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Propositions

Notations
We consider a geometric, non-local PDE to model the ooid shapes:

Γt = c3 (−1 + c1Aκ+ c2Ay cos γ)n, (1)

here the curvature κ and the direction γ depend on the spatial derivatives
of Γ. The exact form depend on the parametrization of Γ.

Steady-state solutions (if they exist) ful�ll:

− 1 + c1Aκ+ c2Ay cos γ = 0, (2)
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Propositions

Proposition 1

Any smooth, convex, steady state solution Γ∗ of eq. (1) with positive
parameters (c1 > 0 and c2 ≥ 0) embedded in R2 possesses D2 symmetry.

Proposition 2

Smooth, convex, steady state solutions of eq. (1) are uniquely
determined by c1 and c2, and for any positive values of the two
parameters there exists a Γ∗ curve.
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Properties of the solution

The local equation

Let restrict ourselves on the part of the solution curve between
0 ≤ γ ≤ π/2. We choose a non-trivial parametrization: we write the
curve respect to y:

− 1 + c1Aκ(y) + c2Ay cos(γ(y)) = 0. (3)

From this point ()′ refers to derivation respect to y. In this Section we
handle A as just a real number (i.e. we do not consider, that this is the
area enclosed by the curve.) In this case, the solutions of the equation
are determined by the triple (c1, c2,A). Observe, that both c1 and c2 is
multiplied by A, thus any solution ful�lls

− 1 + ĉ1κ(y) + ĉ2y cos(γ(y)) = 0, (4)

where ĉ1 = c1A and ĉ2 = c2A.

András A. Sipos A model for ooid particles



A simple model
Proof of Proposition 1
Proof of Proposition 2

Application

Properties of the solution

The local equation

κ(y) = −dγ

ds
= −dγ

dy

dy

ds
= −γ′(y) sin(γ(y)). (5)

Note, that the negative sign relates to the fact, that by de�nition γ(y) is
decreasing between points P and Q (Fig. 8. b)). By the virtue (5) eq.
(4) takes the following form, which is a �rst order ODE:

− 1− ĉ1γ′(y) sin(γ(y)) + ĉ2y cos(γ(y)) = 0. (6)

From now on this equation is called local. There exist a closed-form
solution for the local equation:

γ(y) = arccos

√πerf
(√

ĉ2
2ĉ1
yi
)
− Ci

√
2ĉ2
ĉ1

ĉ1i exp
(
ĉ2y2

2ĉ1

)√
2ĉ2
ĉ1

 , (7)
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The solution

and consequently

κ(y) =
1

ĉ1
+

√
π

ĉ1

√
ĉ2
2ĉ1

exp

(
− ĉ2y

2

2ĉ1

)
erf

(√
ĉ2
2ĉ1

yi

)
yi. (8)

q :=

√
ĉ2
2ĉ1

, (9)

whence the solution (keeping C = 0) in (8) can be reformulated as

κ(y) =
1

ĉ1

(
1 +
√
π

erf(qyi)

exp(q2y2)
qyi

)
. (10)
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The solution

The following properties of κ(y) can be settled:

1. κ(y) is real (R+ ∪ {0} → R).

2. κ(y) is continuous.

3. κ(0) is positive and equals ĉ−11 .

4. κ(y) has a maximum at y = 0.

5. κ(y)→ 0 as y →∞.

6. There is exactly one point, denoted to y0, where κ(y) vanishes and
y0 solely depends on q.

7. There is no local extrema for κ(y) between 0 < y < y0, thus it is
monotonic in this range.
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Properties of the solution

The graph of κ(y)
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Properties of the solution

Realization of the shape

To realize a steady state shape Γ∗ we need γ(y) itself. By the virtue of
(5)

γ(y) = arccos

(∫ y

0

κ(η)dη

)
. (11)

As we have seen, κ(0) depends solely on ĉ1 and for �xed q the value of
y0 is �xed, too. This leads to the conclusion that for any �xed q there
exists a ĉ1,crit critical value at which∫ y0

0

κ(η)dη = 1. (12)

For further convenience for a �xed q we de�ne the set

χq : {ĉ1 | 0 < ĉ1 ≤ ĉ1,crit} (13)
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Realization of the shape

As y provides a possible parametrization of the curve segment Γ̄, the
unique closed form solution in (7) can be realized as a unique curve in
R2. Finally we prove uniqueness for Γ∗ itself. So far we know that for
proper ĉ1 and ĉ2 the curve segment Γ̄∗ is uniquely determined. Note,
that Γ̄∗ has vertical tangent at P and horizontal tangent at Q. As we
consider smooth shapes the only way to glue the Γ̄∗ curve-segments to
form a closed, non-intersecting curve are re�ections along the x and y
axes. It clearly hints to that a smooth steady state shape must possess
D2 symmetry.
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A map between the parameter spaces
We turn to investigate steady state solutions of the non-local equation:

− 1 + c1Aκ+ c2Ay cos γ = 0, (14)

Let us assign (ĉ1, ĉ2) and (c1, c2) if they result in an identical curve as a
steady state solution of the proper model. In this sense we can talk about
a mapping between the parameter spaces. Observe, that√

1

2

ĉ2
A

A

ĉ1
= q =

√
c2
2c1

(15)

holds, implying that q is invariant under the above mentioned map.
Instead of ĉ2 and c2 we use q as one of the parameters in the problem.
Based on the previous section, in the local model only ĉ1 ∈ χq can result
in a smooth curve. Let us formally de�ne the map F at a �xed value of q
as:

F : χq → R+ (16)

ĉ1 → c1.
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A map between the parameter spaces

