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Introduction




Preservation of qualitative properties

The real-life problem to be modelled

Mathematical model

Numerical model




Preservation of qualitative properties

Problems

 What are the qualitative properties of the original phenomenon?

 What are the qualitative properties of the mathematical model?

« What are the discrete equivalents of the above qualitative
properties?

 What are the relations of them?

 Sufficient conditions (mesh, time-step) for the qualitative
properties in the discrete models.



Some motivating
examples




A simple example in Matlab (pdetool)

% — AU, in (O7T) X Q: WS (03 1) X (0’1)’

u(t,x) =0, x € 0N
u(0, z) = exp(—(z — 1/2)%?/0.1% — (y — 1/2)*/0.1%)

‘: DRE C
Equation: d*u'-div(c*grad(u))+a*u=f
Type of PDE: Coefficient Value
O Eliiptic c 1.0 Deflnltlon
(@) Parabolic 3 0.0 Of the mo del
O Hyperbolic f 0
() Eigenmodes d 1.0 parameters
0K Cancel




A simple example in Matlab (pdetool)

The mesh and the boundary and initial conditions
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A simple example in Matlab (pdetool)

The result Temperature
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Another finite element example

We solve the previous problem with FEM (8-method, 8 = 0.9) and bilinear
elements. (I. Faragd, R.H., STAM J. Sci. Comput., 2006)
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t=0 t=20.5, At=10.5
Ax =1/10, Ay = 1/12



Another finite element example

t = 0.0005, At = 0.0005

Ax =1/10, Ay = 1/12



Another finite element example
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The numerical solution does not
satisty:
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* the nonnegativity preservation
property
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t = 0.0001, At = 0.0001

Az =1/10, Ay = 1/12



Cut-off methods

The remedy can be the so-called cut-off method:

Changna Lu et al, The cutoff method for the numerical computation
of nonnegative solutions of parabolic PDEs with application to

anisotropic diffusion and Lubrication-type equations, J. Comp. Phys.,
242, (2013), pp. 24-36

Christian Kreuzer, A note on why enforcing discrete maximum

principles by a simple a posterori cutoff is a good idea, Numerical
methods of PDEs, 30, (2014), pp. 994-1002



Cut-off methods

The numerical scheme
Xlu”'H = qun —+ fn

is changed to
len—l—l = XQ(Vn)+ + f".

Xl(vn—|—1 . Un+1) _ Xg((Vn)+ . Un) . Tn’

thus
v — U = XX (v T - U = X7

<A+ EKAY|(")T = UM + K7

and
[(v" T — U < (1+ KA |(vM) = U + K1 7"]].



Cut-off methods

Problems with this approach:

* The convergence is guaranteed, but is the numerical solution
reliable on a fixed mesh?

*  We have to check the nonnegativity in each iteration step. A priori
conditions are better.

e It is difficult to extend the method to other qualitative properties



A strong boundary

maximum-minimum
principle




A strong boundary maximum-

minimum principle

K. Nickel, Gestaltaussagen iiber Losungen parabolischer
Differentialgleichungen, Journal fiir die reine und angewandte
Mathematik, 211 (1962), pp. 78-94

J. D. Logan, Introduction to nonlinear partial differential equations, T
John Wiley & Sons, 2008

Protter, Weinberger, Maximum principles in differential equations,
Prentice-Hall, 1967

L[’U,] = Ut — f(t,ﬂjg U, Uy, u:ccc) =0 m QT

Thm. Assume that f(t,z,z,p,r) is non-
decreasing in r and f(t,x,2,0,0) = 0
(L[const.] = 0). Assume that u € C(Qr)N
C12(Q7) is a solution of the equation.
Then m < u < M on Dy, implies

m <u<M on D. D,y UD,; =D



A strong boundary maximum-

minimum principle

An example:

U — TUgpy = 0

The solution is

u(t,z) = —x° — 2xt.

flt,x,z,p,r) = xr, which de-
creases in r if z < 0.




The number of the
L-level points and

the number of the
local extremizers




L-level points, local extremizers

Def. ¢ : |a,b] — R is a continuous ’
function. L € R is a fixed level value.
The number of the L-level points is de-
noted by Cé"[a’b].

Def. ¢ : |a,b] — R is a continuous
function. The number of the local max-
imizers (minimizers) of ¢ is denoted by

l’Lﬁbl[a,b] :



Polya’s and Sturm’s result

U — Ugpe = 0, 1n Qp,
w=0, (ta)e(0,T)x{0,1},
u=ug, (t,x)e {0} x][0,1].

Thm. [Gy. Pdlya (1933), Ch. Sturm (1936)] The number of the
roots of the functions x — u(z,t) does not increase in time t.



Pélya’s proof

Lemma. If f is a differentiable periodic function (p > 0) and f(a) # 0
then the function af + f' (a # 0) has not less roots than that of f on
the interval [a, a + p.

