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Nonlinear Stability for hyperbolic problems

Hyperbolic conservation laws:
∂U(x, t)

∂t +∇ ·F (U(x, t)) = 0

Semi-discrete problem (IVP):

u′(t) = F (u(t), t),
u(t0) = u0

Exact solution usually satisfies nonlinear or strong stability properties:
monotonicity: ‖u(t)‖ ≤ ‖u(t − h)‖;
contractivity: ‖u(t)− ũ(t)‖ ≤ ‖u(t − h)− ũ(t − h)‖;
positivity: u(t) ≥ 0 if u(t0) ≥ 0;

These qualitative properties should be also maintained by the
numerical solution.
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Spatial discretizations

One way to guarantee that the numerical solution is strongly stable is to
require stability in the total variation (TV) semi-norm:

‖un‖TV ≤ ‖un−1‖TV ,

where ‖u‖TV =
∑

j |uj+1 − uj |.

Total variation diminishing (TVD) methods introduced by Harten
(1983) and further analyzed by many others (Hirsch, van Leer, Roe,
Sweby, Laney, Toro).

These methods consist of spatial discretizations that are (mostly) second
order accurate and provably TVD for 1D problems and 1D linear systems.

Weighted essentially nonoscillatory (WENO) spatial discretizations
provide good resolution around discontinuities and higher order of
accuracy at smooth regions (Zhang & Shu, 2011).
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Finite volume methods

∂U(x, t)
∂t +∇ ·F (U(x, t)) = 0

Finite volume integration over a cell Ci = (xi− 1
2
, xi+ 1

2
):

d
dt

∫ xi+ 1
2

xi− 1
2

U(x , t)dx = −
(
F
(
U(xi+ 1

2
, t)
)
−F

(
U(xi− 1

2
, t)
))

Semi-discrete system of ODEs:

u′i (t) = −
1

∆x
(
Fi+ 1

2
− Fi− 1

2

)
,

ui (t) ≈
1

∆x

∫ xi+ 1
2

xi− 1
2

U(x , t)dx , Fi± 1
2
≈ F

(
U(xi± 1

2
, t)
)
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Finite volume methods (cont.)

Let ui−1 and ui be the left and right cell averages across interface xi− 1
2
.

Solving the local Riemann problem gives a solution ū(ui−1, ui ), hence

Fi− 1
2

:= F
(
ū(ui−1, ui )

)
.
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Let ui−1 and ui be the left and right cell averages across interface xi− 1
2
.

Solving the local Riemann problem gives a solution ū(ui−1, ui ), hence

Fi− 1
2

:= F
(
ū(ui−1, ui )

)
.

TVD1: ū
(
uL

i− 1
2
, uR

i− 1
2

)
; uL

i− 1
2
= ui−1 +

∆x
2 σi−1, uR

i− 1
2
= ui − ∆x

2 σi .

WENO2: ū
(
u−i− 1

2
, u+

i− 1
2

)
; u−i− 1

2
, u+

i− 1
2

are WENO reconstructions,

e.g., u−i− 1
2
= ω1u(1)

i− 1
2
+ ω2u(2)

i− 1
2
+ ω3u(3)

i− 1
2

over {Ii−3, Ii−2, Ii−1, Ii , Ii+1}.

1Sweby, P. K., High resolution schemes using flux limiters for hyperbolic
conservation laws, SIAM J. Numer. Anal. 21.5 (1984), pp. 995–1011.

2Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection
dominated problems, SIAM Rev. 51.1 (2009), pp. 82–126.
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Need for SSP methods

Strong-stability-preserving (SSP) time discretization methods ensure
strong stability properties will be preserved, when spatial discretization is
coupled with high-order temporal integration.

Principal idea behind SSP methods is:

First use the method of lines to obtain a semi-discretization that is
strongly stable in a certain norm (or semi-norm or convex functional)
with forward Euler under a time-step h ≤ hFE .

Then try to find a higher order time discretization that maintains the
strong stability in the same norm but under a different (relaxed)
time-step restriction

h ≤ C hFE.
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Example 1
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Usually first-order methods are non-oscillatory and satisfy those properties;
however, high-order time integrators can lead to spurious overshots.
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Example 2
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Historical background

ODEs

u′ = Lu
positivity (Bolley & Crouzeix, 1978)
contractivity (Spijker, 1983)
absolute monotonicity,
optimal RK methods
(Kraaijevanger, 1986)
contractive LMMs (Sand, 1986)

u′ = F (u)
contractivity ⇔ absolute
monotonicity (Kraaijevanger, 1991)
LMMs (Lenferink, 1989,1991)
RK positivity (Horváth, 1997,1998)
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Historical background (cont.)

absolute monotonicity ⇔ optimal Shu–Osher representation

(Ferracina & Spijker / Higueras / Ketcheson, 2004)

For a given RK method, the largest step-size bound over all Shu–Osher
representations corresponds to the radius of absolute monotonicity of the
method.