Goal: obtain some properties of the c1(ĉ1) function at a �xed value of q.
Choose ĉj1 = (1 + ε)ĉi1, where ε > 0.
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A map between the parameter spaces
We choose two points along Γ̄∗i and Γ̄∗j , one for each, such way that their

tangent direction, γ0 is identical, the (̃.) sign refers to any quantity
evaluated at these points. As γ(y) is monotonic along Γ̄, the position of
the two points is well-de�ned.For our two curves we see, that∫ ỹi

0

κi(η)dη = cos(γ0) =

∫ ỹj

0

κj(η)dη (17)

must hold, which implies ỹi < ỹj . By the properties of κ(y) it is easy to
see, that curvatures at the chosen point-pair ful�ll

κi(ỹi) > (1 + ε)κj(ỹj), (18)

From this observation and the positivity of all the involved quantities we
conclude, that

ỹj

(1 + ε)κj(ỹj)
>

ỹi

κj(ỹi)
. (19)
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A map between the parameter spaces
We switch to the parametrization of Γ̄ respect to the tangent direction γ.
Based on eq. (5) we see, that the Ā area under Γ̄ can be computed as

Ā =

∫ 0

π
2

− ds

dγ
cos(γ)y(γ)dγ =

∫ 0

π
2

y(γ)

κ(γ)
cos(γ)dγ. (20)

As we have demonstrated in (19), the argument of the integral in the
RHS of (20) is smaller for Γ̄∗i than for Γ̄∗j , and this holds for any
γ ∈ (0, π/2), whence we conclude

1

1 + ε
Āj =

∫ 0

π
2

yj(γ)

(1 + ε)κj(γ)
cos(γ)dγ >

∫ 0

π
2

yi(γ)

κi(γ)
cos(γ)dγ = Āi.

(21)
Recall, that ĉj1 = (1 + ε)ĉi1, hence

Āj

ĉj1
>
Āi

ĉi1
. (22)
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A map between the parameter spaces

As a steady state Γ∗ curve possesses D2 symmetry A = 4Ā holds so we
are left with the conclusion that

ci1 =
ĉi1
Ai

>
ĉj1
Aj

= cj1, (23)

which is exactly the monotonicity of the c1(ĉ1) function. This proves that
F is injective, as di�erent elements in χq cannot be mapped to identical
values. It is also worthy to note, that for all ĉ1 ∈ χq the area is obviously
positive thus c1(ĉ1) is a positive, monotonously decreasing, continuous
function.

András A. Sipos A model for ooid particles



A simple model
Proof of Proposition 1
Proof of Proposition 2

Application

F is injective
F is surjective

A map between the parameter spaces
To prove surjectivity we have to investigate the limits of c1(ĉ1). First we
investigate the limit as ĉ1 → 0 Recall that the curvature along Γ̄ is
maximal at point P and κ(0) = ĉ−11 here. Curvature is the reciprocal of
the r radius of its osculating circle. It provides an estimate on the area
under the curve via Ā > 0.25r2π = 0.25ĉ21π. Similarly, at point Q the
curvature is minimal which fact yields the following inequality:

ĉ1

π

(
ĉ1

1− 2q2ĉ1y(1)

)2 <
ĉ1

A(ĉ1)
<

ĉ1
πĉ21

(24)

As both the lower and the upper expression in the above inequality
approach +∞ as ĉ1 → 0 we conclude

lim
ĉ1→0

ĉ1
A(ĉ1)

= +∞. (25)
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A map between the parameter spaces

Finally we investigate the ĉ1 → ĉcrit limit. As ĉcrit is �nite it is enough to
investigate the Ā(ĉ1) area in the limit. We consider the already used
identity between the curvature and and arch length. Taking again the
parametrization respect to γ we write

κ(γ) = −
(
dS(γ)

dγ

)−1
, (26)

where S(γ) is the arch length between point P and the point with
tangent inclination γ. As at ĉ1 = ĉcrit the curvature at point Q vanish we
conclude, that

lim
γ→0
−dS(γ)

dγ
= lim
γ→0

1

κ(γ)
=∞. (27)
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A map between the parameter spaces

Thus the curve is unbounded. As the area Ā under Γ̄ can be computed
from the arc length (y is �nite!) we obtain

lim
ĉ1→ĉ1,crit

S = lim
ĉ1→ĉ1,crit

A =∞, (28)

which provides the required limit as

lim
ĉ1→ĉcrit

ĉ1
A(ĉ1)

= 0. (29)
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Shape evolution in numerics
Level-set simulation of the evolution from di�erent initial shapes:

As the problem can be formulated as an IVP, the invariant shape can be
computed by minimizing the di�erence between the measured and
expected area of the shape. Observe, that ellipses are not invariant under
the �ow:
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Reconstruction of parameters via the aspect ratio λ
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Reconstruction of parameters

c1 =
1

Aκ0
c2 =

1− c1Aκ(xQ)

Ay(xQ)
= c1

κ0 − κ(xQ)

y(xQ)
. (30)

It means, having a curve Γobserved we need to identify the maximal
diameter. Next we determine point Q with a tangent parallel to the
maximal diameter. Finally, we measure A, κ0, κ(xQ) and y(xQ) and
calculate c1 and c2.

András A. Sipos A model for ooid particles



A simple model
Proof of Proposition 1
Proof of Proposition 2

Application

Reconstruction of parameters

András A. Sipos A model for ooid particles



A simple model
Proof of Proposition 1
Proof of Proposition 2

Application

Thank you for your the attention!

This research was supported by the Hungarian OTKA grant 119245.

András A. Sipos A model for ooid particles



A simple model
Proof of Proposition 1
Proof of Proposition 2

Application

Ellipse is not an invariant shape
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