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The Two Dimensional Model Problem of Air Pollution

There has been growing interest of developing and using highly accurate numerical
schemes for solving partial differential equations, leading to renewed interest in
high-order compact difference schemes.
Compact schemes, proposed by Kreiss and Oliger use similar stencil, but requires a
scalar tridiagonal or pentadiagonal matrix inversion. In this paper we use another idea.
We employ high-order compact schemes, namely, we deal with the auxiliary relations
yielded from the original differential equations by its differentiation in order to
decrease the truncation error.
The simulation of various processes in chemistry, physics and engineering uses models
of systems of coupled parabolic problems. In this work we construct compact
high-order finite difference schemes for semilinear parabolic systems and propose fast
algorithms for solution of the nonlinear algebraic equations. Problems of air pollution
transport with coupling in the nonlinear reactions terms are of our main consideration,
namely,

∂ul

∂t
− K4ul + bl∇ul = Rl (x , y , u1, . . . , uL), (x , y , t) ∈ Ω× (0,T ], (1)

u = 0, (x , y , t) ∈ ∂Ω× (0,T ], (2)

u = u0(x , y), (x , y) ∈ Ω, (3)

where u = (u1, u2, ..., uL), ul = ul (x , y , t), l = 1, ..., L are the concentrations of L
chemical species (pollutants) and K > 0 is the diffusion coefficient and Ω ∈ R2 is a
bounded domain. The assumption regarding constant K := Kx = Ky is not a
restriction for developing our numerical approach. This just corresponds to the
physical model described in several papers.
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The main goal of the paper is the application and numerical illustration of
above-mentioned difference approximations to the following real-life parabolic
transport system. The advection part in (1) may be presented in the following form:

bl.∇ul = µ(y − yc )
∂ul

∂x
+ µ(xc − x)

∂ul

∂y
, (4)

where x ∈ (0,X ), y ∈ (0,Y ), xc = X/2, yc = Y /2 and µ = 2π/T . The nonlinear
chemical part of the model is:

R1(u1, ..., u10) = k5u2 − (k6u5 + k4u7 + k3u8)u1,

R2(u1, ..., u10) = (k6u5 + k4u7 + k3u8)u1 − (k5 + k9u9)u2,

R3(u1, ..., u10) = −k1u3u9,

R4(u1, ..., u10) = 2k1u3u9 + k3u1u8 − k2u4,

R5(u1, ..., u10) = k2u5 (5)

R6(u1, ..., u10) = k9u2u9,

R7(u1, ..., u10) = 2k2u4 + k3u1u8 + k10u9 − k4u1u7,

R8(u1, ..., u10) = 4k1u3u9 − k3u1u8,

R9(u1, ..., u10) = k4u1u7 + 2k8u10 − (k1u3 − k9u2 + k10)u9,

R10(u1, ..., u10) = k7u5 − k8u10.
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This is a simplified chemical scheme, that will be used in most of the numerical experiments. It is rather simple (only 10 species are
involved in this scheme), but all types of chemical reactions that are difficult for the numerical methods (non-linear chemical reactions and
photochemical reactions) are represented in it. Therefore numerical methods that perform well in the treatment of this scheme should be
expected to perform also well in the treatment of more complicated chemical schemes. Some of the coefficients belong to photochemical
reactions (the ones with term hν), which means that these reactions depend on the light, more precisely on the position of the Sun
relative to the horizon: in k2, k5 and k7 the angle θ denotes the solar zenith angle, which is the angle of the Sun measured from vertical.

Table: The chemical reactions of the model

1 HC + OH → 4RO2 + 2ALD 6 NO + O3 → NO2 + O2

2 ALD + hν → 2HO2 + CO 7 O3 + hν → O2 + O(1D)

3 RO2 + NO → NO2 + ALD + HO2 8 O(1D) + H2O → 2OH

4 NO + HO2 → NO2 + OH 9 NO2 + OH → HNO3

5 NO2 + hν → NO + O3 10 CO + OH → CO2 + HO2

Table: The chemical species in the model

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

NO NO2 HC ALD O3 HNO3 HO2 RO2 OH O(1D)

Table: The rate coefficients of the chemical reactions

k1 6.0e − 12 k6 1.6e − 14

k2 7.8e − 05. exp(−0.87/ cos θ) k7 1.6e − 04. exp(−1.9/ cos θ)

k3 8.0e − 12 k8 2.3e − 10

k4 8.0e − 12 k9 1.0e − 11

k5 1.0e − 02. exp(−0.39/ cos θ) k10 2.9e − 13
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From both the practical and mathematical point of view, one is naturally interested in the
existence and qualitative of the solutions to the problem (1)-(5). The well-posedness of initial
boundary value problems for a system more general than (1) is obtained in [?]. Throughout of the
rest of the paper we assume existence and uniqueness of classical solution of problem (1)-(5)

which means a function that belongs to C([0,T ]× Ω)
⋂

C 1((0,T ); C(Ω))
⋂

(C(0,T ); C 2(Ω))
and satisfies the equations (1)-(3) pointwise. Moreover, at the finite difference approximations we
assume the existence of the fourth in time and the sixth in space derivatives.
Since we are interested in systems describing chemical concentrations, the nonnegativity of the
solutions has to be preserved. It is proved, that if:

1.
u0(x, y) ≥ 0; (6)

2.
Rl (x, y , u), l = 1, ..., L (7)

is Lipshitz continuous with respect to the concentrations u1, u2, . . . , uL and it satisfies the
inequality

Rl (x, y , u) ≥ 0, (8)

whenever ul = 0, and

u ∈ RL
+ ≡ {uk ≥ 0, k = 1, ..., L}, (9)

then
u ≥ 0 (10)

for all (x, y) ∈ Ω and t ∈ [0,T ].
It is easy to check that the chemical reactions Rl (u1, u2, . . . , u10), l = 1, ..., 10 given by (5)
satisfy the point 2. and the solution of problem (1)-(3) with (5) is nonnegative in time t > 0 if the
initial data

u0(x, y) ≥ 0. (11)
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Central Difference Schemes and Richardson Extrapolation

In this section, for clarity exposition we describe the construction of the second order
CDS for the weakly coupled system of two equations

∂u

∂t
− a(x , y)

∂2u

∂x2
− b(x , y)

∂2u

∂y2
+ c(x , y)

∂u

∂x
+ d(x , y)

∂u

∂y
= r(x , y , t, u, v), (12a)

∂v

∂t
− e(x , y)

∂2v

∂x2
− f (x , y)

∂2v

∂y2
+ g(x , y)

∂v

∂x
+ h(x , y)

∂v

∂y
= s(x , y , t, u, v), (12b)

defined on the cylindric domain QT = Ω× (0,T ], where Ω ⊂ R2 is a bounded domain
with Lipshitz boundary. The nonlinear functions r and s are sufficiently smooth of
their arguments. The coefficients a(x , y), b(x , y), e(x , y) and f (x , y) are positive in
Ω. We consider Dirichlet boundary conditions

u(x , y , t) = φ̄(x , y , t), v(x , y , t) = ¯̄φ(x , y , t), (x , y , t) ∈ ∂Ω× (0,T ] (13)

and initial conditions

u(x , y , 0) = ψ̄(x , y), v(x , y , 0) = ¯̄ψ(x , y), (x , y) ∈ Ω, (14)

where φ̄, ¯̄φ, ψ̄ and ¯̄ψ are given and smooth data and compatibility of the boundary
and initial data is ensured.
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Let for simplicity the domain Ω being a rectangle Ω = [0,X ]× [0,Y ]. We introduce
uniform meshes in the following way:

ωh,x = {xi = ihx , i = 0, 1, . . . ,Mx , hx = X/Mx} (15)

,
ωh,y = {yj = jhy , j = 0, 1, . . . ,My , hy = Y /My} (16)

and then
Ωh = ωh,x × ωh,y , (17)

Ωh = Ωh ∪ ∂Ωh, (18)

where Ωh consists of all interior mesh points and ∂Ωh - of all boundary mesh points.
We will use the index pair (i , j) to represent the mesh point (xi , yj ) and define

ui,j = u(xi , yj , t), vi,j = v(xi , yj , t), ri,j = r(xi , yj , t, ui,j , vi,j ), ect. (19)

For w = u, v we introduce the central difference operators

δxwi,j = (wi+1,j − wi−1,j )/(2hx ), δ2
xwi,j = (wi+1,j − 2wi,j + wi−1,j )/h

2
x ,

δywi,j = (wi+1,j − wi−1,j )/(2hy ), δ2
ywi,j = (wi,j+1 − 2wi,j + wi,j−1)/h2

y .
(20)

Application of the difference operators (20) to the system (12) for (i , j) ∈ Ωh leads to

dui,j

dt
− ai,jδ

2
xui,j − bi,jδ

2
yui,j + ci,jδxui,j + di,jδyui,j + χi,j,1 = ri,j , (21)

dvi,j

dt
− ei,jδ

2
xvi,j − fi,jδ

2
yvi,j + gi,jδxvi,j + hi,jδyvi,j + χi,j,2 = si,j , (22)

where the truncation errors χi,j,1 and χi,j,2 are

χi,j,1 =
h2
x

12

(
2c ∂

3u
∂x3 − a ∂

4u
∂x4

)
i,j

+
h2
y

12

(
2d ∂

3u
∂y3 − b ∂

4u
∂y4

)
i,j

+O(h4
x + h4

y ),

χi,j,2 =
h2
x

12

(
2g ∂

3v
∂x3 − e ∂

4v
∂x4

)
i,j

+
h2
y

12

(
2h ∂

3v
∂y3 − f ∂

4v
∂y4

)
i,j

+O(h4
x + h4

y ).
(23)
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After dropping the truncation error terms the semi-discrete second-order central
difference approximation of (12) is obtained:

duhi,j
dt
− ai,jδ

2
xu

h
i,j − bi,jδ

2
yu

h
i,j + ci,jδxu

h
i,j + di,jδyu

h
i,j = rhi,j ,

dvhi,j
dt
− ei,jδ

2
xv

h
i,j − fi,jδ

2
yv

h
i,j + gi,jδxv

h
i,j + hi,jδyv

h
i,j = shi,j ,

(24)

where for (i , j) ∈ Ωh

uhi,j ≈ u(xi , yj , t), vh
i,j ≈ v(xi , yj , t), (25)

rhi,j ≈ r(xi , yj , t, u
h
i,j , v

h
i,j ), shi,j ≈ s(xi , yj , t, u

h
i,j , v

h
i,j ). (26)

Now we introduce the matrix representation for the system (24). We order the mesh
points lexicographically from left to right in x direction and from the bottom to the
top in y direction. Excluding the boundary mesh points (i , j) ∈ ∂Ωh, for
j = 1, 2, ...,My − 1 we define the following (Mx − 1) dimensional vectors:

Uh
j =

(
uh1,j , u

h
2,j , ..., u

h
Mx−1,j

)
, V h

j =
(
vh

1,j , v
h
2,j , ..., v

h
Mx−1,j

)
, (27)

Rj (U
h
j ,V

h
j ) =

(
R1,j ,R2,j , ...,RMx−1,j

)
, Sj (U

h
j ,V

h
j ) =

(
S1,j , S2,j , ..., SMx−1,j

)
(28)

and then

U =
(
Uh

1 ,U
h
2 , ...,U

h
My−1

)T
, V =

(
V h

1 ,V
h
2 , ...,V

h
My−1

)T
, (29)

R =
(
R1,R2, ...,RMy−1

)T
, S =

(
S1, S2, ..., SMy−1

)T
. (30)
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We then rewrite the system (24) as a system of ODEs in matrix (vector) form

d

dt
U + P̄U = R + Φ̄, t ∈ (0,T ], (31)

d

dt
V + ¯̄PV = S + ¯̄Φ, t ∈ (0,T ] (32)

with initial conditions U(0) and V (0) obtained from ψ̄ and ¯̄ψ for (i , j) ∈ Ωh after the
reordering. In (31) the matrix P̄ is (My − 1)× (My − 1) block-tridiagonal matrix
P̄ = tridiag(P̄k,k−1, P̄k,k , P̄k,k+1) and P̄k,l , l = k − 1, k, k + 1 are tridiagonal matrices
for l = k and diagonal for l = k ± 1 of order (Mx − 1)× (Mx − 1). Let for two natural
numbers m and M, m < M denote m : M = m,m + 1, ...,M and assume that pk,m:M

is a vector with entrances pk,m:M = (pk,m, pk,m+1, ..., pk,M) . Then from (24) and
(20) the entrances of P̄k,l are

P̄k,l = tridiag(p
(−1,ε)
k,2:Mx−1, p

(0,ε)
k,2:Mx

, p
(1,ε)
k,1:Mx−2) l = k + ε, ε = 0,±1 , (33)

where

p
(±1,0)
i,j = ±

c(i , j)

2hx
−

a(i , j)

h2
x

,

p
(0,±1)
i,j = ±

d(i , j)

2hy
−

b(i , j)

h2
y

, (34)

p
(0,0)
i,j = 2

a(i , j)

h2
x

+ 2
b(i , j)

h2
y

.

In fact, P̄ is a matrix with global dimension (Mx − 1)(My − 1)× (Mx − 1)(My − 1).
Replacing a↔ e, b ↔ f , c ↔ g and d ↔ h in a similar way we obtain the entrances

of the matrix ¯̄P. The vectors Φ̄ and ¯̄Φ in (31)-(32) are associated with the boundary
functions and also depend on time t.
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For discretization in time the so called θ-weight method is used. Let
ωτ = {tn = nτ, n = 0, 1, . . . ,N, τ = T/N} be uniform mesh in time with time step τ . Then
the weight θ-discretization of (31), (32) may be written in the following way:,

Un+1 − Un

τ
+ P̄Un,θ = Rn,θ + Φ̄n,θ

, t ∈ (0,T ), (35)

V n+1 − V n

τ
+ ¯̄PV n,θ = Sn,θ + ¯̄Φn,θ

, t ∈ (0,T ),

where Z n,θ = θZ n+1 + (1− θ)Z n for Z = U,V ,R, S, Φ̄, ¯̄Φ, Z n ≈ Z(tn) and 0 ≤ θ ≤ 1,
n = 0, 1, . . .N − 1. For θ = 1 one obtain the fully implicit finite difference scheme, for θ = 0 -
explicit and for θ = 1/2 - the Crank-Nicolson scheme. As we want to derive schemes of higher
order, in the numerical experiments we use mainly θ = 1/2. The numerical solution from previous
time step t = tn is set as initial estimation for the following time step t = tn+1. Then for finding
the solution on t = tn+1 the iterative process with appropriate stopping criteria is used: Υ′(

k

W n+1)
k
∆= −Υ(

k

W n+1) ,
k+1

W n+1=
k

W n+1 +
k
∆ .

