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Motivation: Scalar difference equations

Step 1: Temporal evolution of the total biomass of a population

ut+1 = g(ut )

in one single habitat with nonoverlapping generations

g : R→ R depends on the growth rate and carrying capacity

logistic

g(u) := ru(1− u)

Beverton-Holt

g(u) := ru
1+u

Ricker

g(u) := uer−u
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Motivation: Spatial difference equations

Growth rate and carrying capacity are different in every point of the habitat

Step 2: Temporal evolution of a sedentary population

ut+1(x) = g(x, ut (x)) for all x ∈ Ω (S)

over the habitat Ω ⊂ Rκ, κ = 1, 2, 3

g : Ω× R→ R describes the evolution depending
on the position x ∈ Ω in the habitat

Perspectives

x ∈ Ω is a parameter, or

(S) is an equation in a function space

ut+1 = G(ut )

Ω
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Motivation: Dispersal

Populations disperse!

Step 3: Temporal evolution of a dispersive population

ut+1(x) =

∫
Ω

k(x, y)g(y , ut (y)) dy for all x ∈ Ω (H)

in a habitat Ω ⊆ Rκ, κ = 1, 2, 3

Interpretation of (H)

dispersal kernel k(x, y) ≥ 0 indicate probability to move from x to y ∈ Ω

(Hammerstein) integrodifference equation
State space: ut ∈ C(Ω) or Lp(Ω), 1 ≤ p ≤ ∞
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Motivation: Types of kernels

Integrodifference equations are flexible

convolution type

k(x, y) = k0(|x − y |)

flexibility via various kernels

Gauß

k0(x) := 1√
2πa2 exp

(
− 1

2a2 x2
)

Laplace

k0(x) := 1
2a exp

(
− 1

a |x|
) top hat (finite radius dispersal)

k0(x) := 1
4aχ[−a,a](x)
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Motivation

Gauß kernel

Beverton-Holt equation

ut+1 =
∫

Ω
k(·, y) rut (y)

1+ut (y)
dy

Gauß kernel a = 1

Total population

Global convergence
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Motivation

Gauß kernel a = 1

Beverton-Holt equation

ut+1 =
∫

Ω
k(·, y) ra(y)ut (y)

1+ut (y)
dy

Gauß kernel a = 1.4

Total population

Global convergence
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Motivation

Gauß kernel a = 1

Ricker equation

ut+1 =
∫

Ω
k(·, y)ut (y)er(1−ut (y)) dy

Gauß kernel

Total population

Period doubling cascade
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Motivation

Gauß kernel a = 1

Predator-prey model

Gauß kernel

Total population

Invariant circle
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Motivation: Punchline

Integrodifference equations

ut+1 =

∫
Ω

kt (·, y)gt (ut (y)) dy (I)

Interesting infinite-dimensional discrete dynamical systems:

M. Kot, W. Schaffera, 1986

D. Hardin, P. Takáč, G. Webbb, 1988

S. Day, O. Junge, K. Mischaikowc, 2004

aDiscrete-time growth dispersal models, Math. Biosci. 80
bA comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl.

Math. 48(6)
cA rigerous numerical method for the global dynamics of infinite-dimensional discrete dynamical systems,

SIAM J. Appl. Dyn. Syst. 3(2)
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1 A flexible class of integrodifference equations

Goals

Introduce a sufficiently rich class of
integrodifference equations

1 equations of Urysohn- and
Hammerstein-type

2 growth-dispersal and
dispersal-growth equations

3 relevant special cases
(modelling, discretization)
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1 A flexible class of integrodifference equations

A general IDE model

An integrodifference equation (IDE for short) is a difference equation

ut+1 = Ft (ut ) (I)

whose right-hand side Ft : X → X involves an integral operator on an ambient
function space X .
Given a measure space (Ω,A, µ) with µ(Ω) <∞ consider

Ft (u)(x) := Gt

(
x, u(x),

∫
Ω

ft (x, y , u(y)) dµ(y)

)
for all t ∈ Z, x ∈ Ω (∗)
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1 A flexible class of integrodifference equations

State space X = C(Ω)

General form (∗) (nonlinear Urysohn
equations), Ω compact metric space

1 Well-posed under continuity and
Carathéodory conditions on ft

2 Smooth under corresponding
conditions on D(2,3)Gt ,D3ft

3 Complete continuity

ut+1(x) = Gt

(
x,
∫

Ω

ft (x, y, ut (y)) dµ(y)

