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Introduction
The maximum principle (MP) forms an important qualitative property of
second-order elliptic equations [9].

Typical MPs arise in either the following forms:

max
Ω

u = max
∂Ω

u

i.e. the solution u attains its maximum on the boundary, or

max
Ω

u ≤ max{0,max
∂Ω

u}

i.e. the solution u can attain a nonnegative maximum only on the
boundary.
Analogous minimum principles (mPs) are defined by reversing signs.

A physically important special case is nonnegativity preservation
(NNP).
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DMPs for the FE solution of nonlinear PDEs

The discrete analogs, the so-called discrete maximum principles (DMPs)
have been studied by many researchers [1, 2, 3, 6].

Motivation: The DMP is an important measure of the qualitative
reliability of the numerical scheme, otherwise one could get unphysical
numerical solutions like negative concentrations, etc.

Motivation: Similar results in [6, 7] for ”small enough mesh size h”.

Achieved results: Computable conditions on the geometric
characteristics of widely studied FE shapes: triangles, tetrahedra,
prisms, and rectangles, and guarantee the validity of DMPs under
these conditions.
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Model Problem

Nonlinear elliptic PDE BVP:


− div

(
b(x, u,∇u)∇u

)
+ r(x, u,∇u)u = f(x) in Ω,

b(x, u,∇u) ∂u
∂ν = γ(x) on ΓN,

u = g(x) on ΓD,

(1)

where Ω is a bounded domain in Rd (d = 2 or 3).
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Assumption 1

(a) Ω has a piecewise smooth and Lipschitz continuous boundary ∂Ω;
ΓN, ΓD ⊂ ∂Ω are measurable open sets, such that ΓN ∩ ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω, further meas(ΓD) > 0.

(b) The scalar functions b : Ω× R × Rd → R and r : Ω× R × Rd → R
are continuous. Further, f ∈ L2(Ω), γ ∈ L2(ΓN) and g = g∗|ΓD for
some g∗ ∈ H1(Ω).

(c) The functions b and r are bounded such that

0 < µ0 ≤ b(x, ξ, η) ≤ µ1, 0 ≤ r(x, ξ, η) ≤ β ∀(x, ξ, η) ∈ Ω×R×Rd,
(2)

where µ0,µ1 and β are positive constants.
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FE Approximation

To find the FE solution for the model (1), consider a FE subspace Vh of
first-order elements.

(B1) 0 ≤ ϕi ≤ 1 (∀i = 1, . . . , n + m);

(B2)
n+m∑
i=1

ϕi ≡ 1,

(B3) ϕi(Pj) = δij for proper nodes P1, . . . ,Pn ∈ Ω and
Pn+1, . . . ,Pn+m ∈ ∂Ω.
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Consider Courant, tetrahedral, bilinear, and prismatic elements, for all of
which the conditions (B1)-(B3) hold.
FE : uh ∈ Vh such that

uh = gh on ΓD and∫
Ω

[
b(x, uh,∇uh)∇uh·∇vh+ r(x, uh,∇uh)uhvh

]
dx =

∫
Ω

fhvh dx+
∫
ΓN

γhvh dσ ∀vh ∈ V0
h.

(3)
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Nonlinear algebraic system of equations

To find the coefficient vector c of uh, following [6], the corresponding
nonlinear algebraic system of equations is given by

A(c)c = b, (4)

where the structure of the matrix is :

A(c) =

A(c) Ã(c)