(36)

Here
k
∆ is a vector of the increments and the Jacobian matrix Υ′(

k

W n+1) for θ = 1/2 is

Υ′(
k

W n+1) =
∂Υ

∂W
=

 1
τ I + 1

2 P̄ −
1
2
∂R
∂U

1
2
∂R
∂V

1
2
∂S
∂U

1
τ I + 1

2
¯̄P − 1

2
∂S
∂V

∣∣∣∣∣∣
(U,V )=(

k
U,

k
V )

, (37)

where I is the identity matrix and P, P - as defined by (33), (34). In the numerical experiments to
solve the first line in (36) which is a linear system of 2(Mx − 1)(My − 1) equations we use the so
called inexact Newton method, i.e. we solve this system approximately using the MatLab function
bicgstab(l) (biconjugate gradients stabilized (l) method) that gives better results for our examples
in sense of convergence of the inner iterations and the CPU time.
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Richardson extrapolation
Richardson extrapolation is a powerful computational tool which can successfully be used in the efforts to improve the accuracy of the of
the approximate solutions of the systems of partial differential equations (PDEs) obtained by finite difference methods.
Therefore, another way for obtaining the difference schemes of higher order is to use the Richardson extrapolation method. The main idea
[?] is to solve the difference scheme on two or more consecutive meshes and then to combine the obtained numerical solutions with
appropriate weights. Let us assume that hx = hy = h and for the numerical solution on the n-th time layer the following expression is
true:

Uτh = Un
(i,j) = u(xi , yj , t

n) + C1h
σ + χ(h, τ), (xi , yj , tn) ∈ Ωh,τ , (38)

where function χ(h, τ) is a remainder term and C1 does not depend on hx , hy and τ . If we want to eliminate the term C1h
σ , we do

the following steps:

solve the difference scheme on two consecutive meshes: coarse one Ωh,τ and fine one Ωh/2,τ and let the corresponding

numerical solutions be Uτh and Uτ
h/2

;

find the weights γ1 and γ2 from the system

γ1 + γ2 = 1 (39)

γ1 +
γ2

2σ
= 0

obtain a new numerical solution on the coarse mesh

Uextr = γ1U
τ
h + γ2U

τ
h/2 (xi , yj , tn) ∈ Ωh,τ . (40)

From (39) we have for the case of central Crank-Nicolson Scheme (σ = 2) that the coefficients for the Richardson extrapolation are

γ1 = −1/3 γ2 = 4/3. (41)

In the case of CFDS and Richardson Extrapolation (σ = 4) the corresponding weight coefficients are

γ1 = −1/15 γ2 = 16/15. (42)

If in (38) the more detailed analysis of the LTE is done, then the prolongation of the idea of space-time RE can be applied.
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We start with presenting CFDS on the 1D system of the following two equations:

∂u

∂t
− a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
= f (x, t, u, v),

∂v

∂t
− c(x)

∂2v

∂x2
+ d(x)

∂v

∂x
= g(x, t, u, v) . (43)

We introduce a standard mesh:
Ωh = {xi = ih, i = 0, 1, . . . ,M, h = 1/M} (44)

and the difference operators

δxϕi = (ϕi+1 − ϕi−1)/2h, δ2
xϕi = (ϕi+1 − 2ϕi + ϕi−1)/h2 (45)

for some mesh function ϕi , i = 0, 1, . . . ,M. Applying these operators to the elliptic part of the system one may obtain

−ai δ
2
x ui + bi δx ui − e1,i = f (xi , t, ui , vi ) −

∂ui

∂t
≡ Fi (46a)

−ci δ
2
x vi + di δx vi − e2,i = g(xi , t, ui , vi ) −

∂vi

∂t
≡ Gi , (46b)

where the truncation errors may be expressed in the following form:

e1,i =
h2

12

2b
∂3u

∂x3
− a

∂4u

∂x4

∣∣∣∣∣∣
i

+ O(h4) e2,i =
h2

12

2d
∂3v

∂x3
− c

∂4u

∂x4


i

+ O(h4). (47)

Differentiating (43) twice with respect to x we obtain
a ∂

3u
∂x3 =

(
b − da

dx

)
∂2u
∂x2 −

db
dx
. ∂u
∂x
− ∂F
∂x

a ∂
4u
∂x4 − 2b ∂

3u
∂x3 =

(
2 db
dx
− d2a

dx2

)
∂2u
∂x2 + d2b

∂x2
∂u
∂x
−
(
b + 2 da

dx

)
∂3u
∂x3 −

∂2F
∂x2 .

(48)

To increase the order of the error to O(h4) in (46a) we have used the fact thata
∂4u

∂x4
− 2b

∂3u

∂x3


i

= − (δ2
x ai − ãi (δx ai − bi ) − 2δx bi )δ2

x ui (49)

+ (δx bi − ãi .δx ci )δx ui − δ
2
x Fi + ãi Fi + O(h2),

where
ãi = (bi + 2δx ai )/ai i = 1, . . . ,M − 1. (50)
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Let
αi = (δ2

xai − ãi (δxai − bi )− 2δxbi ), (51)

α̃i = ai +
h2

12
αi , (52)

≈
αi= bi +

h2

12
(δ2

xbi − ãiδibi ). (53)

Now, let us define the following difference operators:

lhi = −α̃iδ
2
x+
≈
αi δx , νhi = 1 +

h2

12
(δ2

x − ãiδx ), Ph
i = 6h2lhi , Q

h
i = 6h2νhi . (54)

Let also

P1 = tridiag(pi,i−1, pi,i , pi,i+1), Q1 = tridiag(qi,i−1, qi,i , qi,i+1) (55)

be three diagonal matrix corresponding to P, Q with elements

pi,i = 12ai + h2α, pi,i±1 = −6ai ± α̃i − 0.5h2α, (56)

qii = 5h2 qi,i±1 = 0.25h2(2∓ α̃ih). (57)

Finally, if Ui ≈ u(xi , t), then the semidiscretization of (46a) to order O(h4) is as
follows:

Ph
i Ui = QhFi i = 1, . . . ,M − 1 and U0 = Ψ(x0) UM = Ψ(xM). (58)

In a similar way we treat (46b). Analoguous to ãi , αi , α̃i ,
≈
αi , P1 and Q1 we define c̃i ,

βi , β̃i ,
≈
β i , P2 and Q2, replacing a↔ c and b ↔ d .
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Compact Difference Schemes - space discretization for 2D
In this section, just for clarity we describe the construction of the CFDS for 2D for the system of
two equations (12a)-(12b).

In order to eliminate the terms of O(h2
x + h2

y ) in (23) we differentiate the equation (12a) twice

with respect to x obtaining expressions for ∂
3u
∂x3 , ∂

4u
∂x4 , and twice with respect to y for ∂

3u
∂y3 , ∂

4u
∂y4 .

