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1 Introduction

1.1 Existence of periodic trajectories

- Exotic behavior of chemical reactions: oscillation, multistability, multistationarity or chaos

- Oscillatory chemical reactions may also form the basis of periodic behavior in biological systems

- The second part of the 16th problem of David Hilbert (1900): find the number of limit cycles of two-
dimensional autonomous polynomial differential systems.

- The problem seems to be very difficult even in the case of two-dimensional kinetic differential equations.

- Schlomiuk and Vulpe (2012): in the class of quadratic differential equations the number of different 
phase portraits is estimated to be more than 2000



- Frank-Kamenetsky (1947): modelling the oscillation of cold flames

The Lotka-Volterra equation
x ' � k1 x � k2 x y, y ' � k2 x y � k3 y

was reinterpreted as the induced kinetic differential equation of the reaction

X �k1 2X , X �Y�k2 2Y , Y�k3 0
Nonlinear first integral � conservative oscillations, i.e. closed trajectories in the first 

quadrant

 - The Belousov-Zhabotinsky reaction (Belousov: 1958, Zhabotinsky: 1964) is an oscillating chemical 
reaction.

https:��en.wikipedia.org�wiki�Belousov�Zhabotinsky�reaction

- Hsü (1976): the Oregonator model of the BZ reaction has periodic solutions by a theorem on Andronov-
Hopf bifurcation

- Field, Kőrös and Noyes (1972): Oscillations in chemical systems

1.2 Exclusion of periodic trajectories

 Application of the theorem by Bendixson or by Bendixson and Dulac:

- Wegscheider reaction: The induced kinetic differential system

x ' � �k1 x � k�1 y � 2 k2 x
2 � 2 k�2 y

2 � : f �x, y�
y ' � k1 x � k�1 y � 2 k2 x

2 � 2 k�2 y
2 � : �f �x, y�

of the reversible reaction (X
k
�1

k1
Y, 2 X

k
�2

k2
2 Y) has no periodic trajectory.

- Bautin (1954): within the class of equations

x ' � x�a x � b y � c�
y ' � y�d x � e y � f �

only those can have a periodic solution which are of the Lotka-Volterra form (Bendixson-Dulac theorem)

- Póta-Hanusse-Tyson-Light theorem (proofs: Póta, with a Dulac function, 1983; Schuman and Tóth, 
2003): Among two-species second-order reactions the only oscillatory reaction is the Lotka-Volterra 
model.
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Suppose that the coefficients of the equation x ' � a x2 � b x y � c y2 � d x � e y � f

y ' � A x2 �B x y �C y2 �D x �E y � F

obey the inequali-
ties

�1� 0 � c, e, f , A, D, F �the equation is kinetic�
�2� 0 	 a, C no steps like 2 X�3 X or 2 Y�3 Y occur
�3� at most one of b andB is positive no steps like X�Y �2 X�Y or X�Y�X�2 Y occur

   

   

Then, the only equation to have periodic solutions is of the Lotka-Volterra form, specifically, limit cycles 
cannot arise.

Interesting question: is condition (1) enough to exclude the emergence of limit cycles?

-Escher (1980, 1981): chemical examples with two species and second-order reactions with even more 
than one limit cycles, but long product complexes are allowed

Both conservative oscillations and limit cycles:  2Y � 2X�3X , X � 0
Y , X � Y�0

1.3 Limit cycles

Prigogine and Lefever (1968): the Brusselator model with a limit cycle (a Hopf bifurcation emerges)

0 �
1

1

X�b Y , 2 X � Y�a 3X             

 x ' � 1 � �b � 1� x � a x2 y, y ' � b x � a x2 y

 
Gray and Scott (1986): the Autocatalator model

0�k0 Y�k3 X�k2 0, 2 X � Y�k1 3X

x ' � k3 y � k2 x � k1 x
2 y, y ' � k0 � k3 y � k1 x

2 y

Erle (1998): If 0 �m ' �m; 0 � Β � n '; Α � 0 then for the reaction mX � nY �
k1'

k1

m 'X � n 'Y , Α X �
k2'

k2

0 �
k3'

k3 Β Y

there exist reaction rate coefficients for which the reaction has an asymptotically orbitally stable closed 
orbit.

