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Motivation

Let us say we have some optimization problem, that is, we have to
choose the best from the possible candidates in a reasonable time.
For example:

1. Find an optimal path for an walking tour
2. Find an optimal path for a robotic arm
3. Make an optimal timetable (for our university)
4. Find a good strategy in the game ’noughts and crosses’
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Biological background
These methods are called evolutionary or genetic algorithms since
their basic concepts mimic the evolution of species. They select
some ’parent solution’ from a pool of possible candidates and by
using two operators on them (called crossover and mutation) they
make offspring solutions. The offspring are similar to their parents,
but they are not necessary identical. The selection of the parents is
random, but the better (more ’fit’) a solution is, the most likely
that it will be chosen as a parent.

Environment Problem
Individual Candidate solution
Population Multiset of candidate solutions
Fitness Quality of the solution
Genome Representation of the solution
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Scheme
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The backpack problem

Given a set of different items, each one with an associated value
and weight, determine which items you should pick in order to
maximize the value of the items without surpassing the capacity of
your backpack. We illustrate the design of a genetic algorithm on
this problem.

We have n items, each of them has a weight
s = (s1, s2, . . . , sn) ∈ Rn

+ and a value v = (v1, v2, . . . , vn) ∈ Rn
+.

Let us denote the capacity of the backpack by C ∈ R+.

There are 2n possible solutions, since there are two possible states
for each item (either we put it in the backpack or not). A brute
force solution would check each of them, hence its running time is
exponential. Our goal is to find a better solution.
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Solving the backpack problem with a genetic algorithm

I Representation (coding): a 0–1 sequence of length n. A 1 in
position i means that we put the ith item in the backpack, 0
means that we don’t.

I Fitness: the sum of the values of the items we have chosen, if
the sum of the weights is less than (or equal to) the capacity,
0 otherwise. Our goal is to maximize the fitness.

I Individual: a possible choice of items
I Population: a multiset of choices (there can be identical items)
I Genotype: the individual’s 0-1 series
I Phenotype: the set of items we have chosen
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Choosing the parents
From the population we wish to choose the solutions with high
fitness as parents, hoping that their offsprings will be good or even
better solutions as their parents were.
However, it’s important, that the low fitness solutions still have a
chance to reproduce. This decreases the chance of getting stuck in
a local optimum (which is the greatest danger using any genetic
algorithm). That is, we have to maintain the diversity of the
population, at least in the beginning.
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Roulette wheel method
Let us suppose that for a given population the fitness of the
individuals are f1, f2, . . . fk ≥ 0. We make a probability distribution
by dividing each fi by

∑k
i=1 fi -s to obtain the probabilities

p1, p2, . . . pk (normalizing).

Now we choose k parents independently in k rounds. In each round
we choose the ith individual with probability pi .
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Issues with the roulette wheel method

I In the beginning, the offspring of one outstanding solution can
dominate the population. If we lose diversity too quickly, we
are going to stuck in a local optimum.

I When we are near the global optimum, the solution and hence
their fitness are very similar. The result is a slow convergence.

I The relative frequency of the individuals can deviate strongly
from the probabilities, especially if the population size is small.
But we might not have the time or memory available to work
with a large population.

I Seemingly slight changes of the fitness (like adding a constant
to every fi ) function can bring radical changes in the efficiency
of the algorithm. This can be useful, if we use this property
with caution.
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Scaling

The first two problems can be remedied by scaling of the fitness
function.

We can increase the differences by applying xn or exp(x) type
scaling. It helps to accelerate convergence in the final phase of the
algorithm.

We can maintain the diversity by slowing the convergence using
ln(x) or

√
x type scaling.

The main problem of choosing the right scaling is that you need to
act while the algorithm is running, since what helps in the first
phase makes things worse in the end and vice versa.
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Elitism

To make sure that the maximal fitness doesn’t decrease in the next
generation, we can use elitism, that is, we copy the individual with
maximum fitness (elite solution) from the parent population to the
offspring population.

The elite solution can replace a random offspring or the offspring
with minimal fitness. Elitism guarantees that the maximal fitness
doesn’t decrease in the next generation. However, it has a major
drawback: we might get stuck in a local optimum.
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Elitism for the backpacking problem
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Tournament selection

We can select the parents by the roulette wheel method. Another
possibility is tournament selection. In one round, we select a fixed
number of individuals from the population (let’s say k) completely
randomly, and from this k individuals, the one with the maximal
fitness will be chosen as parent. We repeat this selection as many
times as many parents we want to choose.

