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Solving of differential 
equations using
operator method 

(theory and realisation)



In this method convergence of power series in not analysed. In 
connection with this, algebraic operations (addition, 
multiplication etc.) on series involve only a finite number of 
terms. In this case power series are called algebraic series, and 
algorithms for finding solutions of these series – algebraic 
algorithms. This doesn’t put any obstacles in developing the 
theory of formal linear operators (in the linear space of 
algebraic series). It is worth noting that algebraic (formal) 
series were used by L.Euler.

The basic principle



Basic linear operators

a) Down

Example

b) Homothetic

Example

c) Up

Example

A

H

A

0ZC  nvxvHx n
n

n
n ,,:

  0ZC   nxxA n
n

n
n ,0\,: 1 

  NC   nxxAA n
n

n
n ,0\,:,0:1 1 

11 :,:   nnnn xxXnxDx

0:x0,x:x1 nnn 

1

1
1 :,:




 

n

n
nnn xLxxxX



1. Pseudoinverse operator for operator :

Example

2. Perfect operators:

Special operators
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Auxiliary results
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generalized differential operator and

Theorem: Linear operator G is multiplicative

Example



Let a differential equation

be given. Then its solution

Solutions of n -th order ordinary 
differential equation
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Example (Direct symbolic analysis)
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Solutions of a second order 
differential equation
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using equalities

expression of the solution



Computer realization

The solution of a differential equation is a series (in x) with 
coefficients pk ,which, in their turn, are functions of  both the initial 
conditions and the center v. Computer realization of the problem 
gives only a finite number of coefficients , and, every time, we get 
one or another approximation of the solution. 
Having functions pk(s,t,v), k=0,…,N, we construct a polynomial 
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Substituting concrete numerical 
values for the variables s, t and v
we get an approximation of the

solution – the polynomial in the neighborhood of the point v.)(ˆ1 xy

.



Summing up to N , we get a family of 
approximations - polynomials 
with centers  vl. The latter approxima-
tions  “go away” from the exact solution, 
as the variable x “moves away” from the 
center. The approximation (Fig. 1) 
of the solution is formed, using the
family of approximations 
(Fig. 2), as follows:
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Fig. 2. The family of polynomials

Fig. 1.  Approximation of  the  solution

Construction of solution



Example of constructions

Approximation of  the  solution

The family of polynomials Bikulčienė, Liepa; Marcinkevičius, Romas; Navickas, Zenonas. Computer 
realization of the operator method for solving of differential equations // 
Numerical Analysis and its Applications : 3rd international conference NAA 
2004, June 29 - July 3, 2004, Rousse, Bulgaria. Berlin: Springer, 2005. 
(Lecture Notes in Computer, Vol. 3401, p. 179-186.]



Example of approximation











































     .5000 .2000 x .1975 x 2 .01842 x 3 .02322 x 4 .002726 x 5 .002619 x 6 x 1.

     .5008 .1953 x .0004179 x 6 .009449 x 5 .04089 x 3 .04514 x 4 .1839 x 2 x 2.

     .4889 .2429 x .001063 x 6 .01205 x 5 .01623 x 3 .04385 x 4 .2384 x 2 x 3.

     .2421 .8221 x .00009290 x 6 .004373 x 5 .3011 x 3 .05447 x 4 .8209 x 2 x 4.

      1.170 3.093 x .0006531 x 6 .01662 x 5 .8516 x 3 .1666 x 4 2.348 x 2 x 5.

     2.557 1.052 x .0006210 x 6 .01398 x 5 .4283 x 3 .1167 x 4 .4898 x 2 x 6.

     71.02 75.86 x .001956 x 6 .07004 x 5 7.893 x 3 1.027 x 4 33.64 x 2 x 7.

      165.6 137.9 x .0008542 x 6 .04125 x 5 8.325 x 3 .8114 x 4 46.94 x 2 x 8.

      91.80 86.90 x .0007731 x 6 .03510 x 5 6.239 x 3 .6495 x 4 32.58 x 2 x 9.

      67.44 x 119.5 .00008656 x 6 .001249 x 5 1.380 x 3 .04593 x 4 14.38 x 2 9. x



Example (first order differential equation)
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Expresion of solution by standard
functions (H-rank)
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Condition of expression by exponential functions
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Condition of expression by 
trigonometric functions
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Expression of series by sum of               
trigonometric functions
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Navickas, Zenonas; Bikulčienė, Liepa. Expressions of solutions of ordinary differential equations by
standard functions // Proceedings of the 10th International Conference Mathematical Modelling and
Analysis 2005 and 2nd International Conference Computational Methods in Applied Mathematics, 
June 1-5, 2005, Trakai, Lithuania. Vilnius: Technika, 2005, ISBN 9986059240. p. 485-491. 