Erle (2000): Nonoscillation in closed reversible chemical systems

Schnakenberg (1979): For exhibiting limit cycle behavior a two-species reaction has to consist of at 
least three
reaction steps among which one must be autocatalytic of the type 2X � Y�3 X . The possible candi-
dates are those whose stationary state is an unstable focus.

Császár, Jicsinszky and Turányi (1982): They used necessary conditions to construct candidate 
reactions with limit cycles. They have shown numerically that some of the reactions seem to have limit 
cycles.

Schlosser and Feinberg (1994): a graph theoretical necessary condition of periodicity and multistationar-
ity
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1.4 The model with a large and a small limit cycle

The dynamical system investigated in [1] comes from a chemical model published by Császár et al. 
(1982):

 0�K1

V , U�K2

0, V�K3

U, 2U�K4

V , 2U � V�K5

3U            

where Ki � 0, i � 1, ..., 5 are the reaction rate coefficients. The induced kinetic differential equations are

u ' � �K2 u � 2K4 u
2 �K3 v � K5 u

2 v

v ' � K1 �K4 u
2 � K3 v �K5 u

2 v

B. Ács, G. Szederkényi, Zs. Tuza, and Z. A. Tuza (2016): precisely 17160 reaction graphs with different 
structure can produce exactly the same dynamical behavior: they induce the same mass action type 
kinetic differential equations. However, the computed structures could not be used to show important 
dynamical properties of the model (e.g. the existence of positive equilibria or the boundedness of 
solutions).

2 Methods to be used

2.1 Poincaré compactification

The Poincaré compactification is one of he tools to study the behavior of the trajectories of a planar 
differential system near infinity. Each polynomial vector X � P � ��x �Q � ��y of degree d of the system 

x ' � P�x, y�, y ' �Q�x, y�

can be analytically extended to the Poincaré sphere �2 � �x, y, z� � �3 : x2 � y2 � z2 � 1. This can be 

done by central projection of the points M�x, y, �1� � �3 onto �2.

                                                     

Northern hemisphere: H� � �x, y, z� � �2 : z � 0;     M ''
x

x2 � y2 � 1

,
y

x2 � y2 � 1

,
1

x2 � y2 � 1

�H�

Southern hemisphere: H� � �x, y, z� � �2 : z � 0;     M '
�x

x2 � y2 � 1

,
�y

x2 � y2 � 1

,
�1

x2 � y2 � 1

�H�

Equator: �1 � �x, y, z� � �2 : z � 0

The finite points of the plane are projected to the northern hemisphere and the southern hemisphere and 
the infinite points to the equator.
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For the investigation of the points on the sphere, six local charts will be used: 
Ui � s � �2 : si � 0, i � 1, 2, 3

Vi � s � �2 : si � 0, i � 1, 2, 3

  

where d denotes the degree of the system. Vi distinguishes from Ui by the factor ��1�d�1. 
    
The finite points correspond to the charts U3, V3, respectively. The infinite points correspond to the 
charts U1, U2, V1, V2, where v � 0. It is enough to consider the points on U1 v�0 and U2 �0,0� to under-

stand the behavior of the infinite points.

Poincaré disk: the projejction of the points of the northern hemisphere of �2 to the equator.

Example 1 x ' � x, y ' � �y

Singular point: �0, 0�, it is a saddle. Degree: d � 1.

Projection to U1: x � 1

v
, y � u

v
   �   u � y

x
, v � 1

x

The transformed system:  u ' � �2 u, v ' � �v

Singular point at U1: �0, 0�, it is a stable node at infinity. Since d is odd, then the origin of V1 is also a 
stable node.

�
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Projection to U2:   x � u

v
, y � 1

v
   �   u � x

y
, v � 1

y

The transformed system:   u ' � 2 u, v ' � v

Singular point at U2: �0, 0�, it is an unstable node at infinity. The origin of V1 is also an unstable node.

The phase portrait on �2: The phase portrait on the Poincaré disk:

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Example 2 x ' � �x � y2, y ' � y � x2

Singular points: �0, 0�: saddle, (-1,-1,): center (it can be seen with the first integral 

H�x, y� � 1

3
x
3 � 1

3
y
3 � x y). Degree: d � 2.