Let
ãi,j = (ci,j + 2δxai,j )/ai,j , b̃i,j = (di,j + 2δybi,j )/bi,j , (i, j) ∈ Ωh . (59)

Let also

αi,j = ai,j +
h2
x

12

(
δ

2
xai,j − ãi,j (δxai,j − ci,j )− 2δxci,j

)
+

h2
y

12

(
δ

2
yai,j − b̃i,jδyai,j

)
, (60)

βi,j = bi,j +
h2
x

12

(
δ

2
xbi,j − ãi,jδxbi,j

)
+

h2
y

12

(
δ

2
ybi,j − b̃i,j (δybi,j − di,j )− 2δydi,j

)
, (61)

α̃i,j = ci,j +
h2
x

12

(
δ

2
xci,j − ãi,jδxci,j

)
+

h2
y

12

(
δ

2
y ci,j − b̃i,jδy ci,j

)
, (62)

β̃i,j = di,j +
h2
x

12

(
δ

2
xdi,j − ãi,jδxdi,j

)
+

h2
y

12

(
δ

2
ydi,j − b̃i,jδydi,j

)
, (63)

and

θi,j =
h2
y

12
ci,j −

h2
x

12
(2δxbi,j − ãi,jbi,j ), θ̃i,j =

h2
x

12
di,j −

h2
y

12
(2δyai,j − b̃i,jai,j ), (64)

γi,j =
h2
x

12
bi,j +

h2
y

12
ai,j , γ̃i,j =

h2
x

12
(2δxdi,j − ãi,jdi,j ) +

h2
y

12
(2δy ci,j − b̃i,jci,j ). (65)
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Define the following difference operators

lhi,j = −αi,jδ
2
x − βi,jδ

2
y + α̃i,jδx + β̃i,jδy − γi,jδ2

xδ
2
y + θi,jδxδ

2
y + θ̃i,jδ

2
xδy + γ̃i,jδxδy(66)

ν
h
i,j = 1 +

h2
x

12
(δ2

x − ãi,jδx ) +
h2
y

12
(δ2

y − b̃i,jδy ). (67)

Applying these operators to (12a) we have

lhi,jui,j = ν
h
i,j (ri,j − ut,i,j ) +O(h4

x + h2
xh

2
y + h4

y ). (68)

For convenience, we introduce also the operators

P̄h
i,j = 6h2

x l
h
i,j , Q̄

h
i,j = 6h2

xν
h
i,j . (69)

Let σ = hx/hy be the ratio of the mesh sizes. Then

P̄h
i,jui,j =

1∑
k1=−1

1∑
k2=−1

p
(k1,k2)

i,j ui+k1,j+k2
, (70)

Q̄h
i,jui,j =

1∑
k1=−1

1∑
k2=−1

q
(k1,k2)

i,j ui+k1,j+k2
, (71)

where
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p
(±1,−1)
i,j = −

ai,j + σ2bi,j

2
±

1

4

(
ci,j − σ2(2δxbi,j − ãi,jbi,j )∓ σdi,j ±

1

σ
(2δyai,j − b̃i,jai,j )

)
hx

∓
1

8

(
σ(2δx − ãi,jdi,j ) +

1

σ
(2δy ci,j − b̃i,jci,j )

)
h2
x ,

p
(±1,1)
i,j = −

ai,j + σ2bi,j

2
±

1

4

(
ci,j − σ2(2δxbi,j − ãi,jbi,j )± σdi,j ∓

1

σ
(2δyai,j − b̃i,jai,j )

)
hx

±
1

8

(
σ(2δx − ãi,jdi,j ) +

1

σ
(2δy ci,j − b̃i,jci,j )

)
h2
x ,

p
(±1,0)
i,j = σ

2bi,j − 5ai,j ±
(

3α̃i,j −
1

2
ci,j +

σ2

2
(2δxbi,j − ãi,jci,j )

)
hx (72)

−
1

2

(
δ

2
xai,j − ãi,j (δxai,j − ci,j )− 2δxci,j +

1

σ2
(δ2

yai,j − b̃i,jδyai,j )

)
h2
x

p
(0,±1)
i,j = ai,j − 5σ2bi,j ±

(
3σβ̃i,j −

σ

2
di,j +

1

2σ
(2δyai,j − b̃i,jai,j )

)
hx

−
1

2

(
σ

2(δ2
xbi,j − ãi,jδxbi,j ) + δ

2
ybi,j − 2δydi,j − b̃i,j (δybi,j − di,j )

)
h2
x ,

p
(0,0)
i,j = 10(ai,j + σ

2bi,j ) +

(
δ

2
xai,j − ãi,j (δxai,j − ci,j )− 2δxci,j +

1

σ2
(δ2

yai,j − b̃i,jδyai,j )

)
h2
x

+
(
σ

2(δ2
xbi,j − ãi,jδxbi,j ) + δ

2
ybi,j − 2δydi,j − b̃i,j (δybi,j − di,j )

)
h2
x

and

q
(±1,±1)
i,j = 0, q

(±1,0)
i,j =

1

4
(2∓ ãi,jhx )h2

x , q
(0,±1)
i,j =

1

4
(2∓

b̃i,j

σ
hx )h2

x , q
(0,0)
i,j = 4h2

x . (73)
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With these notations, after dropping the term O(h4
x + h2

xh
2
y + h4

y ) in (68) the semi-discrete compact

finite difference approximation of (12a) and (12b) and the left parts of (13), (14) are as follows:
P̄h

i,ju
h
i,j = Q̄h

i,j

(
rhi,j − d

dt u
h
i,j

)
, (i, j) ∈ Ωh, t ∈ (0,T ],

uh
i,j = φ̄i,j , (i, j) ∈ ∂Ωh, t ∈ (0,T ],

uh
i,j = ψ̄i,j , (i, j) ∈ Ω̄h, t = 0.

(74)


¯̄Ph
i,jv

h
i,j = ¯̄Qh

i,j

(
shi,j − d

dt v
h
i,j

)
, (i, j) ∈ Ωh, t ∈ (0,T ],

vh
i,j = ¯̄φi,j , (i, j) ∈ ∂Ωh, t ∈ (0,T ],

vh
i,j = ¯̄ψi,j , (i, j) ∈ Ω̄h, t = 0.

(75)

Now we introduce the matrix representation for the system (74), (75). We obtain the following
system of ordinary differential equations

Q̄
d

dt
Uh + P̄Uh = Q̄R + Φ̄, t ∈ (0,T ], (76)

¯̄Q
d

dt
V h + ¯̄PV h = ¯̄QS + ¯̄Φ (77)

with initial conditions Uh(0) and V h(0) obtaining from ψ̄ and ¯̄ψ for (i, j) ∈ Ωh after the

reordering. In system (76), (77) the matrix P̄ (similarly ¯̄P) is (My − 1)× (My − 1)

block-tridiagonal matrix P̄ = tridiag(P̄k,k−1, P̄k,k , P̄k,k+1) and P̄k,l , l = k − 1, k, k + 1 are also

tridiagonal matrices of order (Mx − 1)× (Mx − 1). Then from (72) the entries of P̄k,l , Q̄k,l are

P̄k,l = tridiag(p
(−1,ε)
k,2:Mx−1, p

(0,ε)
k,2:Mx

, p
(1,ε)
k,1:Mx−2) l = k + ε, ε = 0,±1 . (78)

Q̄k,l = tridiag(q
(−1,ε)
k,2:Mx−1, q

(0,ε)
k,2:Mx

, q
(1,ε)
k,1:Mx−2) l = k + ε, ε = 0,±1 (79)

with a remark that for ε = ±1 matrixes Q̄k,l are diagonal (instead tridiagonal) matrices, see (73).

