- $\sqrt{a^{2}+b^{2}}$
- $f(x)=\sin ^{2} x$
- if $a \leq 0 \leq b$, then $0 \geq a b$
- $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \geq 0$
- $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
- $\mathbf{e}_{a}=\mathbf{a}_{0}=\frac{1}{|\mathbf{a}|} \mathbf{a}$
- $|\mathbf{a}|=\sqrt{\mathbf{a}^{2}}$
- $\overrightarrow{A B} \times \overrightarrow{B C} \perp \overrightarrow{A B} \in \mathbb{R}^{2}$
- $x \equiv y(\bmod a) \Longleftrightarrow a \mid y-x$
- $\alpha \in \Delta \cap \Sigma \Longrightarrow \Delta \cap \Sigma \neq \emptyset$
- $\sin ^{(2)} x=-\sin x$
- $\sin ^{2} x=\cos ^{2} x$
- $\sum_{n=1}^{\infty} \delta^{n}=\frac{\pi^{2}}{42}$
- $\sum_{i=1}^{n} \prod_{j=1}^{m_{i}} \delta_{j}^{i}$ if $m_{1}, m_{2}, \ldots, m_{n}<\Omega_{n}$
- $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\int \sin x \cos x d x=\frac{1}{2} \sin ^{2} x+c$
- $\int_{0}^{1} \sin x \cos x d x=\left.\frac{1}{2} \sin ^{2} x\right|_{0} ^{1}$

Theorem 1.1. If a_{n} is a monotonically increasing sequence bounded from above, then it is convergent, and in fact $\lim _{n \rightarrow \infty} a_{n}=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$.

Theorem 1.2 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Boundedness is a necessary condition, because for example for all subsequences $a_{n_{i}}$ of the sequence $a_{n}=n$, we have $\lim _{i \rightarrow \infty} a_{n_{i}}=\infty$.

Proof. Let a_{n} be a bounded sequence. Because of Theorem 1.1, it's enough to show that a_{n} has a monotonic subsequence. [...]

2. Multiline formulas

$$
\begin{equation*}
\int_{0}^{1} \sin x \cos x d x=\left.\frac{1}{2} \sin ^{2} x\right|_{0} ^{1} \tag{*}
\end{equation*}
$$

(use \tag!)
For the next formula, put this in the preamble
\DeclareMathOperator\{\Dom\}\{Dom\} \%domain
\backslash DeclareMathOperator $\{\backslash$ Ran $\}$ \{Ran $\}$ \%range
\DeclareMathOperator\{\Gr\}\{Gr\} \%graph of a function
and use the new commands $\backslash \mathrm{Gr}$ and \backslash Dom.

$$
\begin{aligned}
\operatorname{Gr}\left(f^{-1}\right)=\{(y, & \left.\left.f^{-1}(y)\right): y \in \operatorname{Dom} f^{-1}=f(\operatorname{Dom} f)\right\} \\
& =\left\{\left(f(x), f^{-1}(f(x))\right): x \in \operatorname{Dom} f\right\}=\{(f(x), x): x \in \operatorname{Dom} f\}
\end{aligned}
$$

Here the equality symbols are aligned:

$$
\begin{aligned}
\mathbf{v}_{1}+\mathbf{v}_{2} & =x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}+x_{2} \mathbf{i}+y_{2} \mathbf{j}+z_{2} \mathbf{k} \\
& =x_{1} \mathbf{i}+x_{2} \mathbf{i}+y_{1} \mathbf{j}+y_{2} \mathbf{j}+z_{1} \mathbf{k}+z_{2} \mathbf{k} \\
& =\left(x_{1}+x_{2}\right) \mathbf{i}+\left(y_{1}+y_{2}\right) \mathbf{j}+\left(z_{1}+z_{2}\right) \mathbf{k} \\
& =\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)
\end{aligned}
$$

For the next formula, put this
\DeclareMathOperator\{\sgn\}\{sgn\} \%signum function in the preamble and use the \sgn command.