Perturbation method  
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expression of the solution in operator form

differential equation 
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Perturbation method  
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Bikulčienė, Liepa; Navickas, Zenonas. Practice of operator relationships in symbolical
calculus // Acta Universitatis Apulensis. Alba Iulia: 1 Decembrie 1918 University of Alba Iulia. 
ISSN 1582-5329. 2008, no. 15, p. 373-378. 



Example  
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Solving of
Mathieu’s equation



Mathieu’s equation

Then
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Plots of approximation and error 
estimates (Mathieu’s equation)
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Approximation of  the solution The error estimates of  the  solution.



The error estimates and the 
calculation time

N h  T,s N h  T,s

8 1 0,034 12 9 0,5 0,004 54
8 0,75 0,028 12 9 0,25 0,006 62
8 0,5 0,025 14 10 1 0,0011 124
8 0,25 0,032 15 10 0,75 0,0078 127
9 1 0,005 42 10 0,5 0,0084 145
9 0,75 0,003 45 10 0,25 0,0014 160



Investigations af steady regimes

0sincos  ywxyHy  05.0H 5.0 1w

Solutions of the Mathieu’s differential equation have various standing modes. 
Finding of attractor zones and their limits is important. Reduced equation 

have two standing modes:



Two steady regimes

1. 2.



The results of two methods



Results with other constants of 
Mathieu’s equation

Stable mode in the phase

plane (y/y’)

Stable mode in the phase  space (t/y/y’)

Other stable 
mode in the

phase  space
(t/y+t/y’)

0sinsincos205,0  yytyy



Comparison of methods

Modes dependence on initial conditions

1.00)(,1.0)0(,5.0 '  ttyyt

Values of solution obtained using various methods



Runge-Kutta metods

Matlab

MathCad

Maple
Bikulčienė, Liepa; Marcinkevičius, Romas; Navickas, 
Zenonas. Adapted operator method for solving of
ordinary differential equations // ITI 2005 : 
proceedings of the 27th international conference on
Information Technology Interfaces, June 20-23, 
2005, Cavtat, Croatia. Zagreb: SRCE University 
Computing Centre, University of Zagreb, 2005, ISBN 
953713802X. p. 611-616. 



Solving of real problem: 
dynamical systems



The wave (or, flowing 
liquid) motion straight 
dynamically, without 
any kinematics forced 
relationships, stimulates 
rotational motion of the 
output term.

Non autonomous system of 
motion transformation



The specifying system of the model
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Notations
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Solutions of system
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The steady mode (example)

Approximation of the solution x(t)

Approximation of the solution y(t)

Approximation of the solution φ’(t)

1.0 hhh yx
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Expression by trigonometric 
functions

Steady mode in the phase space 
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Dynamical characteristics
Average capacity of effective 
resistance powers
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Average speed 





Tt

t
dt

T
 

1

Coefficient of non-uniformity
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Coefficients of effective action and 
non-uniformity

Coefficient of effective action ↑ 
when frequency of system
and driving powers ↑

Coefficient of non-uniformity ↑
when driving powers ↑



Autonomous case
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Solutions of a system
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Expression by trigonometric 
functions
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Steady regimes existence domains
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Types of solutions



Parallel algorithm of investigation

Non autonomous system Autonomous system

Δx Δy Δφ Seq., s Par., s Δx Δφ Seq., s Par., s
N=6 3·10-5 3·10-5 6·10-8 250-400 80-130 N=8 3·10-5 4·10-5 50-68 20-24

N=7 2·10-7 2·10-7 6·10-8 1000-1270 300-370 N=10 2·10-7 3·10-7 128-150 55-60

N=8 5·10-8 5·10-8 6·10-8 1580 -1800 560-610 N=12 5·10-8 6·10-8 246-320 113-158

- loss-functions t  max

   tytx ~,~  t~and in specifying systems of the models

 ,max tyy 

after substitution of

 ,max txx 
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Expressions of solutions of partial
differential equations using

algebraic operators and algebraic
convolution



Differential equation with boundary conditions:
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Operator expression for the solution 
of a partial differential equation



