Bifurcation and discretization in integrodifference equations

Christian Pötzsche

Alpen-Adria Universität Klagenfurt christian.poetzsche@aau.at

November 14, 2019 Farkas Miklós Alkalmazott Analízis Szeminárium

Joint work with Christian Aarset

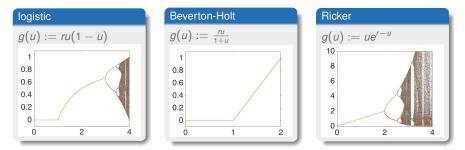
Motivation: Scalar difference equations

Step 1: Temporal evolution of the total biomass of a population

$$u_{t+1} = g(u_t)$$

in one single habitat with nonoverlapping generations

 $g:\mathbb{R}
ightarrow\mathbb{R}$ depends on the growth rate and carrying capacity



Motivation: Spatial difference equations

Growth rate and carrying capacity are different in every point of the habitat

Step 2: Temporal evolution of a sedentary population

$$u_{t+1}(x) = g(x, u_t(x))$$
 for all $x \in \Omega$

over the habitat $\Omega \subset \mathbb{R}^{\kappa}$, $\kappa = 1, 2, 3$

 $g:\Omega imes\mathbb{R} o\mathbb{R}$ describes the evolution depending on the position $x\in\Omega$ in the habitat

Perspectives • $x \in \Omega$ is a parameter, or • (S) is an equation in a function space $u_{t+1} = \mathcal{G}(u_t)$

(S)

Motivation: Dispersal

Populations disperse!

Step 3: Temporal evolution of a dispersive population

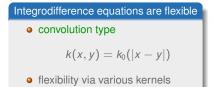
$$u_{t+1}(x) = \int_{\Omega} k(x, y) g(y, u_t(y)) \, \mathrm{d}y \quad \text{for all } x \in \Omega \tag{H}$$

in a habitat $\Omega \subseteq \mathbb{R}^{\kappa}$, $\kappa = 1, 2, 3$

Interpretation of (H)

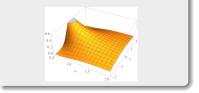
- dispersal kernel $k(x, y) \ge 0$ indicate probability to move from x to $y \in \Omega$
- (Hammerstein) integrodifference equation
 State space: u_t ∈ C(Ω) or L^p(Ω), 1 ≤ p ≤ ∞

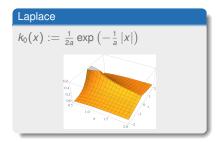
Motivation: Types of kernels

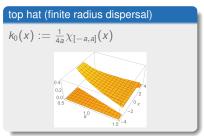


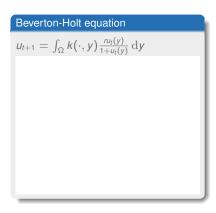
Gauß

$$k_0(x) := \frac{1}{\sqrt{2\pi a^2}} \exp\left(-\frac{1}{2a^2}x^2\right)$$

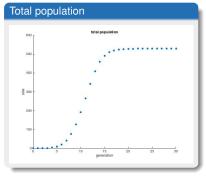




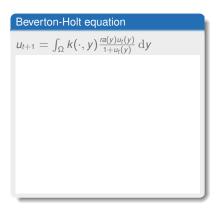




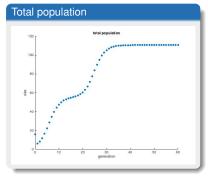
Gauß kernel a = 1



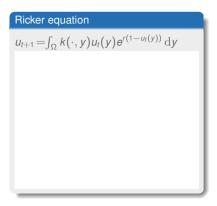
Global convergence



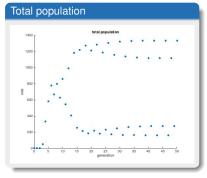
Gauß kernel a = 1.4



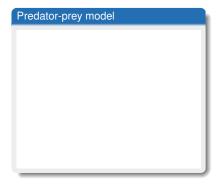
Global convergence



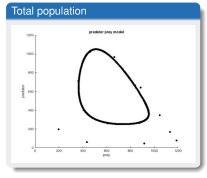
Gauß kernel



Period doubling cascade



Gauß kernel



Invariant circle

Motivation: Punchline

Integrodifference equations

$$u_{t+1} = \int_{\Omega} k_t(\cdot, y) g_t(u_t(y)) \,\mathrm{d}y$$

(I)

Interesting infinite-dimensional discrete dynamical systems:

- M. Kot, W. Schaffer^a, 1986
- D. Hardin, P. Takáč, G. Webb^b, 1988
- S. Day, O. Junge, K. Mischaikow^c, 2004

^aDiscrete-time growth dispersal models, Math. Biosci. 80

^bA comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl. Math. 48(6)

^cA rigerous numerical method for the global dynamics of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst. 3(2)

Goals

Introduce a sufficiently rich class of integrodifference equations

- equations of Urysohn- and Hammerstein-type
- growth-dispersal and dispersal-growth equations
- relevant special cases (modelling, discretization)

A general IDE model

An integrodifference equation (IDE for short) is a difference equation

$$u_{t+1} = \mathcal{F}_t(u_t) \tag{1}$$

whose right-hand side $\mathcal{F}_t : X \to X$ involves an integral operator on an ambient function space *X*.

Given a measure space $(\Omega, \mathfrak{A}, \mu)$ with $\mu(\Omega) < \infty$ consider

$$\mathfrak{F}_t(u)(x) := G_t\left(x, u(x), \int_\Omega f_t(x, y, u(y)) \,\mathrm{d}\mu(y)
ight) \quad ext{for all } t \in \mathbb{Z}, \, x \in \Omega \quad (*)$$

State space $X = C(\Omega)$

General form (*) (nonlinear Urysohn equations), Ω compact metric space

- Well-posed under continuity and Carathéodory conditions on f_t
- **2** Smooth under corresponding conditions on $D_{(2,3)}G_t$, D_3f_t
- Omplete continuity

$$u_{t+1}(x) = G_t\left(x, \int_{\Omega} f_t(x, y, u_t(y)) \,\mathrm{d}\mu(y)\right)$$

or set contraction

State space $X = L^{p}(\Omega)$

Hammerstein equations

$$u_{t+1} = \int_{\Omega} k_t(\cdot, y) g_t(y, u_t(y)) \,\mathrm{d}\mu(y)$$

- Well-posed under growth conditions on g_t and Hille-Tamarkin conditions on k_t
- Smooth under growth conditions on D₂g_t
- Complete continuity

$$\mathcal{F}_t(u)(x) = G_t\left(x, u(x), \int_{\Omega} f_t(x, y, u(y)) d\mu(y)\right)$$

Example (Urysohn and Hammerstein equations)

Suppose $\Omega \subset \mathbb{R}^{\kappa}$ is compact, $\mu = \lambda_{\kappa}$ (Lebesgue measure)

- Urysohn equations: $u_{t+1} = \int_{\Omega} f_t(\cdot, y, u_t(y)) \, dy$
- Hammerstein equations: $u_{t+1} = \int_{\Omega} k_t(\cdot, y) g_t(y, u_t(y)) dy$
- dispersal-growth equations: $u_{t+1} = g_t \left(\cdot, \int_{\Omega} k_t(\cdot, y) u_t(y) \, \mathrm{d}y \right)$

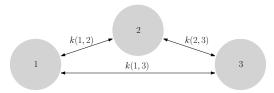
$$\mathfrak{F}_t(u)(x) = \int_{\Omega} k_t(x, y) g_t(y, u(y)) \,\mathrm{d}\mu(y)$$

Example (metapopulation models)

With $\Omega = \{1, \ldots, n\}$ and the counting measure μ consider

$$u_{t+1}(i) = \sum_{j=1}^n k_t(i,j)g_t(j,u_t(j)) \hspace{0.2cm} ext{ for all } i \in \{1,\ldots,n\} \, ,$$

where $k_t(i, j)$ yields the probability to move from patch *i* to *j*



$$\mathfrak{F}_t(u)(x) = G_t\left(x, u(x), \int_{\Omega} f_t(x, y, u(y)) d\mu(y)\right)$$

Example (Nyström discretizations)

On a grid $\Omega=\mathbb{G}$ the measure $\mu(\Omega'):=\sum_{\eta\in\Omega'} \textit{w}_\eta$ yields the recursions

$$u_{t+1}(\xi) = G_t\left(\xi, u(\xi), \sum_{\eta \in \mathbb{G}} \omega_\eta f_t(\cdot, \eta, u_t(\eta))
ight) \quad ext{for all } \xi \in \mathbb{G}.$$

They realize quadrature/cubature rules with weights $\omega_\eta \geq$ 0 and nodes $\eta \in \mathbb{G}$

Goals

Periodic solutions of periodic IDEs bifurcate into periodic solutions:

- lifted map vs. period map (cyclic maps instead of compositions)
- erossing curve bifurcations

A parameter-dependent integrodifference equation

$$u_{t+1} = \mathcal{F}_t(u_t, \alpha) \tag{I}_{\alpha}$$

with right-hand side $\mathcal{F}_t : X \times A \to X$ on an ambient function space X and a real parameter space $A \subseteq \mathbb{R}$ is assumed to be θ_0 -periodic, i.e.

$$\mathcal{F}_t = \mathcal{F}_{t+\theta_0}$$
 for all $t \in \mathbb{Z}$.