Projection to U1:  x � 1

v
, y � u

v
   �   u � y

x
, v � 1

x

The transformed system:  u ' � 1 � u3 � 2 u v, v ' � u2 v � v2

Singular point at U1: ��1, 0�  (we need only the case v � 0), it is an unstable node at infinity. Since d is 
even, the diametrically opposite point is a stable node in V1.

Projection to U2:   x � u

v
, y � 1

v
   �   u � x

y
, v � 1

y

The transformed system:   u ' � �1 � u3 � 2 u v, v ' � �u2 v � v2

Singular point at U2: the only possibility is u � 0, v � 0, but �0, 0� is not a singular point, so there are no 
additional infinite singular points.

The phase portrait on �2:        The phase portrait on the Poincaré disk:

�2 �1 0 1 2

�2

�1

0

1

2

6     2018-09-27.nb



2.2 Homogeneous directional blow-up

Blow-up: transformation of the variables so that the behavior near a degenerate singular point is possible 
to determine.

Two types of blow-ups: “polar blow-up”: singular point � circle
           “directional blow-up”: singular point � straight line

x ' � P�x, y� �Pm�x, y� � ...

y ' �Q�x, y� �Qm�x, y� � ...

Pm, Qm: homogeneous polynomials of degree m � �� and the dots mean higher order terms
We assume that the origin is a singular point, since m � 0.

The characteristic function to determine the direction of the blow-up:

F�x, y� � x Qm�x, y� � y Pm�x, y�

If F � 0, then Pm � xWm�1 and Qm � y Wm�1, where Wm�1 � 0. The angle � � �0, 2 Π� is the singular direc-
tion, if the factor of Wm�1 is of the form y � v x, where v � tan�.

The blow-up in the x direction is the transformation x� x, y � x z, and the transformed system is

x ' � P�x, x z�, z ' � Q�x, x z� � z P�x, x z�
x

The singularity is transformed into the line x � 0 called the exceptional divisor. The appearing common 

factor, xm�1, sometimes xm needs to be cancelled. The 2nd and 3rd quadrants are swapped.

x � 0, y � 0 � z � 0

x � 0, y � 0 � z � 0

x � 0, y � 0 � z � 0

x � 0, y � 0 � z � 0

The blow-up in the y  direction is the transformation x� y z, y � y, and the transformed system is

z ' � P�y z, y� � z Q�y z, y�
y

, y ' �Q�y z, y�

The singularity is transformed into the line y � 0. The 3rd and 4th quadrants are swapped.

Example 1        x ' � x21 � x2 � y2, y ' � x3 y        (1)

The characteristic function: x ' � x21 � x2 � y2 � x2 � y2 � x4 � P2�x, y� � x2 � y2

y ' � x3 y � Q2�x, y� � 0

F � x Q2�x, y� � y P2�x, y� � x  0 � yx2 � y2 � �yx2 � y2
F � 0 if y � 0 � x directional blow � up

Blow-up in the x direction: x � x, z � y

x
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The transformed system: x ' � x2 1 � x2 � z2
z ' � �x z 1 � z2

       (2) Cancelling x: x ' � x 1 � x2 � z2
z ' � �z 1 � z2

      (3)

The origin is transformed into the line x � 0. On this line the only stationary point is �0, 0� with eigenvalues 
1, �1 � �0, 0� is a saddle.

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

�3�

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

�2�

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

�1�

Example 2         x ' � �2 y � 3 y2 � y3, y ' � �x3        (1)

The characteristic function: F � x Q1�x, y� � y P1�x, y� � x  0 � y��2 y� � 2 y2

F � 0 if y � 0 � blow � up in the x direction : x � x, z � y

x

The transformed system: x ' � �2 x z � 3 x2 z2 � x3 z3

z ' � �x2 � 2 z2 � 3 x z3 � x2 z4
        (2)

The origin is still degenerate so an additional blow-up needs to be done.