The vectors Φ̄ and ¯̄Φ are associated with the boundary functions and also depend on time t.
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Time discretization

For discretization of the ODE system (76)-(79) in time the θ-weight method with
θ = 1/2 is used in the numerical experiments. Then the Crank-Nicolson full
discretization of (76), (77) is as follows:

Q̄ Un+1−Un

τ
+ P̄Un,θ = Q̄Rn,θ + Φ̄n,θ, n = 1, ...,N − 1,

¯̄Q V n+1−V n

τ
+ ¯̄PV n,θ = ¯̄QSn,θ + ¯̄Φn,θ, n = 1, ...,N − 1.

(80)

We apply the classical Newton method. The system (80) is rewritten in the form
Υ(W ) = 0, where W = [UT ,VT ]T is a vector of length 2(Mx − 1)(My − 1). Similarly

the numerical solution from previous time layer t = tn is set as initial estimation
0

W n+1

on the new time layer t = tn+1. Then for finding the solution on t = tn+1 it follows

the iterative process, analogous to (36). Now,
k
∆ is a vector of the increments and the

Jacobian matrix Υ′(
k

W n+1) for θ = 1/2 is

Υ′(
k

W n+1) =

 1
τ
Q̄ + 1

2
P̄ − 1

2
Q̄ ∂R
∂U

1
2
Q̄ ∂R
∂V

1
2

¯̄Q ∂S
∂U

1
τ

¯̄Q + 1
2

¯̄P − 1
2

¯̄Q ∂S
∂V

∣∣∣∣∣∣
(U,V )=(

k
U,

k
V )

. (81)
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Example 1 (Test problem with known analytical solution)

We consider two examples to illustrate the properties of the numerical schemes
derived. The first one is an artificial problem with analytical solution and the second
one is the two dimensional air-pollution model described in Section 2.
Here we consider a problem slightly different from the problem (1)-(5), namely, we
add the artificial source terms ξl , l = 1, ..., 10:

∂ul

∂t
− K4ul + bl .∇ul = Rl (x , y , u) + ξl (x , y , t), (x , y , t) ∈ Ω× (0,T ]. (82)

The parameters are as follows: X = Y = 500km, T = 1440min, K = 1.8,
µ = 2π/(60T ), bl = (µ(y − Y /2), µ(x − X/2)).
We take as particular exact solution of (82) for l = 1, ..., 10 the functions

ul (x , y , t) = U := exp(−t/T )sin(
πx

X
)sin(

πy

Y
), (x , y , t) ∈ Ω× [0,T ]. (83)

Then, the corresponding initial and boundary conditions are as follows:

ul (x , y , 0) = U(x , y , 0) = sin(πx/X ) sin(πy/Y ), (x , y) ∈ Ω = [0,X ]× [0,Y ], (84)

ul (x , y , t) = U(x , y , t) = 0, (x , y) ∈ ∂Ω, t ∈ (0,T ]. (85)
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Now, inserting (83) into (82), we calculate the residual functions ξl :

ξl (x, y , t) = flin + fn,l l = 1, ..., 10, (86)

where

flin =
(
−1/T + (π2

/X 2 + π
2
/Y 2)K (87)

+µ(y − Y/2)π/X cot(πx/X ) + µ(x − X/2)π/Y cot(πy/Y )) U (88)

and

fn,1 = −k5U + (k6 + k4 + k3)U2 fn,6 = −k9U
2

fn,2 = k5U − (k6 + k4 + k3 − k9)U2 fn,7 = (−2k2 − k10)U − (k3 − k4)U2

fn,3 = k1U
2 fn,8 = (−4k1 + k3)U2

fn,4 = k2U − (2k1 + k3)U2 fn,9 = (−2k8 + k10)U − (k4 − k1 + k9)U2

fn,5 = (k7 − k5)U + k6U
2 fn,10 = (−k7 + k8)U

The values of the coefficients kl , l = 1, ..., 10 are taken from Table 3. For the l th substances with
errorM,l we denote the error (the difference between the exact and the numerical solution) in
maximum norm, obtained on the last time layer tN = T for the number of space subintervals
Mx = My = M:

errorM,l = max
i,j∈Ω̄h

‖ul (xi , yj , tN )− uh
l (i, j,N)‖. (89)

The ratio between the errors obtained on two consecutive mesh refinements (usually doubling) is
denoted by ratio:

ratio = ratioM,l/2M,l =: errorM,l/error2M,l . (90)
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In the Table the mesh refinement analysis using CDS and CFDS is presented. The results confirm
the theoretical rate of convergence, i.e. the ratio near four confirm the second order for the CDS
and near sixteen - the fourth order for the CFDS. Also, as the CFDS has an error O(h4 + τ 2), to
observe the fourth order, when doubling the number of mesh points in space one must take
quadruple mesh points in time. The advantage of the CFDS is corroborated by presenting the
CPU time - there needs smaller time for the CFDS to obtain results with better accuracy in despite
of the using of more time layers.

Table: Comparison of the maximum absolute errors of the CDS and CFDS with
Mx = My for Example 1

CDS, O(h2 + τ 2) CFDS, O(h4 + τ 2)

Mx N errorM ratio CPU Mx N errorM ratio CPU

4 4 5.702 e-03 - 0.58 4 4 5.875 e-03 - 0.72

8 8 1.449 e-03 3.94 1.82 8 16 3.595 e-04 16.34 3.04

16 16 3.637 e-04 3.99 14.42 16 64 2.232 e-05 16.11 29.74

32 32 9.102 e-05 4.001 143.7 32 256 1.392 e-06 16.03 1076

64 64 2.276 e-05 4.00 3959 64 1024 8.698 e-08 16.003 60907

128 128 5.691 e-06 4.00 32709 128 4096 5.436 e-09 16.0001 720477
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In the Table the mesh refinement analysis using CDS and CFDS with Richardson extrapolation in
space (using corresponding weights from (41) and (42)) are presented. Again, to observe the
fourth and the sixth order of CDSRE and CFDSRE, doubling mesh points in space one must take
the number of time layers four and eight times more from the previous experiment. The results
confirm the expected rates of convergence for both numerical methods. The ratio near 64
corresponds with the sixth order of the CFDSRE. Comparing of the CPU time of Table 4 and
Table 5 shows a priority of using Richardson Extrapolation obtaining smaller errors for smaller
computational time, nevertheless that the Richardson Extrapolation needs to compute the
numerical solutions on two consecutive meshes. The advantage of CFDS with RE is also clearly
seen.