0 I

 (5)

where I is an m × m identity matrix and 0 is a m × n zero matrix, further,
the entries of the matrix A(c) for i = 1, . . . , n and j = 1, . . . , n + m are
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Entries of the matrix A(c)

aij(c) =
∫
Ωij

[
b(x, uh,∇uh) ∇ϕi · ∇ϕj + r(x, uh,∇uh) ϕiϕj

]
dx, (6)

where ϕi and ϕj are corresponding basis functions and

Ωij = suppϕi ∩ suppϕj , (7)

where supp refers to the support of a function (i.e. the closure of the set
where it is nonvanishing). The vector c = (c1, ..., cn+m)T contains the
values of the FE solution uh at all the nodal points. i.e. ci = uh(Pi) and

uh =
n+m∑
i=1

ciϕi, where ϕ1, ....ϕn are the interior basis functions and
ϕn+1, ..., ϕn+m are the boundary basis functions.
Furthermore, b = (b1, ..., bn, g1, ..., gm)T and A(c) is (n + m) by (n + m)
matrix.
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Theorem
Let Vh be any FEM subspace. The entries of the matrix A(c) for
i = 1, . . . , n and j = 1, . . . , n + m are given by (6), where ϕi and ϕj are
corresponding basis functions and Ωij = suppϕi ∩ suppϕj.
Let the general properties (B1)-(B3) hold. Then the matrix (5)–(6)
satisfies

(i)
n+m∑
j=1

aij(c) ≥ 0 ( ∀i = 1, . . . , n );

(ii) A(c) is positive definite.
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General Theorem

Theorem
Let the general properties (B1)-(B3) hold. If aij(c) ≤ 0 (i ̸= j), then uh
satisfies the DMP. i.e., If

f(x) ≤ 0 (x ∈ Ω) and γ(x) ≤ 0 (x ∈ ΓN), (8)

then
max
Ω

uh ≤ max{0,max
ΓD

gh}. (9)

In particular, if max
ΓD

gh ≥ 0, then

max
Ω

uh = max
ΓD

gh, (10)

and if gh ≤ 0, then we have the nonpositivity property

uh ≤ 0 on Ω. (11)
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Courant FE meshes

Definition
The family F of triangulations of a bounded polygonal domain is said to
be uniformly acute if there exists α0 < π

2 such that αn ≤ α0 for any angle
αn in all Tk in all Th , where Th ∈ F .

Theorem
Let Assumption 1 hold and the Courant FE method be used with
triangulations satisfying the Definition. Let the mesh size h satisfy

0 < h ≤ h0 =
( 12 cos(α0)µ0

β

) 1
2 , (12)

where α0 is the angle that obeys the Definition, µ0 and β are the positive
constants from (2).
Then aij(c) ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i ̸= j).
Consequently, the DMP (9) holds.
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Tetrahedral FE meshes

Definition
A family F of tetrahedral triangulations of a bounded polyhedral domain
is said to be uniformly acute if there exists α0 < π

2 such that αK
ij ≤ α0 for

any angle αK
ij in all K ∈ Th, and Th ∈ F .

Figure: A tetrahedral cell K from [4].
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Theorem
Let d = 3 and Assumption 1 hold, and let the tetrahedral FE method be
used with triangulations satisfying the Definition. Let the mesh size h
satisfy

0 < h ≤ h0 =
( 20µ0 cosα0

β

) 1
2
, (13)

where α0 is the angle that obeys the Definition, µ0 and β are the positive
constants from (2). Then

aij(c) ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i ̸= j).

Consequently, the DMP (9) holds.
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Bilinear elements
Consider a semilinear special case (b = 1) for problem (1), d = 2:

Definition
A family F of rectangular meshes is said to be uniformly non-narrow if
there exists ρ0 <

√
2 such that for any rectangle we have H

h ≤ ρ0 where H
and h denote the longest and shortest side of the rectangle, respectively.

Theorem
Let Assumption 1 hold and the bilinear FE method be used with a mesh
satisfying the Definition. Let the mesh size h satisfy

0 < h ≤ h0 =

√
3µ0(2 − ρ2

0)

ρ0
√
β

(14)

where ρ0 obeys the Definition, µ0 and β are the positive constants. Then
aij(c) ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i ̸= j). Consequently, the DMP
(9) holds.
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Example for Bilinear elements

Determine h0 for bilinear elements.