Theorem (characterization of periodic solutions)

If θ is a multiple of θ_0 , then the following are equivalent:

•
$$\phi = (\phi_t)_{t \in \mathbb{Z}}$$
 is a θ -periodic solution of (I_{α})

2
$$\phi_0 \in X$$
 is a fixed-point of the period map $\Pi_{\theta} = \mathcal{F}_{\theta-1} \circ \ldots \circ \mathcal{F}_0$

 $\hat{\phi} = (\phi_1, \dots, \phi_{\theta})$ is a zero of the lifted map

$$G(\hat{\phi}, \alpha) := \begin{pmatrix} \phi_1 - \mathcal{F}_0(\phi_{\theta}, \alpha) \\ \phi_2 - \mathcal{F}_1(\phi_1, \alpha) \\ \vdots \\ \phi_{\theta} - \mathcal{F}_{\theta-1}(\phi_{\theta-1}, \alpha) \end{pmatrix} \in X^{\theta}$$

Period map (for Urysohn equations):

$$\begin{split} \Pi_{\theta}(u) &= \mathcal{F}_{\theta} \circ \ldots \circ \mathcal{F}_{1}(u) \\ &= \int_{\Omega} f_{\theta} \left(\cdot, y_{\theta}, \cdots \int_{\Omega} f_{2} \left(y_{3}, y_{2}, \int_{\Omega} f_{1}(y_{2}, y_{1}, u(y_{1})) \, \mathrm{d}y_{1} \right) \, \mathrm{d}y_{2} \cdots \right) \, \mathrm{d}y_{\theta} \end{split}$$

Period map vs. lifted map

Applied to IDEs (I_{α}) the lifted map G

- avoids to evaluate <u>multiple integrals</u> (and an application of cubature rules over high-dimensional domains)
- yields cyclic as opposed to product eigenvalue problems, which have better numerical stability properties (Kressner^a, 2006)

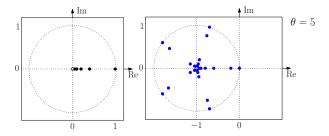
^a The periodic QR algorithm is a disguised QR algorithm, Linear Algebra and its Applications 417(2–3)

Structure of the (point) spectrum

If $\theta \in \mathbb{N}$ is a multiple of θ_0 , then

$$\sigma_{\rho}(D_{1}G(\hat{\phi}^{*},\alpha^{*})) = \left\{\lambda - 1 \in \mathbb{C} : \lambda^{\theta} \in \sigma_{\rho}(\Xi_{\theta}(\alpha^{*}))\right\}$$

with $\Xi_{\theta}(\alpha^*) := D_1 \mathcal{F}_{\theta-1}(\phi^*_{\theta-1}, \alpha^*) \cdots D_1 \mathcal{F}_0(\phi^*_0, \alpha^*)$



Duality pairings (Kress^a, 2014)

^aLinear Integral Equations, Springer

Two Banach spaces X and Y together with a (nondegenerate) bilinear form $\langle \cdot, \cdot \rangle : Y \times X \to \mathbb{R}$ are called a **duality pairing** $\langle Y, X \rangle$. Given $T \in L(X)$, the **dual** operator $T' \in L(Y)$ is determined via

$$\langle y, Tx \rangle = \langle T'y, x \rangle$$
 for all $x \in X, y \in Y$.

Example

- $\langle X', X \rangle$ with the duality pairing $\langle x', x \rangle = x'(x)$
- $(C(\Omega), C(\Omega))$ with the bilinear form $\langle u, v \rangle := \int_{\Omega} u(y)v(y) d\mu(y)$

$$u_{t+1} = \mathcal{F}_t(u_t, \alpha^*), \qquad \qquad \mathcal{F}_{t+\theta_0} = \mathcal{F}_t \qquad (I_{\alpha^*})$$

Assumptions

• ϕ^* is a θ_1 -periodic solution of (I_{α^*})