The characteristic function: F � x Q2�x, z� � z P2�x, z� � x�x2 � 2 z2 � z��2 x z� � x�x2 � 4 z2
F � 0 if x � 0 � blow � up in the z direction : t � x

z
, z � z

The transformed system: t ' � �t z 4 � t2 � 6 t z2 � 2 t2 z4
z ' � z2 2 � t2 � 3 t z2 � t2 z4

        (3)         

Cancelling z: t ' � �t 4 � t2 � 6 t z2 � 2 t2 z4
z ' � z 2 � t2 � 3 t z2 � t2 z4

        (4)

The origin is transformed into the t axis. Here (on the line z � 0) the stationary points are 
�0, 0�, �2, 0�, ��2, 0�. The origin is a saddle with eigenvalues �4, 2.
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3 The model with two limit cycles

3.1 Preparation for the analysis of the model

The number of parameters in the following system can be decreased by two:

 u ' � �K2 u � 2K4 u
2 �K3 v � K5 u

2 v

v ' � K1 �K4 u
2 � K3 v �K5 u

2 v

 
Let u�t� � a x�t Τ�, v�t� � b y�t Τ�, where  a, b, Τ are constants   �   u ' �t� � aΤ x�t Τ�, v ' �t� � bΤ y�t Τ�.
The new system is:

x ' � �K2 x

Τ � 2 aK4 x
2

Τ � bK3 y

a Τ � a bK5 x
2 y

Τ
y ' � K1

b Τ � a2 K4 x
2

b Τ � K3 y

Τ � a2 K5 x
2 y

Τ

Let the coefficient of x2 y and x2 be equal to 1   �   a � b, Τ � a2 K5 and a � K4

K5

.

If k1 � K1 K5
2

K4
3

, k2 � K2 K5

K4
2

, k3 � K3 K5

K4
2

 then the new system is:
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�
4

�
4

�
4

x ' � �k2 x � 2 x2 � k3 y � x
2
y

y ' � k1 � x
2 � k3 y � x

2
y

        (1)

which can be obtained from the original one if K4 � K5 � 1 and the notation is changed appropriately.

3.2 Phase portrait on the Poincaré disk

Theorem 1. For any positive values of parameters ki the corresponding system (1) has a unique singular 
point in the first quadrant and all trajectories of this quadrant tend to this point or to a limit cycle surround-
ing it when t � �".

Proof. 
1. The singular points of system (1)

x ' � �k2 x � 2 x2 � k3 y � x
2
y � 0

y ' � k1 � x
2 � k3 y � x

2
y � 0

   �   

A
�k2 � 4 k1 � k2

2

2
, 2 k1 4 k1 � k2

2  k2�k3 � k1� � �k3 � k1� 4 k1 � k2
2

B
�k2 � 4 k1 � k2

2

2
, 2 k1 4 k1 � k2

2  k2�k1 � k3� � �k3 � k1� 4 k1 � k2
2

A is located in the first quadrant and B is in the second one, so only the point A is of interest for us.

The vector field on the coordinate axes bounding the first quadrant is directed inside the quadrant.

If x � 0 : x ' � k3 y � 0, y ' � k1 � k3 y � � 0, � 0, � 0�
If y � 0 : x ' � �k2 x � 2 x2 � 0, y ' � k1 � x

2 � 0

Thus, to understand the behavior of the trajectories in the quadrant we have to study the singular points 
of the system at infinity.

2. Behavior of the trajectories at the ends of the O x axis

2. a)  Projection to the Poincaré sphere, substitution and time rescaling: u � y

x
, z � 1

x
, dΤ � 1

z2
dt

u ' � �u � u2 � z � 2 u z � k2 u z
2 � k3 u z

2 � k3 u
2 z2 � k1 z

3 �U�u, z�
z ' � �u z � 2 z2 � k2 z

3 � k3 u z
3 � Z�u, z�

        (2)

Singular points at the equator z � 0: C�0, 0� and D��1, 0�, but only C corresponds to the first quadrant.

C is degenerate   �   blow-up
First degree approximations of U and Z:  U1 � �u � z, Z1 � 0
Characteristic function:  F � u Z1 � z U1 � z�u � z�

F � 0 when z � 0 or u � z  �  trajectories of (2) tend to C tangentially to the lines z � 0 and u � z

2. b) Blow-up of the singular point �0, 0� in (2), substitution: X � u, Y � z

u

X ' � �X 1 � X � Y � 2X Y � k2 X
2 Y2 � k3 X

2 Y2 � k3 X
3 Y2 � k1 X

2 Y3
Y ' � �Y �1 �Y � k3 X

2 Y2 � k1 X
2 Y3

        (3)
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� � � � � � 

Singular points at the axis X � 0: �0, 0� and �0, 1�, where �0, 0� is a saddle.  We investigate �0, 1� further.