If k is relatively big, then the individuals with lower fitness have
lower chance to be selected as parent, hence k is an input of a
genetic algorithm. We can control the selection pressure (that is,
how rapidly we want to discard low fitness solutions) by applying a
suitable k . For example, if the convergence is slow, we can increase
k .
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Genetic operators
First, we use a crossover operator, which generates two offspring
from two parents. Our goal is that the offspring inherit features
from their parents. A suitable crossover can be:
I onepoint-crossover: we choose a random position, and break

both parents in that position. We stick the first half of the
first parent to the second half of the second parent, and for
the second offspring, stick the first half of the second parent to
the second half of the first parent. For example, the offsprings
of 11100 and 00011 if we break in the second position: 11011
and 00100.

I multipoint-crossover similar to the one point-crossover, but we
choose more positions to break the parents

I uniform crossover in each position with probability 1
2 we

choose a gene from the first or the second parent, and we can
have the second offspring by reversing our selection.
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Mutation
The goal of the mutation is the exploration of the searching space,
in order to prevent our algorithm winding up in a local optimum.
On the other hand a too strong perturbation can slow down the
convergence, and we might even end up not converging at all.
Finding the optimal parameter is crucial for the success of the
algorithm.

As a rule of thumb: choose the expected value of the number of
mutations between one gene per generation and one individual per
generation.

For the backpacking problem, a good mutation operator can be
that we flip one gene in a random position with some fixed
probability for each individual.

If we use elitism, then a bigger probability of mutation is
recommended.
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The Traveling Salesman problem

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns
to the origin city?

This problem is in fact finding the minimum weight Hamiltonian
cycle in a complete weighted graph (or digraph).

Let us denote the number of cities by n. A naive algorithm, which
checks every possible permutation of the vertices computes (n− 1)!
sums, each with n terms. Using dynamical programming
(Karp-Held algorithm) we can solve the problem in O(n22n) time.
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Permutation representation

Since we don’t have a polynomial algorithm for the Traveling
Salesman problem, we will write a genetic algorithm. The natural
representation for a graph with n edges is the a permutation. The
representation is also appropriate for scheduling problems.

The main issue is to design the genetic operators. How could we
mutate a permutation? If we change one position the result is no
longer a permutation? Also the result of a one-point crossover is
also probably not a permutation.
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Problems coded with permutation representation

Two different types of problems have solutions whose natural
representation are permutations.

First the scheduling problems, where we have to plan the order we
manufacture the products. If the product A has to be
manufactured before product B and C, all all three has to be
manufactured before product D, then the fitness of (1234) and
(1324) will be quite similar, while the fitness of (4123) will be low.

The other type is the adjacency problems, for example the traveling
salesman problem. In this problem the fitness of (1234) will be
identical to the fitness of (4123). The absolute position of an city
is not important, rather its neighbors.
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Mutation operators

Genetic algorithms with 0-1 sequence representations used bitwise
mutation. In case of permutation representation, it isn’t possible to
change only one gene, we have to modify at least two. Here the
probability of mutation will mean the probability of one individual
mutates (instead of one gene).

The first three mutation operators are recommended for scheduling
problems. They cause a relatively small change in the absolute
position.
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Mutation operators for scheduling

Swap mutation (SWAP): Exchange two items.
For example: (5 3 1 9 2 5 7 4 8) → (5 3 4 9 2 5 7 1 8).

Insert mutation (INS) We select two random positions, and move
the item in the second position immediately after the first one.
For example: (5 3 1 9 2 5 7 4 8) → (5 3 1 4 9 2 5 7 8).

Scramble mutation (SCR) We select two random positions, and
scramble everything between the two positions with a random
permutation.
For example: (5 3 1 9 2 5 7 4 8) has length 4, that is, we have to
scramble with a 4-long mutation i.e. with (3241). The result in this
case is (5 3 2 9 5 1 7 4 8).
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Mutation operator for adjacency problems

The following operator is recommended for adjacency problems,
since it keeps most of the connections intact.

Inversion mutation (INV) We select two random positions, and
then invert the order of the item between them.
For example: (6 3 1 9 2 5 7 4 8) → (6 3 5 2 9 1 7 4 8)
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Comparing the mutation operators
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Crossover operators

The goal of the crossover operators is to preserve the parents’
attributes. The exact type of attributes we want to preserve
depends on the nature of our problem.

Two operators for each type will be presented.

All four operator create one offspring from two parents. In some
cases even if we reverse the order of the parents, the same offspring
will be created, in these cases we have to modify the parent
selection mechanism.
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Order crossover (OX)

This operator is recommended for scheduling, since it preserves the
relative order of the items from the second parent (from now on the
first parent is p1, the second is p2).

I We select two random positions, the items between them (the
two positions included) is the matching segment.