2 1 is a simple Floquet multiplier: There exists nonzero $\xi_0^* \in C(\Omega)$ with $\Xi_{\theta}(\alpha^*)\xi_0^* = \xi_0^*$ obtained from the cyclic eigenvalue problem

$$\begin{pmatrix} D_{1}\mathcal{F}_{0}(\phi_{0}^{*},\alpha^{*})\xi_{0}^{*} \\ D_{1}\mathcal{F}_{1}(\phi_{1}^{*},\alpha^{*})\xi_{1}^{*} \\ \vdots \\ D_{1}\mathcal{F}_{\theta-1}(\phi_{\theta-1}^{*},\alpha^{*})\xi_{\theta-1}^{*} \end{pmatrix} = 1 \begin{pmatrix} \xi_{1}^{*} \\ \xi_{2}^{*} \\ \vdots \\ \xi_{0}^{*} \end{pmatrix}$$

and choose $\eta_0^* \in C(\Omega)$ such that

$$N(\Xi_{\theta}(\alpha^*)' - I_{\mathcal{C}(\Omega)}) = R(\Xi_{\theta}(\alpha^*) - I_{\mathcal{C}(\Omega)})^{\perp} = \operatorname{span} \{\eta_0^*\}$$

Bilinear form $\langle \hat{\phi}, \hat{\psi} \rangle_{\theta} := \sum_{t=0}^{\theta-1} \int_{\Omega} \langle \phi_t(x), \psi_t(x) \rangle \, \mathrm{d}\mu(x)$

Theorem (crossing curve bifurcation)

Let $\theta = \text{lcm} \{\theta_0, \theta_1\}$. If $D_2 \mathfrak{F}_t(\phi_t^*, \alpha^*) = 0$, the transversality condition

$$g_{11} := \sum_{t=0}^{\theta-1} \int_{\Omega} \langle \eta_{t+1}^*(x), [D_1 D_2 \mathcal{F}_t(\phi_t^*, \alpha^*) \xi_t^*](x) \rangle \, \mathrm{d}\mu(x) \neq 0$$

and

$$\sum_{t=0}^{\theta-1} \int_{\Omega} \langle \eta_{t+1}^*(x), [D_2^2 \mathcal{F}_t(\phi_t^*, \alpha^*)](x) \rangle \, \mathrm{d}\mu(x) = 0$$

hold, then the θ -periodic solution ϕ^* of an IDE (I_{α^*}) bifurcates at α^* as follows: (ϕ^*, α^*) is the intersection of two branches Γ_1, Γ_2 of θ -periodic solutions and every θ -periodic solution of (I_{α}) in $B_{\varepsilon}(\phi^*)$ is captured by Γ_1 or Γ_2 .

Period doubling: Apply theorem to the equation with period 2θ

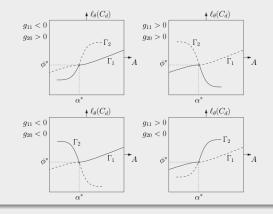
Proof.

Apply Morse lemma (instead of implicit function theorem) to the reduced equation after the Lyapunov-Schmidt reduction.

Corollary (transcritical bifurcation)

Under the additional assumption

$$g_{20} := \sum_{t=0}^{\theta-1} \int_{\Omega} \langle \eta_{t+1}^*(x), [D_1^2 \mathcal{F}_t(\phi_t^*, \alpha^*)(\xi_t^*)^2](x) \rangle \, \mathrm{d}\mu(x) \neq 0$$



Christian Pötzsche | Bifurcation and discretization in integrodifference equations

Corollary (pitchfork bifurcation)

Suppose $\psi \in \ell_{\theta}(C_d)$ is the uniquely determined solution of the cyclic Fredholm equations of the second kind

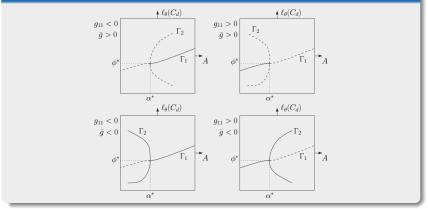
$$\begin{aligned} & \left\{ \psi_{0} = D_{1} \mathcal{F}_{\theta-1}(\phi_{\theta-1}^{*}, \alpha^{*}) \psi_{\theta-1} + D_{1}^{2} \mathcal{F}_{\theta-1}(\phi_{\theta-1}^{*}, \alpha^{*}) (\xi_{\theta-1}^{*})^{2}, \\ & \psi_{1} = D_{1} \mathcal{F}_{0}(\phi_{0}^{*}, \alpha^{*}) \psi_{0} + D_{1}^{2} \mathcal{F}_{0}(\phi_{0}^{*}, \alpha^{*}) (\xi_{0}^{*})^{2}, \\ & \vdots \\ & \psi_{\theta-1} = D_{1} \mathcal{F}_{\theta-2}(\phi_{\theta-2}^{*}, \alpha^{*}) \psi_{\theta-2} + D_{1}^{2} \mathcal{F}_{\theta-2}(\phi_{\theta-2}^{*}, \alpha^{*}) (\xi_{\theta-2}^{*})^{2}, \\ & 0 = \sum_{l=0}^{\theta-1} \int_{\Omega} \langle \eta_{l+1}^{*}(x), \psi_{l}(x) \rangle \, \mathrm{d}\mu(x). \end{aligned}$$