2. c) Moving the singular point �0, 1� to �0, 0� using the substitution w � X , v � Y � 1 and time rescaling 
dt � �dt

w ' � �v w �w2 � 2 v w2 � k1 w
3 � k2 w

3 � k3 w
3 � 3 k1 v w

3 � 2 k2 v w
3 �

2 k3 v w
3 � 3 k1 v

2 w3 � k2 v
2 w3 � k3 v

2 w3 � k1 v
3 w3 � k3 w

4 � 2 k3 v w
4 � k3 v

2 w4

v ' � v � v2 � k1 w
2 � k3 w

2 � 4 k1 v w
2 � 3 k3 v w

2 � 6 k1 v
2 w2 � 3 k3 v

2 w2 � 4 k1 v
3 w2 � k3 v

3 w2 � k1 v
4 w2

        

(4)

Application of a theorem  by Andronov at al. (1973): 
Let �0, 0� be an isolated equilibrium state of the system 
w ' � P2�w, v� �P�w, v�, v ' � v �Q2�w, v� �Q�w, v�. 
Let v � Φ�w� be a solution of the equation v �Q2�w, v� � 0 in the neighborhood of �0, 0� and assume that 

P2�w, Φ�w�� � �w2 � h.o.t. Then the origin is a saddle-node.

(a) Phase portrait of system (4)
(b) Phase portrait of system (2) after the blow-down (the direction of the trajectories changes since we 
divided by �1)

Phase portraits of system (4) for fixed values of k1 and k3 when k2 � 1.

3. Behavior of the trajectories at the ends of the Oy  axis

3. a)  Projection to the Poincaré sphere, substitution and time rescaling: u � x

y
, z � 1

y
, dΤ � 1

z2
dt
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u ' � u2 � u3 � 2 u2 z � u3 z � k3 z
2 � k2 u z

2 � k3 u z
2 � k1 u z

3 �U�u, z�
z ' � u2 z � u2 z2 � k3 z

3 � k1 z
4 � Z�u, z�

        (5)

The origin is a degenerate singular point at the ends of Oy axis    �   blow-up

Second degree approximations of U and Z:  U2 � u2 � k3 z
2, Z2 � 0

Characteristic function:  F � u Z2 � z U2 � �zu2 � k3 z
2

F � 0 when z � 0  �  the characteristic direction is z � 0 and a u-directional blow-up needs to be done

3. b) Blow-up in the u direction, substitution and time rescaling: u � X , z � X Y , dt � X dt, and dividing by 
the common factor X

X ' � �X �1 � X � 2X Y � X2 Y � k3 Y
2 � k2 X Y2 � k3 X Y2 � k1 X

2 Y3
Y ' � Y �1 � 2 X Y � k3 Y

2 � k2 X Y2
        (6)

Phase portrait of system (6) and phase portrait of system (5) after the blow-
down:

4. Phase portrait of system (1) on the Poincaré disk

There is exactly one singular point, the point A, in the first quadrant. Thus, when the time increases, each 
trajectory of the first quadrant either reach the singular point A or a limit cycle surrounding A.

3.3 The big and the small limit cycle

To simplify the further analysis, we assume that the singular point A�x0, y0� of system (1) is on the 
straight line x � 1. Then 

x ' � �k2 � 2 � k3 y � y � 0

y ' � k1 � 1 � k3 y � y � 0

   �   k1 � k2 � 1, x0 � 1, y0 � 2 � k2

1 � k3
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Theorem 2. If In system (1) all parameters are positive, k3 � 1, k1 � k2 � 1, k2 � �k3
2 � 6 k3 � 1

k3 � 1
 and 

g1 � �1 � 43 k3 � 9 k3
2 � 3 k3

3 ��1 � k3� �3 � k3� 3 � 2 k3 � k3
2 � 0

then system (1) has a stable limit cycle and an additional unstable limit cycle bifurcates from the singular 
point A after small perturbations of the parameters.