I We copy to the offspring the matching segment from p1
I We copy the yet unused alleles from p2 to the offspring

starting from the position immediately after endpoint of the
matching segment.
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Example: OX

Let p1=(123456789) and p2=(937826514) and the matching
segment is positions 4–7.

Now take the matching segment from p1: (123456789)
Delete these alleles from p2: (93�782�6�51�4)

Copy the matching segment from p1 to the offspring (␣␣␣4567␣␣)
now copy the remaining alleles from p2 starting from the 8.
position: (382456719)

Orsolya Sáfár Evolutionary algorithms



0-1 sequence representation
Permutation representation
Continuous representations

Cycle crossover (CX)

This operator preserves the absolute position of the items from
both parents as much as possible. We divide the parents into
cycles. The goal is to find a set of positions where the same alleles
are present in both parents (of course not necessarily in the same
positions). We construct the cycles as follows:

I We start with the first unused allele of p1, that is, the first
position in the first cycle

I Look at the allele in the same position in p2
I Go to the position with the same allele in p1, and add this

allele to the cycle
I Repeat the previous two steps until we arrive at the first allele

in p1
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Example: CX

Let p1=(123456789) and p2=(937826514). The first cycle is:

(123456789) (123456789) (123456789) (123456789)
(937826514) (937826514) (937826514) (937826514)

The second one:
(123456789) (123456789) (123456789) (123456789)
(937826514) (937826514) (937826514) (937826514)

The third cycle contains only the 6 allele in position 5. Then the
offspring is created from the 1., 3., 5., . . . cycle of p1 and the
2., 4., 6., . . . cycle of p2.
(137426589).
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Partially mapped crossover (PMX)

This operator is recommended form adjacency type problems, since
it tries to preserve most of the connections of the parents. It works
as follows:

I We select two random positions, the items between them (the
two positions included) is the matching segment.

I We copy to the offspring the matching segment from p1
I We search for a suitable place form the alleles in p2’s matching

segment in the offspring*
I Copy the items from p2 to the empty positions
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Partially mapped crossover (PMX)

We search for a suitable place form the alleles in p2’s matching
segment in the offspring as follows:
I If the given allele is already in the matching segment of p1

then we don’t have to do anything
I If it isn’t in the matching segment, then let us denote the

allele by p2(j) (that is, it’s in position j)
I Look for the position of the p1(j) allele in p2, let us denote this

position by k. If this position isn’t in the matching segment
then copy p2(j) here. If it is in the matching segment then we
try again with p1(k) instead of p1(j) until we find a position
outside of the matching segment, where we copy p2(j).
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Example: PMX

Let p1=(123456789) and p2=(937826514) and the matching
segment is positions 4-7.

Here p1=(123456789) and p2=(937826514). The offspring is:
(␣␣␣4567␣␣)

Form the matching segment of p2: 8 isn’t it p1’s matching
segment, so we search a suitable position. Since p1(4) is 4 and 4 is
in the 9. position in p2. This is outside of the matching segment,
so we found the right place for 8, which is the 9. position:
(␣␣␣4567␣8)
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Example: PMX continued
The next item in p2’s matching segment is 2. Since it isn’t in p1’s
matching segment, we also have to find it a suitable position. Since
p1(5)=5, and 5 is in the 7. position in p2 which is inside of the
matching segment it isn’t a suitable position for 2. Instead we
search for p1(7) that is 7 in p2, which is in the 3. position and it’s
outside of the matching segment so we copy 2 here: (␣␣24567␣8).

The two remaining item from p2’s matching segment is 6 and 5.
They are both in p1’s matching segment, so we don’t have to do
anything.

We copy to the remaining positions the alleles of p2 : (932456718).

As these example show, there are 6 edges of the offspring that is
present in one of the parents. However the parents have a common
edge {7-8} which isn’t present in the offspring.
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Edge crossover (EX)

This operator is recommended for adjacency problems. It tries to
preserve the common edges, furthermore tries to copy as many
connections as possible. For this operator the order of the parents
is irrelevant.