Table: Comparison of the errors in maximum norm for the numerical Example
1 for CDS and CFDS with Richardson extrapolation in space and Mx = My

CDS with RE in space, O(h4 + τ 2) CFDS with RE in space, O(h6 + τ 2)

Mx N errN ratio CPU Mx N errN ratio CPU

4 4 5.677 e-03 - 1.34 4 4 5.711 e-03 - 1.38

8 16 3.545 e-04 16.014 16.17 8 32 8.912 e-05 64.087 17.45

16 64 2.216 e-05 15.997 544 16 256 1.392 e-06 64.022 1497

32 256 1.385 e-06 16.001 3055 32 2048 2.1757 e-08 63.989 23390
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In the Table the mesh refinement analyses using CDS and CFDS with Richardson extrapolation in
space and time are presented. Again, to observe the fourth and the sixth order of CDSRE and
CFDSRE, doubling mesh points in space one must take the number of time layers two and eight
times more from the previous experiment. This would cause to extremely growth of CPU time for
the case of CFDS and therefore we take here four times (instead eight times) smaller mesh
intervals in time. The results confirm the expected rates of convergence for both numerical
methods. Comparing of the CPU time of Tables shows a priority of using Richardson Extrapolation
both in space and time obtaining smaller errors for smaller computational time. The advantage of
CFDSRE is also clearly seen.

Table: Comparison of the errors in maximum norm for the numerical Example
1 for CDS and CFDS with Richardson extrapolation in space and time and
Mx = My

CDS with RE in space and time, O(h4 + τ 4) CFDS with RE in space and time O(h6 + τ 4)

Mx N errN ratio CPU Mx N errN ratio CPU

4 4 5.649 e-05 - 6.73 4 4 8.476 e-06 - 3.36

8 8 9.722 e-06 5.81 18.71 8 16 1.748 e-07 48.49 30.26

16 16 5.989 e-07 16.23 194.81 16 64 2.847 e-09 61.39 1276

32 32 3.715 e-08 16.12 4594 32 256 4.529 e-11 62.86 66991

64 64 2.171 e-09 16.03 37101 64 1024 7.086 e-13 63.91 790800
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(a) (b)

Fig 16: Error in maximum norm for the Example 1: (a) CDS with mesh parameters Mx = My = 32, N = 32; (b) CFDS for
Mx = My = 32, N = 256

(a) (b)

Fig 16: Error in maximum norm for Example 1: (a) CDS with RE in space and time Mx = My = 16, N = 16; (b) CFDS with RE in
space and time Mx = My = 16, N = 64
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Numerical example - Example 2 (unknown exact solution)
In this case we consider more realistic variant of problem (1)-(5) with the following parameters of

the domain: the spatial domain is the square Ω = [0, 500]2 with side length 500 km, the length of
the time interval [0,T ] is 1440 min and the number of equations is L = 10. The initial conditions
on the time level t = 0 are the constant functions

u0(x, y) = (103
, 103

, 103
, 5.103

, 5.103
, 102

, 10−2
, 10−2

, 10−3
, 10−11), (91)

measured in mol/km3 and the boundary conditions are chosen to be periodic: γi has the form

γl (t) = constl (sin(t/C) + 2), (92)

where C = 4 is a constant and the constants constl , l = 1, ..., L are chosen in such a way that the
compatibility of the boundary and initial data is ensured. The diffusion coefficient is set to be
K = 1.8km2/min and the coefficient µ is µ = 2π/(60 ∗ T ).
In this example there is no analytical solution. One way of calculating the convergence rate is the
method of Runge on three nested meshes. Here we use another idea. As an ”exact” solution we
take the solution, obtained with a ”least” mesh size in space. In the following tables we denote
these solutions by bold font. Also in this case we present the relative error in maximum norm. We
control the rate of convergence denoted by order and evaluated by

order = log2(ratio) (93)

when doubling the number of mesh points and in other case

order = log(errorM′,l/errorM′′,l )/log(M′′/M′) (94)

where M′ and M′′ are two consecutive numbers of mesh points in space in the mesh refinement
analysis.
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In Table we present the results obtained by CDS with number of time steps N = 256 for the first
and fifth substances u1 and u5 at the central node with coordinates
(xM/2, yM/2) = (X/2,Y/2) = (250, 250). The second order is confirmed. It is interesting to note
that neverthelees u1 and u5 have different values, the relative errors are approximately the same for
the both pollutants. Similar results are presented in Table, but at the point
(x, y) = (X/6,Y/6) = (83.33, 83.33). Again the second order of the CDS can be seen.

Table: The rate of convergence for the Example 2 for the CDS at the central
node (x , y) = (X/2,Y /2) with time steps N = 256 for the first and fifth
substances u1 and u5

U1 U5

Mx My numerical value rel. error order Mx My numerical value rel. error order

8 8 1975.882481 1.001 e-02 - 8 8 4523.292977 1.001 e-03 -

16 16 1991.143607 2.366 e-03 2.08 16 16 4558.229378 2.366 e-03 2.08

24 24 1993.813011 1.028 e-03 2.05 24 24 4564.340280 1.028 e-03 2.05

32 32 1994.730617 5.685 e-04 2.06 32 32 4566.440899 5.684 e-04 2.06

40 40 1995.152323 3.572 e-04 2.08 40 40 4567.406285 3.572 e-04 2.08

48 48 1995.380607 2.428 e-04 2.11 48 48 4567.928881 2.428 e-04 2.11

56 56 1995.517989 1.739 e-04 2.16 56 56 4568.243380 1.740 e-04 2.16

64 64 1995.607048 1.293 e-04 2.21 64 64 4568.447260 1.293 e-04 2.21

192 192 1995.865185 192 192 4569.038195
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Table: The numerical values, the relative errors and the rate of convergence for
Example 2 by the CDS at the node (x , y) = (X/6,Y /6) with number of time
steps N = 256 for the first and fifth substances u1 and u5

U1 U5

Mx My numerical value rel. error order Mx My numerical value rel. error order

6 6 1068.473273 4.271 e-02 - 6 6 2447.733406 4.203 e-02 -

12 12 1110.557284 5.007 e-03 3.09 12 12 2542.369591 4.998 e-03 3.07

24 24 1115.537216 5.451 e-04 3.19 24 24 2553.746683 5.450 e-04 3.20

48 48 1116.056372 7.994 e-05 2.76 48 48 2554.935074 7.992 e-05 2.77

96 96 1116.145593 1.783 e-05 2.16 96 96 2555.139279 1.782 e-05 2.16

192 192 1116.165491 - 192 192 2555.184819 -
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With the same parameters the experiments are repeated using CFDS. The results are presented in
Tables. The fourth order in both cases (central node (x,y)=(X/2,Y/2) and node (x,y)=(X/6,Y/6)
) for the both substances u1 and u5 is confirmed. Again at the central node the relative errors are
likely the same.