Proof. 

a) The singular point A 1,
2 � k2

1 � k3
 of (1) is shifted into �0, 0�:

x1 ' � 1

1 � k3

k2 x1 � 4 k3 x1 � k2 k3 x1 � k2 x1
2 � 2 k3 x1

2 � y1 � 2 k3 y1 � k3
2
y1 � 2 x1 y1 � 2 k3 x1 y1 � x1

2
y1 � k3 x1

2
y1

y1 ' � � 1

1 � k3
2 x1 � 2 k2 x1 � 2 k3 x1 � x1

2 � k2 x1
2 � k3 x1

2 � y1 �
2 k3 y1 � k3

2
y1 � 2 x1 y1 � 2 k3 x1 y1 � x1

2
y1 � k3 x1

2
y1

      

(7)

System (7) has only one singular point in the first quadrant: �0, 0�.
b) The Jacobian at the origin

The trace of the Jacobian matrix of (7) at the origin is tr � �1 � k2 � 6 k3 � k2 k3 � k3
2

1 � k3

tr � 0 % k2 � � 1 � 6 k3 � k3
2

�1 � k3

The eigenvalues are pure imaginary, Λ1,2 � ' i Β, where Β � �1 � k3� 3 � k3

1 � k3

, if k3 � 1.

c) The matrix S that transforms the Jacobian at the origin into Jordan canonical form: 

S �
1 � k3

�1 � k3� 3 � k3

1 � k3

4 �1 � k3�
�1 � k3

0

In (7) we introduce the change of coordinates x1 � �1 � k3� 1 � k3 u � 3 � k3 v  1 � k3

y1 � 4 �1 � k3� u
�1 � k3

and time rescaling: dt � �dt
�1 � k3� 3 � k3

1 � k3

d) The transformed system 
(8):

u ' �
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u ' �
1

2 3 � 2 k3 � k3
2

3 u2 � 4 k3 u
2 � k3

2 u2 � 2 u3 � 2 k3
2 u3 � 2 3 � 2 k3 � k3

2 v � 2 3 � 2 k3 � k3
2 u v �

2 k3 3 � 2 k3 � k3
2 u v � 4 3 � 2 k3 � k3

2 u2 v � 4 k3 3 � 2 k3 � k3
2 u2 v �

3 v2 � 4 k3 v
2 � k3

2 v2 � 6 u v2 � 8 k3 u v
2 � 2 k3

2 u v2

v ' � 1

2 ��1 � k3� �3 � k3�
�6 u � 4 k3 u � 2 k3

2 u � 11 u2 � 13 k3 u
2 � k3

2 u2 � k3
3 u2 � 6 u3 � 2 k3 u

3 � 6 k3
2 u3 �

2 k3
3 u3 � 10 3 � 2 k3 � k3

2 u v � 8 k3 3 � 2 k3 � k3
2 u v � 2 k3

2 3 � 2 k3 � k3
2 u v �

12 3 � 2 k3 � k3
2 u2 v � 16 k3 3 � 2 k3 � k3

2 u2 v � 4 k3
2 3 � 2 k3 � k3

2 u2 v �
3 v2 � 19 k3 v

2 � 9 k3
2 v2 � k3

3 v2 � 18 u v2 � 30 k3 u v
2 � 14 k3

2 u v2 � 2 k3
3 u v2

The origin in (8) is either a center or a focus. To distinguish between the two cases we look for a Lya-
punov function.

e) Lyapunov’s theorem. Let ( be of the form

(�u, v� � u2 � v2 � 
k�m�3

�

Φk m uk vm

and quantities gi satisfying the identity

�(
�u u ' � �(

�v v ' � g1u2 � v22 � g2u2 � v23 � ...

By comparing the coefficients of the corresponding powers on both sides:

g1 � �1 � 43 k3 � 9 k3
2 � 3 k3

3 ��1 � k3� �3 � k3� 3 � 2 k3 � k3
2

Remark: If 
�(
�u u ' � �(

�v v ' � g1 u
4 � g2 u

6 � ... then g1 is a constant multiple of the previous result.

When g1 � 0  then (�u, v� is a positively defined Lyapunov function, whose derivative is also positively 
defined.

Lyapunov instability theorem  �  the point A is an unstable focus

Theorem 1  �  there is at least one stable limit cycle surrounding the point A

From the trace  tr � �1 � k2 � 6 k3 � k2 k3 � k3
2

1 � k3
 we can see that we can slightly perturb the parameter k2 in 

such a way that the stability of the singular point A is changed. 

