS}{dt} = \gamma I - a(1 - I)I \\ \frac{dI}{dt} = a(1 - I)I - \gamma I \end{cases}$$



$$\gamma = .5$$
 ,  $\alpha = .2$ 

#### **Interpretation of SIS MODEL**

Based on logistic equation:

$$\frac{dI}{dt} = rI(1 - \frac{I}{K}), r = \alpha - \gamma, K = \frac{r}{\alpha}$$
r<0:

r>0:

Where 
$$B = \frac{I(0)}{K - I(0)}$$
,

$$I(t)=I(0)e^{rt}, \lim_{t\to\infty}I(t)=0$$

$$I = \frac{KBe^{rt}}{1 + Be^{rt}}$$

$$\lim_{t\to\infty}I(t)=k$$

The models presented here are based on SIS model and the life-cycle of malaria parasites.

c=the rate of bites which one susceptible mosqito becomes infected by human



#### Ross mathematical Model

$$\frac{dI_h}{dt} = abmI_i(1 - I_h) - rI_h$$

$$\frac{dI_i}{dt} = acI_h(1 - I_i) - \mu_2 I_i$$

17

#### Ross-Macdonald model



#### Ross-Macdonald mathematical Model

$$\frac{dI_h}{dt} = abmI_i(1 - I_h) - rI_h$$

$$\frac{dE_i}{dt} = acI_h(1 - E_i - I_i) - acI_h(t - \tau_i) \Big( 1 - E_i(t - \tau_i) - I_i(t - \tau_i) \Big) e^{-\mu_2 \tau_i} - \mu_2 E_i$$

$$\frac{dI_i}{dt} = acI_h(t - \tau_i) (1 - E_i(t - \tau_i) - I_i(t - \tau_i)) e^{-\mu_2 \tau_i} - \mu_2 I_i$$



a=0.1, b=0.2,c=0.5,m=5,r=0.01,mu=0.1

#### Further research

#### **Proposed Models**

$$\frac{dI_h}{dt} = abmI_i(t - \tau_h)(1 - I_h(t - \tau_h)) - rI_h$$

$$\frac{dI_i}{dt} = acI_h(t - \tau_i)(1 - I_i(t - \tau_i)) - \mu_2 I_i$$

$$\frac{dI_h}{dt} = abmI_i(t - \tau_i)(1 - I_h(t - \tau_h)) - rI_h$$

$$\frac{dI_i}{dt} = acI_h(t - \tau_h)(1 - I_i(t - \tau_i)) - \mu_2 I_i$$

#### Refrences

- 1.Wikipedia
- 2. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics.
- 3.Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Dynamics and Control. Oxford University Press, Oxford, 1991.
- 4. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases. Gri±n, London, 1975.
- 5. S.A. Levin:Lecture Notes in Biomathematics
- 6. Busenberg, S., Cooke, K.: The Dynamics of Vertically Transmitted Diseases.
- 7. Michael Y. Li, HAL L. Smith, Liancheng Wang: Global Dynamics of An SEIR Epidemic Model With Vertical Transmission. 2001 Society for Industrial and Applied Mathematics, SIAM J. APPL. MATH. c 2001 Society for Industrial and Applied Mathematics, Vol. 62, No. 1, pp. 58–69

- 8.M. Martcheva, *An Introduction to Mathematical Epidemiology*, Springer Science+Business Media New York 2015, Texts in Applied Mathematics 61, DOI 10.1007/978-1-4899-7612-3 2
- 9. Hethcote, H.W.: Qualitative analyses of communicable disease models.
- 10.Plemmons, William, "A Mathematical Study Of Malaria Models Of Ross And Ngwa" (2006). *Electronic Theses and Dissertations*. Paper 783.
- 11. The Mathematical Theory of Infectious Diseases and its Applications, Norman T.J. Bailey, M.A., D. Sc. Hafner Press, New York, 1975.
- 12. Jacob C. Koella. On the use of mathematical models of malaria transmission. Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland. 1991 Elsevier Science Publishers B.V,
- 13. James Holland Jones , Notes on  $R_0$ , Department of Anthropological Sciences Stanford University, May 1, 2007
- 14. Alun Lloyd. Introduction to Epidemiological Modeling: Basic Models and Their Properties. January 23, 2017

## THANK YOU FOR YOUR ATTENTION