)
or set contraction

State space X = Lp(Ω)

Hammerstein equations

ut+1 =

∫
Ω

kt (·, y)gt (y , ut (y)) dµ(y)

1 Well-posed under growth conditions
on gt and Hille-Tamarkin conditions
on kt

2 Smooth under growth conditions on
D2gt

3 Complete continuity
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1 A flexible class of integrodifference equations

Ft (u)(x) = Gt

(
x, u(x),

∫
Ω

ft (x, y , u(y)) dµ(y)

)

Example (Urysohn and Hammerstein equations)

Suppose Ω ⊂ Rκ is compact, µ = λκ (Lebesgue measure)

Urysohn equations: ut+1 =
∫

Ω
ft (·, y , ut (y)) dy

Hammerstein equations: ut+1 =
∫

Ω
kt (·, y)gt (y , ut (y)) dy

dispersal-growth equations: ut+1 = gt
(
·,
∫

Ω
kt (·, y)ut (y) dy

)
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1 A flexible class of integrodifference equations

Ft (u)(x) =

∫
Ω

kt (x, y)gt (y , u(y)) dµ(y)

Example (metapopulation models)

With Ω = {1, . . . , n} and the counting measure µ consider

ut+1(i) =
n∑

j=1

kt (i, j)gt (j, ut (j)) for all i ∈ {1, . . . , n} ,

where kt (i, j) yields the probability to move from patch i to j

1

2

3

k(1, 2) k(2, 3)

k(1, 3)
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1 A flexible class of integrodifference equations

Ft (u)(x) = Gt

(
x, u(x),

∫
Ω

ft (x, y , u(y)) dµ(y)

)

Example (Nyström discretizations)

On a grid Ω = G the measure µ(Ω′) :=
∑
η∈Ω′ wη yields the recursions

ut+1(ξ) = Gt

ξ, u(ξ),
∑
η∈G

ωη ft (·, η, ut (η))

 for all ξ ∈ G.

They realize quadrature/cubature rules with weights ωη ≥ 0 and nodes η ∈ G

G
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2 Bifurcation from simple multipliers

Goals

Periodic solutions of periodic IDEs
bifurcate into periodic solutions:

1 lifted map vs. period map (cyclic
maps instead of compositions)

2 crossing curve bifurcations

Christian Pötzsche | Bifurcation and discretization in integrodifference equations 18



1 A flexible class of integrodifference equations 2 Bifurcation from simple multipliers 3 Numerical dynamics

2 Bifurcation from simple multipliers

A parameter-dependent integrodifference equation

ut+1 = Ft (ut , α) (Iα)

with right-hand side Ft : X × A→ X on an ambient function space X and a real
parameter space A ⊆ R is assumed to be θ0-periodic, i.e.

Ft = Ft+θ0 for all t ∈ Z.

Theorem (characterization of periodic solutions)

If θ is a multiple of θ0, then the following are equivalent:

1 φ = (φt )t∈Z is a θ-periodic solution of (Iα)

2 φ0 ∈ X is a fixed-point of the period map Πθ = Fθ−1 ◦ . . . ◦ F0

3 φ̂ = (φ1, . . . , φθ) is a zero of the lifted map

G(φ̂, α) :=


φ1 − F0(φθ, α)
φ2 − F1(φ1, α)

...
φθ − Fθ−1(φθ−1, α)

 ∈ Xθ
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2 Bifurcation from simple multipliers

Period map (for Urysohn equations):

Πθ(u) = Fθ ◦ . . . ◦ F1(u)

=

∫
Ω

fθ

(
·, yθ, · · ·

∫
Ω

f2

(
y3, y2,

∫
Ω

f1(y2, y1, u(y1)) dy1

)
dy2 · · ·

)
dyθ

Period map vs. lifted map

Applied to IDEs (Iα) the lifted map G

1 avoids to evaluate multiple integrals (and an application of cubature rules over
high-dimensional domains)

2 yields cyclic as opposed to product eigenvalue problems, which have better
numerical stability properties (Kressnera, 2006)

aThe periodic QR algorithm is a disguised QR algorithm, Linear Algebra and its Applications 417(2–3)
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2 Bifurcation from simple multipliers

Structure of the (point) spectrum

If θ ∈ N is a multiple of θ0, then

σp(D1G(φ̂∗, α∗)) =
{
λ− 1 ∈ C : λθ ∈ σp(Ξθ(α∗))