More recently:
Implicit SSP RK methods, low storage, IMEX SSP methods, multirate,
methods, spectral deferred correction methods, multistep multistage
methods, multistage multiderivative methods, effective order methods, etc.
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Monotonicity of linear multistep methods

u′(t) = F (u(t), t)
Assume the upwind-biased operator F approximates −∇ ·F(U) and
satisfies the forward Euler (FE) condition

‖u + hF (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ hFE.

A k-step linear multistep method (LMM) with non-negative coefficients

un =
k−1∑
j=0

αjun−k+j + h
k∑

j=0
βjF (un−k+j),

is SSP, if it satisfies
‖un‖ ≤ max

{
‖un−1‖, ‖un−2‖, . . . , ‖un−k‖

}
,

whenever h ≤ ChFE.

The SSP coefficient of the method is C = minj
αj
βj

.
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Monotonicity of Runge–Kutta methods

Again, the main assumption is

‖u + hF (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ hFE.

Butcher form of Runge–Kutta method RK(2,2):

u∗ = un−1 + hF (un−1),

un = un−1 +
1
2hF (un−1) +

1
2hF (u∗).

Optimal Shu-Osher representation:

u∗ = un−1 + hF (un−1),

un =
1
2un−1 +

1
2 (u∗ + hF (u∗)) .
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Monotonicity of Runge–Kutta methods (cont.)

Canonical Shu-Osher form of Runge–Kutta (RK) methods:

y = vr un−1 +αr

(
y +

h
r F (y)

)
,

un = ys+1,

where vr = (I + rK)−1e and αr = r (I + rK)−1K . (K : Butcher array)

We call

C(K) = sup{r | ∃(I + rK)−1 and vr ≥ 0,αr ≥ 0}

the SSP coefficient of a given method with coefficients K .

A RK with C > 0 is SSP, if it satisfies ‖un‖ ≤ ‖un−1‖ whenever h ≤ ChFE.
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Bounds and Barriers

Let Ceff =
C
s for RK methods (s : # of stages).

SSP explicit methods:
Runge–Kutta methods have order p ≤ 4 and Ceff ≤ 1.
Linear multistep methods have no order barrier on order but C ≤ 1.

SSP implicit methods:
Unconditional monotonicity only for implicit Euler method.
Runge–Kutta methods have order p ≤ 6 and Ceff ≤ 2.
Linear multistep methods have no order barrier on order but C ≤ 2.
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Motivation: Why downwinding is important?

For a given method downwinding allows a representation with
augmented SSP coefficient.

Optimal methods with downwind-biased operators attain larger SSP
coefficient compared to classical SSP methods.

Optimal implicit perturbed Runge–Kutta methods can attain
arbitrarily large SSP coefficients.

Extends monotonicity analysis for methods applied to additive
problems, i.e. F and F̃ approximate different parts of the PDE.
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Example
Consider the LeVeque and Yee problem

Ut + f (U)x = s(U), U(x , 0) = U0(x), x ∈ R, t ≥ 0,

where s(U) = −µU(U − 1)(U − 0.5), µ > 0.

Semi-discretization: Let ui ≈ U(xi , t) and define

Di (u) = −
f (ui )− f (ui−1)

∆x , D̃i (u) = −
f (ui+1)− f (ui )

∆x ,

Si (u) = S̃i (u) = s(ui ).

Consider the initial value problems (IVPs):

u′(t) = F (u(t)), F = D + S,
u(0) = u0.

u′(t) = F̃ (u(t)), F̃ = D̃ + S̃,
u(0) = u0.
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Example (cont.)

It can be shown that if u ∈ [0, 1], then

0 ≤ u + h F (u) ≤ 1 for 0 ≤ h ≤ hFE =
2τ

2 + µτ
,

0 ≤ u − h F̃ (u) ≤ 1 for 0 ≤ h ≤ h̃FE =
16τ

16 + µτ
,

where τ > 0 is such that

0 ≤ u + h D(u) ≤ 1 for 0 ≤ h ≤ τ ,
0 ≤ u − h D̃(u) ≤ 1 for 0 ≤ h ≤ τ .
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Example (cont.)

Let ξ = hFE
h̃FE

=
16 + µτ

8(2 + µτ )

and apply an optimal explicit perturbed SSP LMM to u′ = F (u).

Then, the numerical solution lies in [0, 1] under a step-size restriction

h ≤ C(ξ) hFE.

