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Problem statement

Let Ω ⊂ R2. We consider{
∆u(x) = f (x) x ∈ Ω

u(x) = g(x) x ∈ ∂Ω,
(1.1)

where f ∈ L2(Ω) and g ∈ C(∂Ω) are given.
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Goal

To approximate the Laplacian of a function u ∈ C2(Ω) in x0 ∈ Ω based
on the corresponding function values in its neighboring grid points:

∆u(x0) ≈
k∑

j=0

aju(xj). (1.2)
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• Approximation with the left geometry:

∆u(x0) ≈ −(
2
h2

x
+

2
h2

y
)u(x0)+

1
h2

x
u(x1)+

1
h2

x
u(x3)+

1
h2

y
u(x2)+

1
h2

y
u(x4)

(1.3)
with an error O(h2

x) +O(h2
y).

• For a general geometry, this accuracy is lost.

Objective
To find the coefficients in (1.3) for a general mesh using an optimiza-
tion procedure.
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Pointwise optimization

9 grid point approximation

∆u(x0) ≈
9∑

j=0

aju(xj). (2.4)

1. Uniform mesh with grid size h: to obtain an approximation order
N − 1, the equality

∆p(x0) = a0p(x0) + a1p(x1) + · · ·+ a8p(x8). (2.5)

should hold for all polynomials p up to order N (coefficients are
scaled as h−2).

2. General mesh geometries: The approximation order is decreased
and (2.5) is not valid anymore for all polynomials up to order N.
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What polynomials should we consider in

∆p(x0) = a0p(x0) + a1p(x1) + · · ·+ a8p(x8).

• Constant polynomials should satisfy (2.4) =⇒ Constraint:

a0 = −(a1 + · · ·+ a8).

• Polynomials that span the space of first and second-order polynomi-
als:

p1(x, y) = 100x, p2(x, y) = 100y, p3(x, y) = 10xy,

p4(x, y) = 10x2, p5(x, y) = 10(x2 − y2),
(2.6)

• Weights are important for accuracy.
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• Additionally, we take harmonic polynomials up to order five:

p6(x, y) = x3 − 3x2y, p7(x, y) = y3 − 3xy2,

p8(x, y) = x3y − xy3, p9(x, y) = x4 + 6x2y2 − y4,

p10(x, y) = 5x4y − 10x2y3 + y5, p11(x, y) = x5 − 10x3y2 + 5xy4,
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Approximation of ∆pj(x0):

a1pj(x1) + a2pj(x2) + · · ·+ a8pj(x8) ≈ ∆pj(x0), j = 1, 2, . . . , 11
(2.7)

for the given geometrical setup.

Optimization procedure

• Find the vector of coefficients a = [a1, a2, . . . , a8]
T in (2.7) such that

P · a ≈ ∆p, where
→ P ∈ R11×8 with Pjk = pj(xk);
→ ∆p = [0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0]T ∈ R11, so that ∆pj = pj(x0).

The optimization task is solved in the least-square sense for each point
x0 using the np.linalg.lstsq subroutine in Python.
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Vectorized procedure

1. We create a matrix, where each row contains the geometry around a
fixed grid point.

2. The optimization procedure is applied (independently) to the rows of
this matrix using the np.apply along axis subroutine in Python.
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Model problem
Stefan problem

Model problem

Test problem: {
∆u(x, y) = −16x cos 4y (x, y) ∈ Ω

u(x, y) = ug(x, y) (x, y) ∈ ∂Ω,
(3.8)

with the computational domain

Ω = {(x, y) ∈ R2 : 0 < x <
π

2
, 0 < y < 1 +

cos x
4

}

such that
• Left and right side: ug(0, y) = y and ug(

π
2 , y) = y + π

2 · cos 4y.
• Bottom side: ug(x, 0) = x.
• Top side: u(x, 1 + cos x

4 ) = 1 + cos x
4 + x · cos 4(1 + cos x

4 ).
Analytic solution is u(x, y) = y + x · cos 4y.
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Spatial discretization: grid space is refined in the vicinity of the top
boundary.

Figure: Number of uniformly distributed grid points: 20 in the horizontal
direction and 16 in the vertical direction.
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Table: Simulation time (ms) and discrete L2-norm error for different
discretization parameters in the model problem

Nx 10 15 20 25 30 35 40 45 50 55
Ny 8 12 16 20 24 28 32 36 40 44
time (ms) 22 20 27 41 55 73 95 119 146 174
error ·103 10.9 5.2 3.1 2.1 1.6 1.2 1 0.87 0.77 0.7
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Model problem
Stefan problem

Stefan problem

• Stefan problems can be used to describe the interaction of different
phases of materials.

• We consider u : Ω → R unknown function corresponding to the
temperature in a melting system (ice and water).

At each time t ∈ [0,T], the domain Ω is separated into the two disjoint
ones

Ω0,t = {x ∈ Ω : u(t, x) < 0}}︸ ︷︷ ︸
ice

; and Ω1,t = {x ∈ Ω : u(t, x) > 0}︸ ︷︷ ︸
water

,

so that Ω = Ω0,t ∪ Ω1,t.
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Model problem
Stefan problem

Figure: Initial grid.
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Model problem
Stefan problem

• Common boundary:

Γt = {x = (x(t), y(t)) ∈ Ω : u(t, x) = 0}.