Example 
  txsftsfsQP 2

1
3

0 :,:,:,1: 

   32
3

3

2

2
,;0, tststxs

t
s

sx











 

         

       

    3223

32
23

2
2332

2
23

0

2332

3
1

2
126

32
26

2

2

txtxsxtsts

xtxtsxtstsxtstssDDL

xtststxsLtssDDL

tsx

j
x

j
tsx
























Formulas 
Differential equation
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Differential equation

Example 
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Approximations of solutions
(x=1,s=0..3,t=0..1.2)

Bikulčienė, Liepa; Navickas, Zenonas.. Expressions of solutions of linear partial differential equations
using algebraic operators and algebraic convolution // Numerical Analysis and Its Applications : 4th 
International Conference, NAA 2008, June 16-20, 2008, Lozenetz, Bulgaria : revised selected papers /S. 
Margenov, L. G. Vulkov, J. Wasniewski (Eds.). Berlin, Heidelberg: Springer-Verlag, 2009. (Lecture Notes
in Computer Science, Vol. 5434, ISSN 0302-9743). p. 208-215.



Critic to Exp-function method and 
criterium for exact solutions



Introduction to the problem

The Exp-function method was proposed in 2006 by J.H. He [1]. The Exp-
function method was applied  to finding exact solutions of many 
differential equations. With the help of symbolic computation, the said 
method provides a powerful mathematical tool for solving of high-
dimensional nonlinear evolutions in mathematical physics. 

Does there exist any analytical criterion determining whether an exact 
solution of a differential equation (ordinary or partial) can be found by 
the Exp-function method?

The object was to find and construct such criterion. 

[1] Ji-Huan He and Xu-Hong Wu. Exp-function method for nonlinear wave equations. 
Chaos, Solitons & Fractals. Volume 30, Issue 3, November 2006, Pages 700-708. 



Introduction

An analytical criterion determining if a solution of a differential 
equation can be expressed in an analytical form comprising 
exponential functions is developed. The employment of this criterion 
does not only give an answer to the above-stated question but gives the 
structure of the solution so that one does not have to guess what the 
form of the solution is. The load of symbolic calculations is brought 
before the structure of the solution is identified. This is in contrary to 
the Exp-function type methods where the structure of the solution is 
first guessed, and then symbolic calculations are exploited for the 
identification of parameters. 



Case when an H-rank exists

If all roots of Hankel’s characteristic equation distinct, i.e.  
   tsts lk ,,    , for lk  ,then  
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If some roots of the characteristic equation are multiple, then  
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where  tsxQr ,; , lr ,,2,1  , ( ml  ) are polynomials. 



Example 1 – H-rank exists for the 
original equation
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If   H-rank does not exist

In this case, it is useful to follow the He’s method: 
  zx :exp ;  zx ln ; Rx ; 0z . 

If all roots   atsr exp,, ,  mr ,,2,1  , are distinct, then  
 

    
     .expexp,,1
exp,,

,;
1






m

r r

r
axats

ats
tsz




  

 

Thus,  







2

1

1

1,; n

l

l
l

n

l

l
l

zb

za
tsz  and  

 

 






2

1

1

1

exp

exp
,; n

l
l

n

l
l

lxb

lxa
tsxy  



Example 2 – H-rank does not exist 
for the original equation but exists 
for the image equation

The coefficients of differential equation  21 yy  ;   ssy ;0   
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s  do not have an H-rank.  

The image equation reads: 
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The coefficients of the image equation  
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Example 2 – H-rank does not exist 
for the original equation but exists 
for the image equation

Using roots of the characteristic algebraic equation  
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The solution of the image differential equation is 
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Then,  the solution of the original differential equation  reads: 
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Given a problem, use the operator method to construct the solution in 

the form of a series      
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Does the H-rank of the series of coefficients   0;, Zjtsp j   exist? 

YES    mZjtspHr j  0;, . Find roots  tsk , , mk ,,2,1   
Solution is expressed as a sum of exponential functions. 

NO H-rank does not exist. Change the variable   zx exp .  
 Construct the solution in the form of a series 
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 Does the H-rank of the series of coefficients exist?  
 YES Find roots   atsr exp,, ; mr ,,2,1  .  

Exact solution is expressed as a ratio of sums of 
exponential functions.  

 NO Exact solution cannot be expressed in the form 
comprising only exponential functions.  