This is less strict compared to the “classical” optimal SSP LMM
(without downwinding), for all ξ ∈ R+.

e.g., choose SSP LMM(3,2) and µτ = 8/3. Then, ξ = 1/2 and

h ≤ C(1/2) hFE = 0.3044τ .

On the other hand, without downwinding: h ≤ 0.2143τ .
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e.g., choose SSP LMM(3,2) and µτ = 8/3. Then, ξ = 1/2 and

h ≤ C(1/2) hFE = 0.3044τ .

On the other hand, without downwinding: h ≤ 0.2143τ .
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LMMs with downwind-biased operators
In addition to the operator F , consider the associated downwind-biased
operator F̃ ≈ −∇ ·F(U) such that

‖u + hF (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ hFE,
‖u − hF̃ (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ h̃FE.

By using both upwind and downwind operators, a k-step linear multistep
method (LMM) applied to a semi-discrete problem

u′(t) = F (u(t)), t ≥ t0,
u(t0) = u0,

takes the form

un =

k−1∑
j=0

αjun−k+j + h
k∑

j=0

(
βjF (un−k+j ) + β̃j

(
F (un−k+j ) − F̃ (un−k+j )

))
.
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Perturbed LMMs

Let βj = βj − β̃j , then LMMs can be also written in the form

un =
k−1∑
j=0

αjun−k+j +
k∑

j=0

(
βjhF (un−k+j)− β̃jhF̃ (un−k+j)

)
.

The above LMMs are referred to as perturbed LMMs when applied to
u′(t) = F (u(t)), where F and F̃ satisfy the FE condition with different
step-size restrictions.

Next:
Monotonicity properties
Step-size bounds for monotonicity
Optimal SSP perturbed methods
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Perturbed SSP LMMs
A perturbed LMM is SSP with threshold factor (C, C̃), if the monotonicity
conditions hold

βj ≥ 0, β̃j ≥ 0, j ∈ {0, . . . , k},
αj − rβj − r̃ β̃j ≥ 0, j ∈ {0, . . . , k − 1},

for all 0 ≤ r ≤ C, 0 ≤ r̃ ≤ C̃.

Theorem
Consider an IVP problem for which F and F̃ satisfy the forward Euler
condition for some hFE > 0, h̃FE > 0. Apply a perturbed SSP LMM with
threshold factor (C, C̃). Then the numerical solution satisfies

‖un‖ ≤ max
{
‖un−1‖, ‖un−2‖, . . . , ‖un−k‖

}
,

under a time-step restriction h ≤ min{C hFE, C̃ h̃FE}.
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Perturbed SSP LMMs (cont.)

Since C, C̃ are continuous functions of the method’s coefficients, the
maximum step size is achieved when C = C̃ h̃FE/hFE.

For a given number of steps k, order of accuracy p and ξ := hFE/h̃FE, we
want to find the largest possible value r (ξ) for which the monotonicity
conditions are satisfied when r̃ = ξ r (ξ).

Combining the order conditions and monotonicity constraints we have:

k−1∑
j=0

(γj + r (βj + ξβ̃j))j i +
k∑

j=0
(βj − β̃j)ij i−1 = k i , i ∈ {0, . . . , p},

βj ≥ 0, β̃j ≥ 0, j ∈ {0, . . . , k},
γj ≥ 0, j ∈ {0, . . . , k − 1}.

Since the conditions are non-linear only in r we can use bisection and solve
a sequence of feasibility linear problems.
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Results

In contrast with other optimal SSP methods, now the SSP coefficient
depends on the problem, not just the number of steps k and order of
accuracy p.

Optimal perturbed SSP LMMs have been found for k ∈ {1, . . . , 40},
p ∈ {1, . . . , 15} and for different values of ξ.

There exist optimal methods that satisfy βj β̃j = 0 for each j .

Any second order perturbed LMM has SSP coefficient C(ξ) ≤ 2.

Optimal pth-order SSP methods have at most p non-zero coefficients.

Given k, p, then for any value of ξ the optimal perturbed SSP LMMs
attain larger step sizes for monotonicity when compared with other
LMMs.
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Additive linear multistep methods

Now, lets consider linear multistep methods applied to the additive problem

u′(t) = F (u(t)) + F̂ (u(t)), t ≥ t0

u(t0) = u0,

and assume that F , F̂ satisfy

‖u + hF (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ hFE

‖u + hF̂ (u)‖ ≤ ‖u‖, ∀u ∈ Rm, 0 ≤ h ≤ ĥFE.

un =
k−1∑
j=0

αjun−k+j +
k∑

j=0

(
βjhF (un−k+j) + β̂jhF̂ (un−k+j)

)
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SSP additive LMM methods
An additive linear multistep method has order of accuracy p if

k−1∑
j=0

αj j i +
k∑

j=0
βj ij i−1 = k i ,

k−1∑
j=0

αj j i +
k∑

j=0
β̂j ij i−1 = k i , i ∈ {0, . . . , p}.