Under the additional assumptions $g_{20} = 0$,

$$\begin{split} \bar{g} &:= \sum_{t=0}^{\theta-1} \int_{\Omega} \langle \eta_{t+1}^*(x), [D_1^3 \mathcal{F}_t(\phi_t^*, \alpha^*)(\xi_t^*)^3](x) \rangle \, \mathrm{d}\mu(x) \\ &+ 3 \sum_{t=0}^{\theta-1} \int_{\Omega} \langle \eta_{t+1}^*(x), [D_1^2 \mathcal{F}_t(\phi_t^*, \alpha^*)\xi_t^* \psi_t](x) \rangle \, \mathrm{d}\mu(x) \neq 0 \end{split}$$

(1)

Corollary (pitchfork bifurcation)



In both cases, an exchange of stability principle holds.

Numerical aspects

- Numerical bifurcation theory
 - Solution branches (pseudo-arclength continuation with Newton method as corrector)
 - eigenpairs (Matlab solver for linear and eigenvalue equations)
- Integral operators and inner products
 - ... Part 3

Example (Beverton-Holt equation)

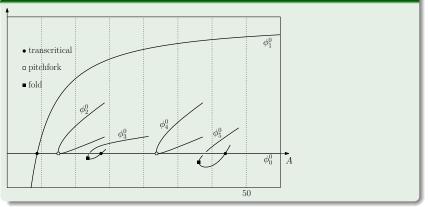
$$u_{t+1} = \alpha_t \int_{\Omega} k(\cdot, y) \frac{\alpha u_t(y)}{1 + u_t(y)} \, \mathrm{d}y$$

with θ -periodic sequence $(\alpha_t)_{t\in\mathbb{Z}}$ in $(0,\infty)$ and bifurcation parameter $\alpha > 0$

- (1) Primary transcritical bifurcation into a branch of globally attractive (Hardin, Takáč, Webb^a, 1988) (w.r.t. $C_+(\Omega)$) θ -periodic solutions
- (2) Countable number of bifurcations along 0, which are alternately of transcritical and supercritical pitchfork type
- (3) Transcritical bifurcations come from a supercritical fold

^aA comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl. Math. 48(6)

Example (Beverton-Holt equation)



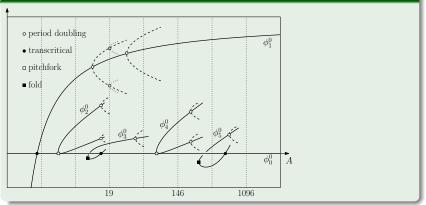
Example (Ricker equation)

$$u_{t+1} = \alpha_t \int_{\Omega} k(\cdot, y) \alpha u_t(y) e^{-u_t(y)} \, \mathrm{d}y$$

with θ -periodic sequence $(\alpha_t)_{t \in \mathbb{Z}}$ in $(0, \infty)$ and bifurcation parameter $\alpha > 0$

- (1) Primary transcritical bifurcation into a branch of θ -periodic solutions
- (2) Countable number of bifurcations along 0, which are alternately of transcritical and supercritical pitchfork type
- (3) Transcritical bifurcations come from a supercritical fold
- (4) Period doublings at all branches; period doubling cascade along the primary branch ϕ_1^0

Example (Ricker equation)



3 Numerical dynamics

Goals

Behavior of hyperbolic solutions under full discretization:

- Nyström discretizations of IDEs
- eriodic solutions and their saddle-point structure
- global asymptotic stability

3 Numerical dynamics

Simulations of (I) require spatial discretizations:

$$u_{t+1} = \mathcal{F}_t^n(u_t) \tag{1}$$

Nyström methods

Replace the integral in (I) by a convergent quadrature/cubature rule

$$\mathcal{F}_t^n(u)(\eta_i) := G_t\left(\eta_i, \sum_{j=1}^{q_n} w_j f_t(\eta_i, \eta_j, u(\eta_j))\right) \quad \text{for all } 1 \le i \le q_n \tag{2}$$

with $q_n \in \mathbb{N}$, the nodes $\eta_j \in \Omega$ and weights $w_j \ge 0$

Newton-Cotes (with positive weights), Gauß, etc.