Table: The rate of convergence for Example 2 for the CFDS at the central
node (x , y) = (X/2,Y /2) with number of time steps N = 256 for the first and
fifth substances u1 and u5

U1 U5

Mx My numerical value rel. error order Mx My numerical value rel. error order

8 8 2000.633296 2.273 e-03 - 8 8 4580.154033 2.417 e-03 -

16 16 1996.195827 1.495 e-04 3.988 16 16 4569.795122 1.495 e-04 4.014

24 24 1995.956736 2.972 e-05 3.984 24 24 4569.247779 2.972 e-05 3.984

32 32 1995.916219 9.419 e-06 3.994 32 32 4569.155025 9.420 e-06 3.994

40 40 1995.905118 3.858 e-06 4.000 40 40 4569.129612 3.858 e-06 4.000

48 48 1995.901126 1.858 e-06 4.008 48 48 4569.120473 1.858 e-06 4.008

56 56 1995.899414 9.997 e-07 4.019 56 56 4569.116553 9.997 e-07 4.019

64 64 1995.898582 5.831 e-07 4.037 64 64 4569.114649 5.831 e-07 4.037

192 192 1995.897418 192 192 4569.112120
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Table: The rate of convergence of the CFDS for Example 2 at the node
(x , y) = (X/6,Y /6) with number of time steps N = 256 for the first and fifth
substances u1 and u5

U1 U5

Mx My numerical value rel. error order Mx My numerical value rel. error order

6 6 1043.293291 6.529 e-02 - 6 6 2257.948316 1.163 e-01 -

12 12 1118.080459 1.710 e-03 5.25 12 12 2550.112259 1.991 e-03 5.86

24 24 1116.078012 8.411 e-05 4.34 24 24 2554.999291 7.834 e-05 4.66

48 48 1116.166054 5.229 e-06 4.00 48 48 2555.186084 5.236 e-06 3.91

96 96 1116.171550 3.054 e-07 4.09 96 96 2555.198680 3.068 e-07 4.09

192 192 1116.171891 - 192 192 2555.199463 -
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In Tables the results obtained by the CDSRE and CFDSRE in space are shown. The number of
time layers are N = 256 and the presented values are the numerical values at the last time layer
tN = T at the central node (x, y) = (X/2,Y/2). The results confirm the fourth order for the
CDSRE and the sixth order for CFDSRE.

Table: The rate of convergence for Example 2 for the CDS with RE in space at
the central node (x , y) = (X/2,Y /2) with time steps N = 256

U1 U5

Mx My numerical value rel. error order Mx My numerical value rel. error order

8 8 1996.230649 1.669 e-04 - 8 8 4569.874845 1.669 e-04 -

16 16 1995.926287 1.446 e-05 3.529 16 16 4569.178073 1.446 e-05 3.529

24 24 1995.903139 2.862 e-06 3.995 24 24 4569.125081 2.863 e-06 3.994

32 32 1995.899192 8.856 e-07 4.079 32 32 4569.116047 8.855 e-07 4.078

40 40 1995.898128 3.524 e-07 4.129 40 40 4569.113611 3.524 e-07 4.129

48 48 1995.897751 1.632 e-07 4.225 48 48 4569.112746 1.631 e-07 4.224

56 56 1995.897590 8.268 e-08 4.409 56 56 4569.112378 8.267 e-08 4.409

64 64 1995.897512 4.386 e-08 4.748 64 64 4569.112201 4.385 e-08 4.749

96 96 1995.897425 96 96 4569.112001
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Table: The rate of convergence for Example 2 for CFDS with RE in space for
the central node (x , y) = (X/2,Y /2) with time steps N = 256

U1 U5

Mx My numerical value rel. error rate Mx My numerical value rel. error rate

8 8 1995.899995 1.299 e-06 - 8 8 4569.104528 1.624 e-06 -

16 16 1995.897579 8.779 e-08 3.887 16 16 4569.112352 8.767 e-08 4.212

24 24 1995.897419 7.582 e-09 6.040 24 24 4569.111986 7.565 e-09 6.042

32 32 1995.897406 1.300 e-09 6.077 32 32 4569.111957 1.311 e-09 6.092

40 40 1995.897404 3.428 e-10 6.041 40 40 4569.111953 3.380 e-10 6.075

48 48 1995.897404 1.144 e-10 6.018 48 48 4569.111952 1.115 e-10 6.080

56 56 1995.897404 4.505 e-11 6.045 56 56 4569.111952 4.326 e-11 6.144

64 64 1995.897404 1.968 e-11 6.204 64 64 4569.111952 1.855 e-11 6.339

96 96 1995.897404 96 96 4569.111952
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In Figure the log-log plot of the errors versus space mesh size for the
Example 2 is presented, obtained by: CDS - red line, − ?−; CFDS -
magenta line, −�−; CDSRE - green line, −�−; CFDSRE in space - blue
line, − • −. The increasing of the slope of the lines corresponds with the
increasing of the rate of convergence. The lowest line confirms the
advantage of the CFDS in combination with Richardson extrapolation.

Fig 17: The log-log plot of the errors versus space mesh size for the Example 2, obtained by: CDS - red line, − ? −; CFDS - magenta
line, −�−; CDSRE - green line, −�−; CFDSRE in space - blue line, − • −.
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(a) (b)

Fig 19: Numerical solution obtained with CDS for µ = 2π/(60T ) with
mesh parameteres Mx = My = 32, N = 256 for Example 2: (a) for u1;
(b) for u5

(a) (b)

Fig 19: Numerical solution obtained with CFDS for µ = 2π/(60T ) with
mesh parameteres Mx = My = 32, N = 256 for Example 2: (a) for u1;
(b) for u5
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Many others experiments have been done. It is interesting to see the behaviour of the
solutions if the coefficient µ in the convection term is taken to be µ = 2π/(X ) as it is
in paper of Karatson and Kuric instead µ = 2π/(60 ∗ T ) as it is in the paper of
Georgiev and Zlatev. The increasing of the convective coefficients leads to significant
change of the numerical solution near the corners. It can be seen that the constant
initial values have been left relatively intact in the middle of the domain, but they
have been stretched near the boundary by the sinusoidal boundary conditions.

(a) (b)

Fig 20: Numerical solution for Example 2, obtained with CFDS for µ = 2π/500 and
Mx = My = 32, N = 256: (a) for u1; (b) for u5.
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In Table the average number of iterations for Example 1 at the outer (Newton) and at
the inner (bicgstabl) part of the inexact Newton method for CDS and CFDS are
presented. To go from the n-th time layer to the next n + 1-th time layer we need of
approximately three iterations at the outer (Newton) part for the both difference
schemes. At the inner (bicgstabl) part for the case of CDS we need of three iterations
and for the case of CFDS we observe the decreasing of the number of iterations from
3.40 to 2.05 when the numbers of the mesh points in space and time are increasing.

Table: The average number of iterations for Example 1 at the outer (Newton)
and inner (bicgstabl) parts of the inexact Newton method for CDS and CFDS

CDS CFDS

Mx My N Newton bicgstabl Mx My N Newton bicgstabl

8 8 8 3 2.67 8 8 16 3 3.40

16 16 16 3 2.67 16 16 64 2.98 2.57

32 32 32 3 2.67 32 32 256 2.96 2.15

64 64 64 2.95 3.31 64 64 1024 2.65 2.05
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Similar results are presented in Table 14 for Example 2 obtained with the number of
time steps N = 256. The number of the outer iterations is three for CDS and
decreases from 3.80 to 3.17 for CFDS. In the opposite the number of the inner
(bicgstabl) iterations increases for CDS from 1.75 to 6.54 and decreases from 4.70 to
2.50 for CFDS as a result of better local approximation.