}
with Ξθ(α∗) := D1Fθ−1(φ∗θ−1, α

∗) · · ·D1F0(φ∗0 , α
∗)

Re

Im

0 1

0

1

Re

Im

0

0

1

−1

θ = 5
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2 Bifurcation from simple multipliers

Duality pairings (Kressa, 2014)

aLinear Integral Equations, Springer

Two Banach spaces X and Y together with a (nondegenerate) bilinear form
〈〈·, ·〉〉 : Y × X → R are called a duality pairing 〈〈Y ,X〉〉. Given T ∈ L(X), the dual
operator T ′ ∈ L(Y ) is determined via

〈〈y , Tx〉〉 = 〈〈T ′y , x〉〉 for all x ∈ X , y ∈ Y .

Example

1 〈〈X ′,X〉〉 with the duality pairing 〈〈x ′, x〉〉 = x ′(x)

2 〈〈Lp(Ω), Lp′(Ω)〉〉 with 〈〈u, v〉〉 :=
∫

Ω
u(y)v(y) dµ(y) and 1

p + 1
p′ = 1, p > 1

3 〈〈C(Ω),C(Ω)〉〉 with the bilinear form 〈〈u, v〉〉 :=
∫

Ω
u(y)v(y) dµ(y)
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2 Bifurcation from simple multipliers

ut+1 = Ft (ut , α
∗), Ft+θ0 = Ft (Iα∗ )

Assumptions

1 φ∗ is a θ1-periodic solution of (Iα∗ )

2 1 is a simple Floquet multiplier: There exists nonzero ξ∗0 ∈ C(Ω) with
Ξθ(α∗)ξ∗0 = ξ∗0 obtained from the cyclic eigenvalue problem

D1F0(φ∗0 , α
∗)ξ∗0

D1F1(φ∗1 , α
∗)ξ∗1

...
D1Fθ−1(φ∗θ−1, α

∗)ξ∗θ−1

 = 1


ξ∗1
ξ∗2
...
ξ∗0


and choose η∗0 ∈ C(Ω) such that

N(Ξθ(α∗)′ − IC(Ω)) = R(Ξθ(α∗)− IC(Ω))
⊥ = span {η∗0 }

Bilinear form 〈〈φ̂, ψ̂〉〉θ :=
∑θ−1

t=0

∫
Ω
〈φt (x), ψt (x)〉dµ(x)
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2 Bifurcation from simple multipliers

Theorem (crossing curve bifurcation)

Let θ = lcm {θ0, θ1}. If D2Ft (φ
∗
t , α
∗) = 0, the transversality condition

g11 :=
θ−1∑
t=0

∫
Ω

〈η∗t+1(x), [D1D2Ft (φ
∗
t , α
∗)ξ∗t ](x)〉 dµ(x) 6= 0

and
θ−1∑
t=0

∫
Ω

〈η∗t+1(x), [D2
2Ft (φ

∗
t , α
∗)](x)〉dµ(x) = 0

hold, then the θ-periodic solution φ∗ of an IDE (Iα∗ ) bifurcates at α∗ as follows:
(φ∗, α∗) is the intersection of two branches Γ1, Γ2 of θ-periodic solutions and every
θ-periodic solution of (Iα) in Bε(φ∗) is captured by Γ1 or Γ2.

Period doubling: Apply theorem to the equation with period 2θ

Proof.

Apply Morse lemma (instead of implicit function theorem) to the reduced equation
after the Lyapunov-Schmidt reduction.
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2 Bifurcation from simple multipliers

Corollary (transcritical bifurcation)

Under the additional assumption

g20 :=
θ−1∑
t=0

∫
Ω

〈η∗t+1(x), [D2
1Ft (φ

∗
t , α
∗)(ξ∗t )2](x)〉 dµ(x) 6= 0

φ∗ φ∗

g11 > 0

g11 < 0

A A

α∗ α∗

`θ(Cd) `θ(Cd)

Γ1 Γ1

Γ2 Γ2

φ∗ φ∗

g11 < 0

A A

α∗ α∗

`θ(Cd) `θ(Cd)

Γ1 Γ1

Γ2

g20 < 0

g20 > 0g20 > 0

g11 > 0

g20 < 0
Γ2
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2 Bifurcation from simple multipliers

Corollary (pitchfork bifurcation)

Suppose ψ ∈ `θ(Cd ) is the uniquely determined solution of the cyclic Fredholm
equations of the second kind

ψ0 = D1Fθ−1(φ∗θ−1, α
∗)ψθ−1 + D2

1Fθ−1(φ∗θ−1, α
∗)(ξ∗θ−1)2,

ψ1 = D1F0(φ∗0 , α
∗)ψ0 + D2

1F0(φ∗0 , α
∗)(ξ∗0 )2,

...