3 Numerical dynamics

What is numerical dynamics?

Persistence: Is a certain dynamical property of

$$u_{t+1} = \mathcal{F}_t(u_t) \tag{1}$$

preserved under discretization (In) (periodic solution, bifurcation, attractor, etc.)?

- **3** Convergence: Does convergence of this particular property as $n \rightarrow \infty$ hold (preserving the convergence rate)?
- Shadowing": Can one conclude from properties of the discretization (*I_n*) to the original equation (*I*)?

Kloeden & Lorenz¹⁹⁸⁶, Beyn¹⁹⁸⁶, Garay^{1990s}, ..., Stuart & Humphries¹⁹⁹⁸, ...

3 Numerical dynamics: Intrinsic problem

Given the difference equations

$$u_{t+1} = \mathfrak{F}_t(u_t),$$

 $u_{t+1} = \mathfrak{F}_t^n(u_t),$

$$\varphi(t;\tau,\cdot) = \mathcal{F}_{t-1} \circ \ldots \circ \mathcal{F}_{\tau}, \varphi^n(t;\tau,\cdot) = \mathcal{F}_{t-1}^n \circ \ldots \circ \mathcal{F}_{\tau}^n$$

define $L := \limsup_{t \to \infty} \operatorname{Lip} \mathfrak{F}_t$

Global discretization error

$$\|arphi(t; au,u)-arphi^n(t; au,u)\|\leq C(u)rac{L^{t- au}-1}{L-1}\,\|arphi^n_t(u)-arphi_t(u)\|\quad ext{for all } au\leq t$$

and $u \in X$ satisfies

- $\lim_{n\to\infty} \|\varphi(t;\tau,u) \varphi^n(t;\tau,u)\| = 0$ for every fixed $t \ge \tau$
- but the error bound explodes for $t \to \infty$

Classical error estimate are useless to infer asymptotic properties!

3 Numerical dynamics: Problem with Nyström methods

Nyström methods

- + Our abstract bifurcation results apply to Nyström discretizations (choose suitable measure in the integrals) (persistence)
- For convergent quadrature/cubature rules, linear Fredholm integral operators

$$\mathcal{K} \in L(C(\Omega)),$$
 $\mathcal{K}v := \int_{\Omega} k(\cdot, y)v(y) \,\mathrm{d}y$

feature strong convergence

$$\lim_{n\to\infty} \|\mathcal{K}v - \mathcal{K}^n v\| = 0 \quad \text{for all } v \in C(\Omega),$$

but not uniform convergence. It even holds

 $\|\mathcal{K}\| \le \|\mathcal{K} - \mathcal{K}^n\|$ for all $n \in \mathbb{N}$.

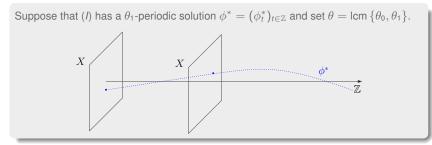
On the state space $X = C(\Omega)$ consider an IDE (1) along with a Nyström discretization

$$u_{t+1} = \mathcal{F}_t^n(u_t) \tag{1}$$

being pointwise convergent, i.e.

$$\|\mathfrak{F}_t(u)-\mathfrak{F}_t^n(u)\|\leq \omega(rac{1}{n},\mathfrak{F}_t(u)) \hspace{1em} ext{for all } n\in\mathbb{N}$$

and a function ω satisfying $\lim_{\rho \searrow 0} \omega(\rho, u) = 0$.



Theorem (hyperbolic periodic solutions under Nyström discretization)

If a θ_0 -periodic solution $(\phi_t^*)_{t\in\mathbb{Z}}$ to a θ_1 -periodic IDE (I) over $\Omega \subset \mathbb{R}^{\kappa}$ satisfies

 $\sigma(D\mathcal{F}_{\theta}(\phi_{\theta}^*)\cdots D\mathcal{F}_{1}(\phi_{1}^*))\cap \mathbb{S}^{1}=\emptyset,$

then there exist $N \in \mathbb{N}$, C > 0 so that also (I_n) has a (locally) unique θ -periodic and hyperbolic solution $(\phi_t^n)_{t \in \mathbb{Z}}$; it satisfies

$$\|\phi_t^* - \phi_t^n\| \le C \sup_{s=1}^{\theta} \omega(\frac{1}{n}, \mathcal{F}_s(\phi_s^*)) \quad \text{for all } n \ge N, \ t \in \mathbb{Z}.$$

Proof.