Special solutions of Huxley and
Liouville’s differential equations



The Huxley’s equation
Hodkin and Huxley presented the results of electrophysiological 
experiments in which they investigated the flow of electric current 
thougt the surface membrane of the giant nerve fiber of a squid. 
Huxley equation is a nonlinear partial differential equation of second 
order of the form 

This equation is an evolution equation that describes the nerve 
propagation in biology. From this equation molecular properties can 
be calculated. It also gives a description of the behavior of the miosin 
heads. This equation has many fascinating phenomena such as 
bursting oscilation, interpsike, bifurcation and chaos. 
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The Huxley equation
Huxley equation is a core mathematical framework for modern 
biophysically based neural modeling. It is often useful to obtain a 
generalized solitary solution for fully understanding its physical 
meanings. There are many methods to solve this equation: the 
traditional approaches to this task are variational iteration method, 
the homotopy perturbation method,  Adomian‘s decomposition 
method and the tanh method; however, many methods may 
sometimes fail or the solution procedure becomes complicated as 
degree of nonlinearity increases. The Exp-function method, proposed 
by He and Wu [1] seemed to be most promising for that purpose. 
Zhou [2] obtained solutions of Huxley equation using this method.
[2] X.W.Zhou, Exp-function method for solving Huxley equation, Mathematical Problems in
Engineering, Volume 2008, Article ID:538489.



The Huxley equation
The Soliton model in neuroscience is a recently developed model 
that attempts to explain how signals are conducted within neurons. It 
proposes that the signals travel along the cell's membrane in the form 
of certain kinds of sound (or density) pulses known as solitons. As 
such the model presents a direct challenge to the widely accepted 
Hodgkin-Huxley model [3] which proposes that signals travel as 
action potentials: voltage-gated ion channels in the membrane open 
and allow ions to rush into the cell, thereby leading to the opening of 
other nearby ion channels and thus propagating the signal in an 
essentially electrical manner.

[3] Hodgkin, A., and Huxley, A. (1952): A quantitative description of membrane current and its 
application to conduction and excitation in nerve. J. Physiol. 117:500–544.
They received the 1963 Nobel Prize in Physiology or Medicine for this work



The Huxley equation

The solitary solution of the Huxley equation, produced by the Exp-
function method, does not satisfy the original differential equation 
for all initial conditions. The alternative operator-based method to 
derive the solitary solution of the Huxleys equation and have 
identified the region (in the parameter plane) of the initial 
conditions, where this solution does exist.
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Solving of the Huxley equation
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Solutions of Huxley equation 

depends on Cauchy conditions
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Solving of the Huxley equation
Theorem
Equation (1) has (2) type solution when  necessary and 
sufficient condition

   













 

a
byyyyyyyyyy 2121

23

2
1

         

       vxyvxy

vxyvxy

eyseys
eysyeysyxy 







21

21

21

2112

21 yy 

(3)

(4)

is satisfied. Besides,

when

      32 2792 aabaabab 

(3) holds true if and only if 



Remarks

1. Special solution (4) when s is chose free satisfies such second 
Cauchy condition     21 ysysaxyt

vx




and this condition can’t be taken free. 

2. If in (1) equation b=0, then we have Mekery equation  
   yyyay 2322

with adequate special solutions and conditions.

3. Special solution (4) is also the solution of Riccati equation

  21 yyyyay 



The graphical representation of 
initial conditions at s=0, s=3 and s=5
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The graphical representation of 
solutions at s=3, v=0
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The graphical representation of 
numerical and exact solutions



Total difference between numerical 
and exact solutions for different 
initial conditions



The solution of the Liouville’s
equation

The Liouville’s equation  uu exp
2
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Using the transformation  uy exp  and   kx ,  
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  02 32  yyyy  ; 0 . 
We seek only solutions which can be expressed as a ratio of finite sums  
of exponential functions. Our motives are determined by the fact that the  
structure of the solution  proposed by X.H. Wu and J.H. He [1], is   
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The solution of the Liouville 
equation

The solitary solution of the Liouville’s equation, produced by the 
Exp-function method, does not satisfy the original differential 
equation for all initial conditions. We have used an alternative 
operator-based method to derive the solitary solution of the 
Liouville’s equation and have identified the region (in the parameter 
plane) of the initial conditions, where this solution does exist.
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The graphical representation of the 
constrain linking initial conditions s
and t at γ=1, when t2=s2-4s3.
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Graphical representation of the 
surface   5.0,5.0  ts





New results of the research group 
based on operator method

















Thanks for Your attention