• Notation:
u0 = u|[0,T]×Ω0,t and u1 = u|[0,T]×Ω1,t .

Governing equations{
∂tu0(t, x) = D0 ·∆u0(t, x), x ∈ Ω0,t

∂tu1(t, x) = D1 ·∆u1(t, x), x ∈ Ω1,t.
(3.9)
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Model problem
Stefan problem

Evolution of the common boundary

∂tΓt(x) = −LH · [[∂νu(t, x(t), y(t))]], (3.10)

• Γt level set parametrized with t.

• LH latent heat of solidification.

• Jump operator [[·]], defined on the common boundary Γt with

[[∂νu(t, x)]] = D0 · ν0(x) · ∇u0(t, x)+D1 · ν1(x) · ∇u1(t, x), (3.11)

• ν0, ν1 corresponding (opposite) outward normals.

ELTE



Introduction
Pointwise Optimization
Numerical Experiments

Conclusions

Model problem
Stefan problem

Initial and boundary conditions

• Initial condition:

u(0, x, y) = 1 +
cos x

4
− y.

• Top boundary condition:

u(t, x, 2 +
cos x

2
) = −1 + (

t
4
− 1)

cos x
4

, x ∈ [−1, 1]. (3.12)

• Bottom boundary condition:

u(t, x, 0) = 1 + (t + 1) · cos x
4

, x ∈ [−1, 1]. (3.13)

• Right and left boundary conditions: homogeneous Neumann-type.
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Model problem
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Construction of the grid

We apply a structured quadrilateral grid.

• Mesh only moving vertically =⇒ fix the x coordinates of the grid
points x1, x2, . . . , xNx. Horizontal spacing hx = 2/(Nx + 1).

• Neumann boundary conditions on the left and right are dealt with
ghost grid points.

• We fix the number of grid points in the vertical direction: Ny/2 grid
points both in Ω0 and Ω1.

In the vicinity of the interface Γt, we apply a finer grid =⇒ more
accurate approximation of the evolution of Γt.
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Model problem
Stefan problem

Figure: Initial grid.
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Model problem
Stefan problem

Sketch of algorithm

(i) Diffusion problem on top domain Ω0 and bottom domain Ω1 with
some initial data.

(a) We construct the discretization of the Laplacian using the point-
wise optimization algorithm.

un+1 = un + δ · (∆hun+1 + fn+1), (3.14)

(b) We incorporate the Dirichlet- and Neumann-type boundary condi-
tions:

(I − δ · (∆̃h))un+1 = un + δ · f̃n+1
, (3.15)

(c) We perform a time step by solving (3.15).
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Model problem
Stefan problem

(ii) New Neumann boundary data on the moving surface.

(a) We move the surface according to equation (3.10).
→ At each point (x(t), y(t)) ∈ Γt we perform

(x((n + 1)δ), y((n + 1)δ)) ≈ (x(nδ), y(nδ)) + δ · ∂tΓnδ(x(nδ), y(nδ))

= (x(nδ), y(nδ)) + δ · [[∂νu(x(nδ), y(nδ))]],
(3.16)

We move segments of the common boundary by computing

di = δ · (ν i · (∇un
0 −∇un

1))ν i
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Model problem
Stefan problem
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Figure: Motion of the segments xi−1xi, xixi+1, and xi+1xi+2 of Γn in step (ii)
(a). di denotes the shift vectors obtained from the jump term.
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Model problem
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For each given
segment of Γn:

bilinear interpolation in the quadrilaterals

computation of outward normals in the segment’s midpoints

shift segments with the jump of the outward normals

take the average positions of segments on the vertical lines.

New segments of
Γn+1 are ready.

Figure: The steps of shifting the interface Γn to obtain the new one Γn+1.
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Model problem
Stefan problem

(b) We interpolate the solutions on the two new domains.

Figure: Initial condition (left, with a heat map) and the corresponding initial
grid (right) for the simulation of the problem in (3.9)–(3.10). The common
interface and the corresponding grid points are colored green.
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Model problem
Stefan problem

Figure: The result of the simulation procedure for the Stefan problem after 7
time steps (left) and 17 time steps (right), respectively.
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Advantages and disadvantages

Advantages:

• The algorithm proposed is rather quick and uses only neighboring re-
lations between the grid points.

• It works on non-uniform and non-rectangular grids, merging the ad-
vances of classical finite difference and finite element methods.

ELTE



Introduction
Pointwise Optimization
Numerical Experiments

Conclusions

Disadvantages:

• The optimization procedure highly depends on the weighting, which
was applied to the harmonic polynomials to obtain the optimal coef-
ficients.

• We cannot guarantee a fixed spatial convergence (or consistency) or-
der. For irregular geometries, even the optimal coefficients will not
deliver a very accurate approximation of the differential operator.
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Conclusions

• An optimization-based FD discretization of the two-dimensional Laplace
operator was developed. The use and benefits of this algorithm are
demonstrated in the Stefan problem.

• In this problem, the computational domains evolve with time =⇒
a new spatial discretization must be performed, making the speed of
this process critical to the overall efficiency of the numerical method.

• The meshless, pointwise execution of this procedure provides a vec-
torized, more efficient alternative to the conventional assembly pro-
cedure.
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Thank you for your attention!
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