Example: Let us apply a uniform square mesh on Ω for the following
problem:

− µ0∆u +
u

λ+ ϵu = f in Ω (15)

(with proper boundary conditions), which involves the rewritten form of
the Michaelis-Menten nonlinearity, i.e. λ, ϵ > 0 are given constants.

We must calculate the constants to compute h0 in (14).
Since β = 1

λ and ρ0 = 1, we obtain

h0 =
√

3µ0λ. (16)
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Prismatic Element

Consider a semilinear special case (b = 1) for problem (1), d = 3:

B

C

b

c

H

a

D

F

γ

βα

A

E

Figure: Basic notations for prismatic elements, based on [5].
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Assumption 2

Let h > 0 be the triangular mesh parameter. There exist fixed angles

0 < γmin ≤ γmax <
π

2

such that the area |T| of any triangle T satisfies

1
2h2 sin γmin ≤ |T| ≤ 1

2h2 sin γmax .

Further, let γmed denote a lower bound for the second largest degrees of
the triangles T.
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Theorem
Let Assumption 2 hold, and let us fix a constant δ1 such that

0 < δ1 <
4 cot γmax
sin γmax

. (17)

If the mesh parameters satisfy the following conditions, where µ0 and β0
are constants from (2) :

h2 ≤ 3µ0δ1
β0

, (18)

cot γmed + cot γmin
sin γmin

+
1
2 δ1 ≤

( h
H
)2

≤ 4 cot γmax
sin γmax

− δ1 . (19)

Then
aij(c) ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i ̸= j)

Consequently, the DMP (9) holds.
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Necessity of fine enough mesh

We illustrate the above theoretical results with an experiment for the
bilinear FE solution of a 2D reaction-diffusion problem (Michaelis-Menten
nonlinearity) by Murry [8], where nonnegativity can fail for a too-coarse
mesh. {

− µ0∆u + u
1+ϵu = f in Ω := [0, 1]2,

u = 0 on ∂Ω.
(20)
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Numerical Experiments

In the experiment µ0 = 10−5 and ϵ = 10−3 are constants given by
Keller, see in [8].

f(x, y) := (2x − 1)6 ≥ 0 describes a source function mostly
concentrated near two sides of the square domain.

The graphs below illustrate the numerical solutions for five different
meshes.
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FE solution of (16) for coarse mesh
The NN of the numerical solution fails. i.e., min uh < 0.

Figure: FE solution for h = 0.25: min uh = −0.0170.
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FE solution of (16) for coarse mesh
The NN of the numerical solution fails. i.e., min uh < 0.

Figure: FE solution for h = 0.1: min uh = −0.0421.
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FE solution of (16) for fine mesh
The NN of the numerical solution fails. i.e., min uh < 0.

Figure: FE solution for h = 0.0075: min uh = −8.8156e − 14.
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FE solution of (16) for fine mesh
The NN of the FE solution holds. i.e., uh ≥ 0 only for sufficiently small
mesh sizes h.

Figure: FE solution for h = 0.005: min uh = 0.

From (16) h ≤ h0 = 0.0054 (Theoretical results), and in the runs, we
obtained nonnegative minima for h ≤ 0.0074 (Experimental results).
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FE solution of (16) for sufficient small mesh
The NN of the FE solution holds. i.e., uh ≥ 0 only for sufficiently small
mesh sizes h.

Figure: FE solution for h = 0.001: min uh = 0.
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Summary

The summary of the above experiments for different mesh sizes h and the
corresponding minima of numerical solutions uh are given in the following
table.

h 0.25 0.1 0.01 0.0075 0.005 0.001
min uh -0.017 -0.04 −8.3 × 10−11 −8.8 × 10−14 0 0

Table: Minima of the FE solutions min uh for some values of h.
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Conclusion

We have been able to determine threshold mesh sizes for h using the
computable conditions on the geometric characteristics of widely
studied FE shapes: triangles, tetrahedra, prisms, and rectangles, and
thus ensure the validity of DMPs for nonlinear elliptic PDEs.
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Thank you for your attention!
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