Qualitative implicit function theorem (Weiss^a, 1974)

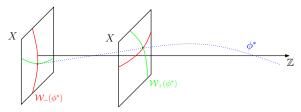
^aOn the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal. 11(3)

The unstable fiber bundle (manifold)

$$\mathcal{W}_{-}(\phi^{*}) := \left\{ \begin{aligned} & \text{there exists a solution} \\ (\tau, u) \in \mathbb{Z} \times X : & (\psi_{t})_{t \leq \tau} \text{ of } (I) \text{ with } \psi_{\tau} = u, \\ & \lim_{t \to -\infty} \|\psi_{t} - \phi_{t}^{*}\| = 0 \end{aligned} \right\}$$

is locally graph of a function w_{-} over a finite-dimensional space \mathcal{V}_{-} , i.e.

 $\mathcal{W}_{-}(\phi^{*}) = \phi^{*} + \{(\tau, w_{-}(\tau, u)) : (\tau, u) \in \mathcal{V}_{-} \text{ and } \|u\| < \rho\}$



Similarly for the stable fiber bundle (manifold) $\mathcal{W}_+(\phi^*)$

Theorem (unstable fiber bundles under Nyström discretization)

If a θ_0 -periodic solution $(\phi_t^*)_{t \in \mathbb{Z}}$ to a θ_1 -periodic IDE (I) over $\Omega \subset \mathbb{R}^{\kappa}$ satisfies

 $\sigma(D\mathcal{F}_{\theta}(\phi_{\theta}^*)\cdots D\mathcal{F}_{1}(\phi_{1}^*))\cap \mathbb{S}^{1}=\emptyset,$

then the associate unstable fiber bundle W_{-} is θ -periodic in τ . Moreover, there exists a $N \in \mathbb{N}$ so that the following holds for $n \geq N$:

• Also the solution ϕ^n to (I_n) has an unstable fiber bundle $\mathcal{W}^n_-(\phi^n)$ being θ -periodic in τ and

$$\mathcal{W}_{-}^{n}(\phi^{n}) = \phi^{n} + \{(\tau, w_{-}^{n}(\tau, u)) : (\tau, u) \in \mathcal{V}_{-}^{n} \text{ and } \|u\| < \rho\}$$

2 dim $\mathcal{V}_{-} = \dim \mathcal{V}_{-}^{n} < \infty$ for all $n \geq N$

() The functions describing \mathcal{W}_{-} and \mathcal{W}_{-}^{n} are related by

$$\sup_{\tau\in\mathbb{Z}}\|w_{-}(\tau,u)-w_{-}^{n}(\tau,u)\|\leq C\sup_{s=1}^{\theta}\omega(\tfrac{1}{n},\mathcal{F}_{t}(\phi_{s}^{*}))\quad\text{for all }n\geq N$$

Proof.

- Implicit function theorem (with metric parameter space) does not apply, since the derivative is merely onto
- Apply a (quantitative version of the) surjective implicit function theorem derived from Weiss^a, 1974

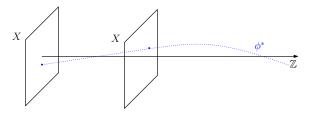
^aOn the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal. 11(3)

On $X = C(\Omega)$ consider an IDE

$$u_{t+1} = \mathcal{F}_t(u_t) \tag{1}$$

having a globally attractive solution $\phi^* = (\phi_t^*)_{t \in \mathbb{Z}}$, i.e.

 $\lim_{t\to\infty} \|\varphi(t;\tau,u_\tau)-\phi_t^*\|=0 \quad \text{for all } (\tau,u_\tau)\in\mathbb{Z}\times X$



Sufficient conditions

Hardin, Takáč, Webb¹⁹⁸⁸ (periodic), Krause²⁰⁰² (autonomous)

Theorem (global attractivity under Nyström discretization)

If a θ_0 -periodic solution $(\phi_t^*)_{t\in\mathbb{Z}}$ to a θ_1 -periodic IDE (I) over $\Omega \subset \mathbb{R}^{\kappa}$ satisfies