We create an edge list for the parent pair, a list of neighboring
vertices for each vertex, indicating the common edges.
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Edge crossover (EX)

We build the offspring as follows:

I We select a random vertex as the current vertex, and copy the
allele in the offspring

I We delete the current vertex from every other vertex’s edge list
I If there is a common edge in the current vertex’s edge list,

then that vertex will be in the next current vertex (if there are
2 such vertices, we select randomly)

I If there is no common edge, the vertex with the shortest edge
list will be the next current vertex. (if there is more than one
such vertex, we select randomly)

I If we arrive to an empty edge list, we select randomly from the
remaining vertices.
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Example: EX
Let p1=(123456789) and p2=(937826514). First we construct the
edge list:

1 2,4,5,9 1 2,4,5,9
2 1,3,6,8 2 3,6,8 2 3,6,8 2 3,8
3 2,4,7,9 3 2,4,7,9 3 2,4,7,9 3 2,4,7,9
4 1,3,5,9 4 3,5,9 4 3,9 4 3,9
5 1,4,6 5 4,6 5 4,6
6 2,5,7 6 2,5,7 6 2,7 6 2,7
7 3,6,8 7 3,6,8 7 3,6,8 7 3,8
8 2,7,9 8 2,7,9 8 2,7,9 8 2,7,9
9 1,3,4,8 9 3,4,8 9 3,4,8 9 3,4,8
rc (1) sl (15) ce (156) rc (1562)
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Example continued

2 3,8
3 4,7,9 3 4,7,9 3 4,9 3 4,9
4 3,9 4 3,9 4 3,9 4 9

7 3,8 7 3 7 3
8 7,9 8 7,9
9 3,4,8 9 3,4 9 3,4 9 4
sl (15628) ce (156287) sl (1562873) rc (15628739)

The offspring is the permutation (156287394)
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Continuous representation

For some optimization problem the natural selection for
representation are floating point numbers. In this case the genotype
is a (x1, . . . , xk) ∈ Rk vector.

For these problems the gradient methods works fine, if the fitness
function is differentiable and convex.

We can use simulated annealing for rough surfaces. We start with
one point, generate several new ones by adding the logarithm of a
uniform random number to each coordinate. If there is a better
function value amongst the new points we select the one with the
best value for the next round, otherwise we select one randomly
according to a distribution, where better points (that is with higher
function values) have better chances to be selected.
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Rechenberg’s algorithm

Another option for function without a smooth gradient is to design
an evolutionary algorithm. Strictly speaking, this algorithm is not
an evolutionary algorithm, but has many similarities to them. It
differs from simulated annealing because

I It generates only one new point by adding to each coordinate
of the parent a normally distributed random number (the
expected value is always 0, the standard deviation is changing)

I If the new point is better, then it discards the old point, if not,
then it discards the new one (elitism)

I The changes in standard deviation (step-size) is adapted to the
function
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Rechenberg’s 1/5 rule

The bigger the standard deviation (σ), the bigger the expected
step-size of the Rechenberg’s algorithm is.

In the beginning a greater value of σ is recommended in order to
explore the solution space. Later a smaller one is desirable to be
able to have a precise estimate for the optima.

If there are many successful steps, then we are heading in the right
direction, in this case we should increase the value of σ. In this way
we get a quicker convergence.

If in most of the steps we discard the new point, then we are close
to the optima (since in every direction the function increases), so
we have to decrease σ.

Orsolya Sáfár Evolutionary algorithms



0-1 sequence representation
Permutation representation
Continuous representations

Rechenberg’s 1/5 rule

Let 0.817 < c < 1 be fixed, and after 20 iterations we the ratio of
successful steps is denoted by p. After each k iterations, we change
the value of σ:

σ :=



σ
c p > 1

5

σ · c p < 1
5

σ p = 1
5
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Continuous representation

An evolutionary algorithm for a continuations problem has many
similarities with Rechenberg’s algorithm. We use the generation
mechanism of the Rechenberg algorithm as mutation.

The representation of the solution will be an Rn vector (if the
function has n variables) supplemented with a parameter vector
storing the parameters of the algorithm.

From now on an attribute of an individual is not only the function
value itself, but also the expected step size (that is it tells us
something about the fitness of its offsprings). The algorithm not
only optimizes the function value, but also the step size. In this
way our algorithm is self-adaptive.
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Crossover operators

There are several options for contentious problems:
I discrete crossover, where the allele of the offspring is simply

copied from one of the parents. It is recommended on the part
of the vector where the coordinates are stored in order to
maintain the diversity.

I arithmetic crossover: let 0 < α < 1 one of the offspring is
αx + (1− α)y , the other is (1− α)x + αy . It is recommended
on the part where the parameters are stored.

I Blend: instead of the previous α we choose a random number
on [−.5, 1.5] to avoid early convergence.

The crossover is global, it is possible to have different parents in
each coordinates.
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Selecting survivors

For continuous problems, we typically generate many more offspring
in one generation (let’s say λ), and then select the best µ
(according to the function value). The selection pressure is the
ratio of µ and λ.

It is recommended to select the new generation’s individuals only
from the offspring (the parents not includes), because it reduces the
chance that a single individual dominates the population with a
good function value but an inappropriate step-size.
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