Table: The number of average iterations for Example 2 on the outer (Newton)
and inner (bicgstabl) part of the inexact Newton method for CDS and CFDS
with the number of time steps N = 256

CDS CFDS

Mx My Newton bicgstabl Mx My Newton bicgstabl

8 8 3 1.75 8 8 3.80 4.70

16 16 3 2.48 16 16 3.96 4.36

32 32 3 3.86 32 32 3.32 3.67

64 64 3 6.54 64 64 3.17 2.50
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In spite of all advantages of CFDS in sense of accuracy and CPU time, there is also
some disadvantages. The stencil of the CFDS is nine-point and the sign condition of
the discrete maximum principle is not fulfill. As a result the positivity of the numerical
solution is break for some values of the mesh parameters in space ant time. In Figure
the numerical solution for the pollutant NO2 (u2) for Example 2 when µ = 2π/(T )
and Mx = My = 8, N = 256, obtained by (a) CDS and by (b) CFDS is presented.
The CDS preserves the positivity of the numerical solution, while the CFDS does not -
near the corners the numerical solution is negative and has no chemical sense. This
fact confirm, that the proposed methods needs of more careful analysis.

(a) (b)

: Numerical solution for NO2 - u2 for µ = 2π/(T ) with mesh parameters
Mx = My = 8, N = 256 Example 2, obtained with: (a) CDS; (b) CFDS
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Atmosphere model based on Chapman’s cycle

We concentrate on the system (1)-(3) for L = 3 with coefficients, reaction and source
terms that correspond to the atmosphere model based on Chapman’s cycle. While a
realistic atmospheric/air-pollution model main contain dozens of reacting species, our
simple model capture the basic features of the complete practical models and the
methods developed in the paper are already implemented to the model of the
equations solved in previous papers.
The components of the system are the oxide (NO), nitrogen dioxide (NO2) and ozone
(O3) denoted by u1, u2, u3 respectively:

Rl (u) = −r(u), l = 1, 3, R2(u) = r(u), r(u) = k1u1u3 − k2u2, (95)

where k1, k2 are the forward and backward reaction rates.

Venelin Todorov, Ivan Dimov, Juri Kandilarov, Lubin Vulkov High Accuracy Numerical Methods for in Air Pollution Modelling



Exact analytical sol. and Problem with Delta source terms
. Here we consider a problem slightly different from the problem (1)-(3):

∂ul

∂t
− K4ul + bl .∇ul = Rl (x, y , u) + ξl (x, y , t), (x, y , t) ∈ Ω× (0,T ]. (96)

The functions ξl , l = 1, 2, 3, and the initial and boundary conditions are chosen so that the exact
solution is

ul = exp(−t)sin(πx)sin(πy), l = 1, 2, (x, y , t) ∈ Ω× [0,T ], (97)

u3 = 1 + exp(−t)sin(πx)sin(πy), (x, y , t) ∈ Ω× [0,T ]. (98)

The other parameters are as follows: Ω = [0, 1]× [0, 1], T = 1, bl = (0.1, 0.1), for l = 1, 2, 3,
K1 = 1, K2 = K3 = 5.
For the l th substances with errorM,l we denote the error (the difference between the exact and the
numerical solution) in maximum norm, obtained on the last time layer tN = T for the number of
space subintervals Mx = My = M:

errorM,l = max
i,j∈Ω̄h

‖ul (xi , yj , tN )− uh
l (i, j,N)‖. (99)

The ratio between the errors obtained on two consecutive mesh refinements (usually doubling) is
denoted by ratio:

ratio = ratioM,l/2M,l =: errorM,l/error2M,l . (100)

In this example we consider problem (96), where functions ξl now are point source terms of the
form

ξl (x, y , t) = fl (t)δ(x − x l , y − y l ), l = 1, 2, 3. (101)

The parameters are as follows: Ω = [0, 1]× [0, 1], T = 1, bl = (−0.1, 0), for l = 1, 2, 3, K1 = 1,
K2 = K3 = 5, k1 = 1000, k2 = 2000, (x1, y1) = (0.5, 0.5), (x2, y2) = (0.25, 0.25),
(x3, y3) = (0.75, 0.75), f1(t) = 7, f2(t) = 11, f3(t) = 13.
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Table: Rel. error for the first species

CDS O(h2 + τ2) CDS RE O(h4 + τ2)

M1 M2 N errN ratio CPU M1 M2 N errN ratio CPU

8 8 8 1.025e-03 1.46 8 8 8 1.820e-06 3.08

16 16 16 2.567e-04 3.991 3.33 16 16 16 1.814e-07 10.03 20.70

32 32 32 6.421e-05 3.998 20.48 32 32 32 1.219e-08 14.88 477

64 64 64 1.605e-05 3.999 442 64 64 64 7.642e-10 15.95 9871

Table 45: Rel. error for the first species

CFDS O(h4 + τ2) CFDS RE O(h6 + τ2)

M1 M2 N errN ratio CPU M1 M2 N errN ratio CPU

8 8 8 5.223e-06 1.34 8 8 8 2.512e-09 2.95

16 16 32 3.293e-07 15.86 15.26 16 16 32 3.945e-11 64.31 38.27

32 32 128 2.062e-08 15.972 84.87 32 32 128 6.145e-13 64.19 373

64 64 512 1.289e-09 15.991 6384 64 64 512 9.598e-15 64.03 15510

(a) (b)

Fig 22: Numerical solution for the mesh with parameters Mx = My = 32, N = 256 for Example 2: (a) for NO - u1; (b) for O3 - u3
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Two different ways for derivation of high-order difference schemes for semilinear parabolic
systems of equations are analyzed.

First, using central difference approximation with Richardson extrapolation the fourth-order
method is obtained.

Second, starting from CDS and following the method of auxiliary relations yielded from the
original differential equations we constructed the fourth-order CFDS for semilinear parabolic
systems with variable coefficients.

Then, applying Richardson extrapolation to these CFDS we obtain the sixth-order
approximations of the differential problems.

The time-stepping is realized using θ-scheme, but in the numerical computations - by the
Crank-Nicolson/Newton algorithm.

The reported computational results demonstrate that the convergence rate of the CDS is
O(h2 + τ 2) and of the CFDS it is O(h4 + τ 2), but in combination with Richardson

extrapolation they are respectively O(h4 + τ 2) and O(h6 + τ 2).

Considering Tables we can conclude the following: first is that for achieving the same
accuracy, for example ≈ e − 06 the CPU time of CDS is thirty times of the CPU time of
CFDS, i.e. CFDS-method is much more faster. Second, taking in Tables for reference
accuracy ≈ e − 06 we conclude that CFDSRE are approximately two times faster than
CDSRE. Third, taking in Tables 4,5 for reference accuracy ≈ e − 08 CFDSRE is 2.6 times
faster than CFDS.

Numerically it is confirmed the advantages of the CFDS over the CDS both in the accuracy
and CPU time. The skilfully application of Richardson extrapolation also plays important
role in obtaining good results in real time with a small number of grid nodes despite the
large intervals of the domain both in space and time in air pollution problems.

In the next study we will present a theoretical analysis of the present approximation. Also,
we will develop two-grid algorithms for solution of the corresponding nonlinear systems of
algebraic equation.
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