Combining the order conditions and monotonicity constraints we can
formulate the feasibility problem:

k−1∑
j=0

(γj + r (βj + ξβ̂j))j i +
k∑

j=0
βj ij i−1 = k i , i ∈ {0, . . . , p},

k∑
j=0

(βj − β̂j)j i−1 = 0, i ∈ {0, . . . , p},

βj ≥ 0, β̂j ≥ 0, j ∈ {0, . . . , k},
γj ≥ 0, j ∈ {0, . . . , k − 1}.
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Results

Theorem
For a given k ≥ 1, p ≥ 1 consider the optimal k-step, pth-order additive
(explicit or implicit) LMM with threshold factor (C, Ĉ).
Then this method is equivalent to the optimal non-additive k-step,
pth-order SSP LMM with SSP coefficient C + Ĉ.

It is interesting to consider only SSP IMEX linear multistep methods.

Optimal methods have been found for a range of k,p and for different
values of ξ.
But, have small threshold factors; not practically useful.

Instead impose SSP conditions only on the explicit method and maximize
A(α) stability region of the implicit method.
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Perturbed Runge–Kutta methods
Assume that

‖u + hF (u)‖ ≤ ‖u‖, ‖u − hF̃ (u)‖ ≤ ‖u‖ ∀u ∈ Rm, 0 ≤ h ≤ hFE.

A downwind-biased (or perturbed) Runge–Kutta method takes the form

y = vr un−1 + hKF + hK̃(F − F̃ ), K̃ =

(
Ã 0
b̃ᵀ 0

)
.

For example:
y1 = un−1 +

2
3 hF (un−1),

un =
5
8 un−1 +

3
8 y1 +

3
4 hF (y1).

y1 =
5
6
(
un−1 + hF (un−1)

)
+

1
6
(
un−1 − hF̃ (un−1)

)
,

un =
3
4
(
y1 + hF (y1)

)
+

1
4
(
un−1 − hF̃ (un−1).
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Monotonicity and optimality of perturbed RK

Perturbed Runge–Kutta methods:

Introduced by Shu & Osher (1988) and further studied by Gottlieb,
Ruuth, Spiteri and others.

Analysis of monotonicity conditions, Shu-Osher representations, and
extension to additive problems investigated by Higueras (2005, 2006).

Algorithms to obtained optimal perturbations and upper bounds on
SSP coefficient were developed by Higueras/Ketcheson/Kocsis
(2016).

Formulae for second-order implicit methods with unbounded SSP
coefficient (Ketcheson, 2012).
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Implicit perturbed Runge–Kutta methods

A new three-step, third-order class of implicit perturbed Runge–Kutta
methods, with arbitrarily large SSP coefficient C = r :

y1 = v1un−1 + α11

(
y1 +

h
r F (y1)

)
+ α21

(
y2 +

h
r F (y2)

)
+ α̃13

(
y3 −

h
r F̃ (y3)

)
y2 = α21

(
y1 +

h
r F (y1)

)
+ α22

(
y2 +

h
r F (y2)

)
y3 = y1 +

h
r F (y1)

un = y2 +
h
r F (y2).

Stability analysis of the underlying method (i.e. when F̃ = F ) reveals
that:

if r = 6 then the method is A-stable;
if r > 6 then the method is A(α)-stable with α ≥ 88.2302.
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Application to 1D problems

Solution of Burgers’ equation with
2nd-order TVD spatial discretization.

Time integrators:
explicit SSP RK(3, 3) (SSPRK33)
implicit perturbed SSPRK(3, 3)
with r = 8 (PRK33) 0.0 0.2 0.4 0.6 0.8 1.0
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Conclusion and future work

Additive SSP linear multistep methods:

Extended SSP theory of LMMs to problems where upwind and
downwind operators have different stiffness properties.
Analyzed monotonicity properties of perturbed SSP LMMs and
construct optimal methods.
Investigated monotonicity properties of additive linear multistep
methods: SSP IMEX methods.

Future work:
Study asymptotic behavior of SSP coefficient for perturbed methods.
Perturbed SSP LMMs with variable step size.
Find optimal IMEX methods:
(explicit perturbed SSP LMM + A(α)-stable implicit LMM).
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Conclusion and future work (cont.)

Implicit perturbed SSP Runge–Kutta methods:

Obtained a third-order implicit RK method with arbitrarily large SSP
coefficient.
Analyzed stability properties.
Showed good performance with large CFL numbers.

Future work:
Efficient implementation in relation to Newton iterations required at
each step.
Search for other families of higher order implicit perturbed RK
methods.
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