ψθ−1 = D1Fθ−2(φ∗θ−2, α
∗)ψθ−2 + D2

1Fθ−2(φ∗θ−2, α
∗)(ξ∗θ−2)2,

0 =
∑θ−1

t=0

∫
Ω
〈η∗t+1(x), ψt (x)〉dµ(x).

(1)

Under the additional assumptions g20 = 0,

ḡ :=
θ−1∑
t=0

∫
Ω

〈η∗t+1(x), [D3
1Ft (φ

∗
t , α
∗)(ξ∗t )3](x)〉dµ(x)

+ 3
θ−1∑
t=0

∫
Ω

〈η∗t+1(x), [D2
1Ft (φ

∗
t , α
∗)ξ∗t ψt ](x)〉dµ(x) 6= 0

Christian Pötzsche | Bifurcation and discretization in integrodifference equations 26



1 A flexible class of integrodifference equations 2 Bifurcation from simple multipliers 3 Numerical dynamics

2 Bifurcation from simple multipliers

Corollary (pitchfork bifurcation)

φ∗ φ∗

φ∗ φ∗A A

A A

α∗ α∗

α∗ α∗

`θ(Cd) `θ(Cd)

`θ(Cd) `θ(Cd)

Γ1 Γ1

Γ1 Γ1

Γ2 Γ2

Γ2
Γ2

g11 > 0

g11 < 0

g11 < 0

g11 > 0

ḡ > 0

ḡ < 0 ḡ < 0

ḡ > 0

In both cases, an exchange of stability principle holds.
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2 Bifurcation from simple multipliers

Numerical aspects

Numerical bifurcation theory
Solution branches (pseudo-arclength continuation with Newton method as corrector)
eigenpairs (Matlab solver for linear and eigenvalue equations)

Integral operators and inner products
... Part 3
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2 Bifurcation from simple multipliers

Example (Beverton-Holt equation)

ut+1 = αt

∫
Ω

k(·, y)
αut (y)

1 + ut (y)
dy

with θ-periodic sequence (αt )t∈Z in (0,∞) and bifurcation parameter α > 0

(1) Primary transcritical bifurcation into a branch of globally attractive (Hardin,
Takáč, Webba, 1988) (w.r.t. C+(Ω)) θ-periodic solutions

(2) Countable number of bifurcations along 0, which are alternately of transcritical
and supercritical pitchfork type

(3) Transcritical bifurcations come from a supercritical fold

aA comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl.
Math. 48(6)
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2 Bifurcation from simple multipliers

Example (Beverton-Holt equation)

transcritical

pitchfork

fold

Aφ00

φ01

φ02

φ03

φ04
φ05

50
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2 Bifurcation from simple multipliers

Example (Ricker equation)

ut+1 = αt

∫
Ω

k(·, y)αut (y)e−ut (y) dy

with θ-periodic sequence (αt )t∈Z in (0,∞) and bifurcation parameter α > 0

(1) Primary transcritical bifurcation into a branch of θ-periodic solutions

(2) Countable number of bifurcations along 0, which are alternately of transcritical
and supercritical pitchfork type

(3) Transcritical bifurcations come from a supercritical fold

(4) Period doublings at all branches; period doubling cascade along the primary
branch φ0

1
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2 Bifurcation from simple multipliers

Example (Ricker equation)

period doubling

transcritical

pitchfork

fold

109614619

Aφ00

φ01

φ02

φ03

φ04
φ05
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3 Numerical dynamics

Goals

Behavior of hyperbolic solutions under
full discretization:

1 Nyström discretizations of IDEs

2 periodic solutions and their
saddle-point structure

3 global asymptotic stability
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3 Numerical dynamics

Simulations of (I) require spatial discretizations:

ut+1 = F
n
t (ut ) (In)

Nyström methods

Replace the integral in (I) by a convergent quadrature/cubature rule

F
n
t (u)(ηi ) := Gt

(
ηi ,

qn∑
j=1

wj ft (ηi , ηj , u(ηj ))

)
for all 1 ≤ i ≤ qn (2)

with qn ∈ N, the nodes ηj ∈ Ω and weights wj ≥ 0

Newton-Cotes (with positive weights), Gauß, etc.
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3 Numerical dynamics

What is numerical dynamics?