1004




Pélya’s proot

u(z,t) = Ao + Z(AZ cos(iz) + B; sin(ix)) - et

1=1
Let to > t; > 0 be two different time levels (At = to — t1). Then
u(z,t2) = ap + » (a;cos(iz) + b; sin(iz)),

1=1

ahol ap = AO? Aq = Ai @ t2, b, =B;-e " bz,



Pélya’s proof

Let us apply the lemma 2k times (a = + > Vk):

. . L 2AL\ "
ag + Z(a@- cos(ix) + b;sin(iz)) - | 1 + p
i=1

I (k= o0

agp + Z(ai cos(ix) + b; sin(ix)) - et At = v(x,t1).
i=1

This completes the proof.



L-level points, local extremizers

Thm. [Nickel 1962] Under the above T
conditions for the equation L|u] = 0 T
and for any fixed real number L we have

CL < L
u|lT — dSulr

for the L-level points, moreover,

M’UJ|T g Mu|p

is valid for the local maximizers (mini-
mizers) of the solution wu.




The sketch of the proot

Proof. The proof is based on the fol-
lowing properties of the sets B;:

i) B NI # 0,

ii) B; N B; = 0.




The discrete case




An example with the EE-method

We solve

ur = (uzz)®, (t,2) € Qr,
(0, ) = ug(x) = sin(nz) - (1 + (196 obt )) Czeo,1],
u(t,0) =u(t,1) =0, t € [0,7],

with the explicit Euler method

k+1 k k k ko k k
U,  — Uy = 1| £, 2 k Uity — Ui—q Ui_q — 2U5 + Uy i=1,....,n
At — ky Li, U INT ; A 12 » k=0,....np—1
0 .
u;, =up(x;), 1 =0,...,n+1,
k k
UO:un+1:0,k:0,...,nT.



An example with the EE-method

Approximation of

the initial function
with Az = 1/6.

CI(?)|I‘ = 2 and for
the local maximiz-
ers (minimizers) we
have p,. = 1(2).
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An example with the EE-method

Approximation

of the solution at
t = 1077 (10th time
level) with the time

step At = 1078.
0 = 4 and for =
plT

the local maximiz-
ers (minimizers) we
have fi,,. = 2(3).
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Space coordinates



An example with the EE-method

Approximation of
the solution at
t = 107% (100th
time level) with
the time  step

At =1078.
ng = 2 and for

the local maximiz-
ers (minimizers) we
have fi,,. = 2(3).
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An example with the EE-method

With a smaller time

step (1077) we get 6 t=1e-07
a correct solution at | o | /;{ |
the same time level 5t //

(100th time level). A / \
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An example with the EE-method

On a finer mesh we
obtain the approxi-
mation seen in the
figure. Ax = 1/26,
At = 107! (10°th
time step) (stabil-
ity!)
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Investigation of the IE-method

The scheme of the implicit Euler method.

k+1 % k+1 . k+1  k+1 o k+1 k+1
u,  —uy p okl %l T % Y% 2u; +uyy i=1,...,n
At — f k+1yLg, Uy ? INT ’ A2 » k=0,...,n7—1>
0 o
u;, =up(x;), 1=0,...,n+1,
k k
uy = vo(tk), Uppr = vi(te), E=0,...,np.



Investigation of the IE-method

Thm. Assume that
- f(t,x,z,p,7) is nondecreasing in r and
- f(t,x,2,0,0) =0 (L[const.] = 0) and
- f(t,z, z,p,r) is independent of p.
Then, if the implicit Euler finite difference numerical solution of the
problem exists, then it satisfies the relations
L L

CpIﬂr = plrr Mol < Hp|r
for the number of L-level points (L is a fixed real number) and for the
number of the local maximizers (minimizers).

Proof. Paper submitted to J. Comp. Appl. Math.



An example

We solve problem

= (14 u®)(uy,)?, (t,2) € QF,
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example
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Some related work

Masahisa Tabata, A finite difference approach to the number of peaks of
solutions for semilinear parabolic problems, J. Math. Soc. Japan Vol. 32, No. 1,

(1980), pp. 171-192.
Ut = CL(t, fc)u:c:c + b(ta LU)UCB -+ f(tv u)a |8f/au| < My

Homogeneous Dirichlet boundary — The EE solution (provided that
At sufficiently small) does not increase the number of the peaks in time.

Horvath R, On the Sign-Stability of Finite Difference Solutions of Semilinear
Parabolic Problems, LECT NOTES COMPUT SC 5434: 305-313 (2009).

- : ; If At is sufficiently small then the EE
=3 |, S=3, -1 |—| -1, =2 scheme does not increase the number of

2 .
10 0 o the sign changes.



Future work

* How to handle the explicit Euler case or generally the 9-method?

* Conditions for the time step and the spatial grid that guarantee the validity of
the investigated properties.

* More general f functions (now terms like cu were excluded)



Thank you for your attention