Therefore, an unstable limit cycle appears near A as the result of the Andronov-Hopf bifurcation.

Since the stable limit cycle is preserved after small perturbations, the perturbed system has at least two 
limit cycles.
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3.4 Plotting the limit cycles

Quit

SetOptions��, AxesStyle � Arrowheads�Automatic�� & ��
�Plot, ParametricPlot, ListPlot, ListLinePlot�;

SetDirectory�NotebookDirectory���;
SetOptions��, AxesStyle � Arrowheads�Automatic�� & �� �Plot, ListPlot,

ListLinePlot, ListLogLogPlot, ParametricPlot, DateListPlot, DiscretePlot�;

ClearAll�k, p, q, x, y, g�;

k3 	
3

10
;
� 0 � k3 � 1 �


k4 	 1; k5 	 1; k2 	 �
k3

2 � 4 k3 k4 � 2 k3 k5 � k5
2

k3 � k5
�

1

10000
; k1 	 k2 � k4;

p�x�, y�� :	 �k2 x � 2 k4 x
2 � k3 y � k5 x

2 y;

q�x�, y�� :	 k1 � k4 x
2 � k3 y � k5 x

2 y;

ClearAll�nsol, ev, plotter�;
nsol 	 First�NSolve�Join �� Thread �� ��p�x, y�, q�x, y�� � 0, �x, y� � 0�, �x, y�, 20�;
ev 	 Eigenvalues�D��p�x, y�, q�x, y��, ��x, y��� �. nsol�;
plotter�Τ�, shift�, ag�: Automatic, pg�: Automatic, pp�: 1000, ar�: Automatic, opts���� :	
Module�startingpoint, sys, solution�,
startingpoint 	 
�x, y� �. nsol
 � shift;

sys :	 NDSolveValue�Join��u'�t� � p�u�t�, v�t��, v'�t� � q�u�t�, v�t���,
Thread��u�0�, v�0�� � startingpoint��,

�u, v�, �t, Τ�, AccuracyGoal � ag, PrecisionGoal � pg, opts�;

trafo�point�� :	
1

shift�2�

point � startingpoint
;

solution�t�� :	 trafo�Through�sys�t���;
�ParametricPlot�Evaluate�solution�t��, �t, 0, Τ�,
Epilog � �Red, PointSize�0.05�, Point��0, 0��, Point�trafo��x, y� �. nsol���,
PlotRange � All, PlotPoints � pp, AspectRatio � ar,

AxesLabel � �x, y�, LabelStyle � Directive�14�, ImageSize � 250�,
Plot�Evaluate�solution�t��1��, �t, 0, Τ�, PlotRange � All, PlotPoints � pp,

AxesLabel � �t, x�, LabelStyle � Directive�12�, ImageSize � 250�,
Plot�Evaluate�solution�t��2��, �t, 0, Τ�, PlotRange � All, PlotPoints � pp,

AxesLabel � �t, y�, LabelStyle � Directive�12�, ImageSize � 250��
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Big cycle, trajectory going inward. Distance from the singular point: 1

Figure1 	 plotter�200, �0, 1��
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Big cycle, trajectory going outward. Distance from the singular point: 10�5

Figure2 	 plotter�30, �0, 0.00001��
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Small cycle, trajectory going inward. Distance from the singular point: 6� 10�7

Figure3 	 plotter30, 0, 6. � 10�7
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Small cycle, trajectory going inward and outward

Figure41 	 plotter100, 0, 4. � 10�12, 13, 100, 10 000, 1
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Figure42 	 plotter100, 0, 4. � 10�12, 13, 100, 10 000, 1, Method � "BDF"
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Figure43 	 plotter10, 0, 4. � 10�12, 13, 100, 10 000, 1, Method � "BDF"
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Figure51 	 plotter10, 0, 10.�11, 13, 100, 10000, 1, Method � "BDF"
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Figure52 	 plotter100, 0, 2. � 10�11, 13, 100, 10 000, 1, Method � "BDF"
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Figure53 	 plotter20, 0, 10.�12, 13, 100, 10000, 1, Method � "BDF"
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