1 Persistence: Is a certain dynamical property of

ut+1 = Ft (ut ) (I)

preserved under discretization (In) (periodic solution, bifurcation, attractor, etc.)?

2 Convergence: Does convergence of this particular property as n→∞ hold
(preserving the convergence rate)?

3 “Shadowing”: Can one conclude from properties of the discretization (In) to the
original equation (I)?

Kloeden & Lorenz1986, Beyn1986, Garay1990s, . . . ,
Stuart & Humphries1998, . . .
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3 Numerical dynamics: Intrinsic problem

Given the difference equations

ut+1 = Ft (ut ), ϕ(t; τ, ·) = Ft−1 ◦ . . . ◦ Fτ ,
ut+1 = F

n
t (ut ), ϕn(t; τ, ·) = F

n
t−1 ◦ . . . ◦ Fn

τ

define L := lim supt→∞ LipFt

Global discretization error

‖ϕ(t; τ, u)− ϕn(t; τ, u)‖ ≤ C(u)
Lt−τ − 1

L− 1
‖Fn

t (u)− Ft (u)‖ for all τ ≤ t

and u ∈ X satisfies

limn→∞ ‖ϕ(t; τ, u)− ϕn(t; τ, u)‖ = 0 for every fixed t ≥ τ
but the error bound explodes for t →∞

Classical error estimate are useless to infer asymptotic properties!
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3 Numerical dynamics: Problem with Nyström methods

Nyström methods

+ Our abstract bifurcation results apply to Nyström discretizations (choose suitable
measure in the integrals) (persistence)

− For convergent quadrature/cubature rules, linear Fredholm integral operators

K ∈ L(C(Ω)), Kv :=

∫
Ω

k(·, y)v(y) dy

feature strong convergence

lim
n→∞

‖Kv −K
nv‖ = 0 for all v ∈ C(Ω),

but not uniform convergence. It even holds

‖K‖ ≤ ‖K−K
n‖ for all n ∈ N.
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3 Numerical dynamics

On the state space X = C(Ω) consider an IDE (I) along with a Nyström discretization

ut+1 = F
n
t (ut ) (In)

being pointwise convergent, i.e.

‖Ft (u)− F
n
t (u)‖ ≤ ω( 1

n ,Ft (u)) for all n ∈ N

and a function ω satisfying limρ↘0 ω(ρ, u) = 0.

Suppose that (I) has a θ1-periodic solution φ∗ = (φ∗t )t∈Z and set θ = lcm {θ0, θ1}.

X X
φ∗

Z
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3 Numerical dynamics

Theorem (hyperbolic periodic solutions under Nyström discretization)

If a θ0-periodic solution (φ∗t )t∈Z to a θ1-periodic IDE (I) over Ω ⊂ Rκ satisfies

σ(DFθ(φ∗θ) · · ·DF1(φ∗1 )) ∩ S1 = ∅,

then there exist N ∈ N, C > 0 so that also (In) has a (locally) unique θ-periodic and
hyperbolic solution (φn

t )t∈Z; it satisfies

‖φ∗t − φn
t ‖ ≤ C

θ
sup
s=1

ω( 1
n ,Fs(φ∗s )) for all n ≥ N, t ∈ Z.

Proof.

Qualitative implicit function theorem (Weissa, 1974)

aOn the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal. 11(3)
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3 Numerical dynamics

The unstable fiber bundle (manifold)

W−(φ∗) :=

(τ, u) ∈ Z× X :
there exists a solution
(ψt )t≤τ of (I) with ψτ = u,
limt→−∞ ‖ψt − φ∗t ‖ = 0


is locally graph of a function w− over a finite-dimensional space V−, i.e.