- ϕ^* is globally attractive
- $\sigma(D\mathcal{F}_{\theta}(\phi_{\theta}^{*})\cdots D\mathcal{F}_{1}(\phi_{1}^{*}))\subset B_{1}(0)$
- ft is globally bounded,

then there exist $N \in \mathbb{N}$, C > 0 so that also (I_n) has a θ -periodic globally asymptotically stable solution $(\phi_t^n)_{t \in \mathbb{Z}}$; it satisfies

$$\|\phi_t^* - \phi_t^n\| \le C \sup_{s=1}^{\theta} \omega(\frac{1}{n}, \mathcal{F}_s(\phi_s^*)) \quad \text{for all } n \ge N, \ t \in \mathbb{Z}.$$

Proof.

Qualitative version of Smith & Waltman^a, 1999

^a Perturbation of a globally stable steady state, Proc. Am. Math. Soc. 127(2)

The above constants C depends on

- Lipschitz constants of \mathcal{F}_t near ϕ_t^*
- measure $\lambda_{\kappa}(\Omega)$ of the domain $\Omega \subset \mathbb{R}^{\kappa}$
- dist_{S1} σ(D𝔅_θ(φ^{*}_θ) ··· D𝔅₁(φ^{*}₁))
 → does not apply to nonhyperbolic solutions or center manifolds

Example (Hammerstein IDE)

Let $r_0 := 1$, $r_1 := 5$ and $\Omega = [-1, 1]^2$. The scalar 2-periodic equation

$$u_{t+1}(x) = \frac{\pi^2}{64} \int_{\Omega} \cos\left(\frac{\pi(x_1 - y_1)}{4}\right) \cos\left(\frac{\pi(x_2 - y_2)}{4}\right) \left[(1 + r_t)u_t(y) - r_t u_t(y)^2 \right] \, \mathrm{d}y$$

has the globally asymptotically stable 2-periodic solution

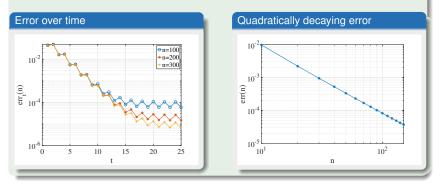
$$\phi_t^*: \Omega \to \mathbb{R}, \qquad \phi_t^*(x) := \cos\left(\frac{\pi x_1}{4}\right) \cos\left(\frac{\pi x_2}{4}\right) \begin{cases} 0.734, & t \text{ is even,} \\ 0.419, & t \text{ is even} \end{cases}$$

Example (logistic Hammerstein IDE)

For $r_0 := 1$, $r_1 := 5$ and $\Omega = [-1, 1]^2$ consider the scalar 2-periodic equation

$$u_{t+1}(x) = \frac{\pi^2}{64} \int_{\Omega} \cos\left(\frac{\pi(x_1 - y_1)}{4}\right) \cos\left(\frac{\pi(x_2 - y_2)}{4}\right) \left[(1 + r_t)u_t(y) - r_tu_t(y)^2\right] \, \mathrm{d}y.$$

Composite trapezoidal quadrature rule



Conclusions

Integrodifference equations

- IDEs are a flexible tool to model the dispersal and growth of populations with non-overlapping generations. They feature interesting and rich dynamics
- Sufficient criteria for generic bifurcations applicable to a large class of periodic IDEs, including Nyström discretizations or metapopulation models
- Persistence and convergence results in the hyperbolic case, i.e. away from the bifurcations.

1 A flexible class of integrodifference equations 2 Bifurcation from simple multipliers 3 Numerical dynamics

Nagyon Szépen Köszönöm!

References

- C. Aarset, CP, Bifurcations in periodic integrodifference equations in $C(\Omega)$ I: Analytical and numerical results, submitted
- G. Aarset, CP, Bifurcations in periodic integrodifference equations in $C(\Omega)$ II: Discrete torus bifurcation, to appear in Comm. Pure Applied Anal.
- M. Kot, W. Schaffer, Discrete-time growth-dispersal models, Math. Biosci. 80 (1986), 109–136
- CP, Numerical dynamics of integrodifference equations: Basics and discretization errors in a C⁰-setting, Appl. Math. Comput. 354 (2019), 422–443
- CP, Numerical dynamics of integrodifference equations: Global attractivity in a *C*⁰-setting, SIAM J. Numer. Anal. 57(5) (2019), 2121–2141
- .

H.L. Smith, P. Waltman, *Perturbation of a globally stable steady state*, *Proc. Am. Math. Soc.* 127(2) (1999), 447–453