W−(φ∗) = φ∗ + {(τ,w−(τ, u)) : (τ, u) ∈ V− and ‖u‖ < ρ}

X X
φ∗

Z

W−(φ∗)
W+(φ

∗)

Similarly for the stable fiber bundle (manifold)W+(φ∗)
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3 Numerical dynamics

Theorem (unstable fiber bundles under Nyström discretization)

If a θ0-periodic solution (φ∗t )t∈Z to a θ1-periodic IDE (I) over Ω ⊂ Rκ satisfies

σ(DFθ(φ∗θ) · · ·DF1(φ∗1 )) ∩ S1 = ∅,

then the associate unstable fiber bundleW− is θ-periodic in τ . Moreover, there exists
a N ∈ N so that the following holds for n ≥ N:

1 Also the solution φn to (In) has an unstable fiber bundleWn
−(φn) being

θ-periodic in τ and

Wn
−(φn) = φn + {(τ,wn

−(τ, u)) : (τ, u) ∈ Vn
− and ‖u‖ < ρ}

2 dimV− = dimVn
− <∞ for all n ≥ N

3 The functions describingW− andWn
− are related by

sup
τ∈Z
‖w−(τ, u)− wn

−(τ, u)‖ ≤ C
θ

sup
s=1

ω( 1
n ,Ft (φ

∗
s )) for all n ≥ N
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3 Numerical dynamics

Proof.

Implicit function theorem (with metric parameter space) does not apply, since the
derivative is merely onto

Apply a (quantitative version of the) surjective implicit function theorem derived
from Weissa, 1974

aOn the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal. 11(3)
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3 Numerical dynamics

On X = C(Ω) consider an IDE

ut+1 = Ft (ut ) (I)

having a globally attractive solution φ∗ = (φ∗t )t∈Z, i.e.

lim
t→∞
‖ϕ(t; τ, uτ )− φ∗t ‖ = 0 for all (τ, uτ ) ∈ Z× X

X X
φ∗

Z

Sufficient conditions

Hardin, Takáč, Webb1988 (periodic), Krause2002 (autonomous)
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3 Numerical dynamics

Theorem (global attractivity under Nyström discretization)

If a θ0-periodic solution (φ∗t )t∈Z to a θ1-periodic IDE (I) over Ω ⊂ Rκ satisfies

φ∗ is globally attractive

σ(DFθ(φ∗θ) · · ·DF1(φ∗1 )) ⊂ B1(0)

ft is globally bounded,

then there exist N ∈ N, C > 0 so that also (In) has a θ-periodic globally
asymptotically stable solution (φn

t )t∈Z; it satisfies

‖φ∗t − φn
t ‖ ≤ C

θ
sup
s=1

ω( 1
n ,Fs(φ∗s )) for all n ≥ N, t ∈ Z.

Proof.

Qualitative version of Smith & Waltmana, 1999
aPerturbation of a globally stable steady state, Proc. Am. Math. Soc. 127(2)
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The above constants C depends on

Lipschitz constants of Ft near φ∗t
measure λκ(Ω) of the domain Ω ⊂ Rκ

distS1 σ(DFθ(φ∗θ) · · ·DF1(φ∗1 ))
 does not apply to nonhyperbolic solutions or center manifolds
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Example (Hammerstein IDE)

Let r0 := 1, r1 := 5 and Ω = [−1, 1]2. The scalar 2-periodic equation

ut+1(x) =
π2

64

∫
Ω

cos
(
π(x1−y1)

4

)
cos
(
π(x2−y2)

4

) [
(1 + rt )ut (y)− rt ut (y)2] dy

has the globally asymptotically stable 2-periodic solution

φ∗t : Ω→ R, φ∗t (x) := cos
(
πx1

4

)
cos
(
πx2

4

){0.734, t is even,

0.419, t is even
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Example (logistic Hammerstein IDE)

For r0 := 1, r1 := 5 and Ω = [−1, 1]2 consider the scalar 2-periodic equation

ut+1(x) =
π2

64

∫
Ω

cos
(
π(x1−y1)

4

)
cos
(
π(x2−y2)

4

) [
(1 + rt )ut (y)− rt ut (y)2] dy .

Composite trapezoidal quadrature rule

Error over time
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Conclusions

Integrodifference equations

IDEs are a flexible tool to model the dispersal and growth of populations with
non-overlapping generations. They feature interesting and rich dynamics

Sufficient criteria for generic bifurcations applicable to a large class of periodic
IDEs, including Nyström discretizations or metapopulation models

Persistence and convergence results in the hyperbolic case, i.e. away from the
bifurcations.

Christian Pötzsche | Bifurcation and discretization in integrodifference equations 48



1 A flexible class of integrodifference equations 2 Bifurcation from simple multipliers 3 Numerical dynamics

Nagyon Szépen Köszönöm!
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