$$
\operatorname{sgn} x= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

These formulas are not aligned, just gathered:

$$
\begin{aligned}
& \int \cos ^{2} t d t=\int \cos t \cos t d t=\sin t \cos t+\int \sin ^{2} t d t \\
& \int \cos ^{2} t d t=\int 1-\sin ^{2} t d t=\int 1 d t-\int \sin ^{2} t d t
\end{aligned}
$$

Unlike these:

$$
\begin{aligned}
& \int \cos ^{n} x d x=\int \underbrace{\cos x}_{f^{\prime}} \underbrace{\cos ^{n-1} x}_{g} d x \\
&= \underbrace{\sin x}_{f} \underbrace{\cos ^{n-1} x}_{g}-\int \underbrace{\sin x}_{f} \underbrace{(n-1) \cos ^{n-2} x \cdot(-\sin x)}_{g^{\prime}} d x \\
&= \sin x \cos ^{n-1} x+(n-1) \int\left(1-\cos ^{2} x\right) \cos ^{n-2} x d x \\
&= \sin x \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x d x-(n-1) \int \cos ^{n} x d x \\
& \rightsquigarrow n \int \cos ^{n} x d x=\sin x \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x d x \\
& \rightsquigarrow \int \cos ^{n} x d x=\frac{1}{n} \sin x \cos ^{n-1} x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& 3 . \text { MATRICES }
\end{aligned}
$$

(1)

$$
\left(\begin{array}{ccc}
1 & 1 & 4 \tag{3}\\
3 & 3 & 6
\end{array}\right) \quad \stackrel{L_{2}-3 L_{1}}{\sim} \quad\left(\begin{array}{ccc}
1 & 1 & 4 \\
0 & 0 & -6
\end{array}\right) \quad \text { this was easy }
$$

(4)

$$
\begin{aligned}
&\left|\begin{array}{cccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|=a_{11}\left|\begin{array}{ccc}
a_{22} & \ldots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 2} & \ldots & a_{n n}
\end{array}\right|-a_{12}\left|\begin{array}{cccc}
a_{21} & a_{23} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 3} & \ldots & a_{n n}
\end{array}\right| \\
&+\ldots+(-1)^{n+1} a_{1 n}\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1, n-1} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n, n-1}
\end{array}\right|
\end{aligned}
$$

4. Fields

Definition 4.1. $\langle F,+, \cdot, 0,1\rangle$ is a field if
(1) + (addition) and \cdot (multiplication) are commutative and associative
(2) 0 is a neutral element for addition and 1 is a neutral element for multiplication: $x+0=x$ and $1 x=x$
(3) Every element of F has an additive, and every non- 0 element of F has a multiplicative inverse, that is,

$$
(\forall x)(\exists y) x+y=0
$$

(notation for $y:-x$), and

$$
(\forall x \neq 0)(\exists y) x y=1
$$

(notation for $y: 1 / x$).
(4) multiplication distributes over addition: $x(y+z)=x y+x z$

Abbreviations: $a-b=a+(-b), a / b=a \cdot 1 / b, n=\underbrace{1+1+\cdots+1}_{n \text { times }}$.
Proposition 4.2. (1) 0 is the only neutral element for addition.
(2) The additive inverse is unique. (So - in (3) of the definition is a function.)
(3) 1 is the only neutral element for multiplication.
(4) The multiplicative inverse is unique. (So the reciprocal (1/) in (3) of the definition is a function.)
(5) $x+y=x+z \Longrightarrow y=z$
(6) $0 x=0$ (in particular, if $\exists x \neq 0$, then $0 \neq 1$)
(7) $(-1) x=-x$

Proof. 1. If 0^{\prime} is also neutral for addition, then we have $0=0+0^{\prime}=0^{\prime}$.
2. if y and z are both additive inverses of x, then

$$
\begin{aligned}
y & =y+0 & & 0 \text { is neutral } \\
& =y+(x+z) & & z \text { is an additive inverse of } x \\
& =(y+x)+z & & + \text { is associative } \\
& =0+z & & y \text { is an additive inverse of } x \\
& =z & & 0 \text { is neutral }
\end{aligned}
$$

3,4. Similar to the previous two.
5.

$$
\begin{aligned}
y & =0+y & & 0 \text { is neutral } \\
& =(-x+x)+y & & -x \text { is the additive inverse of } x \\
& =-x+(x+y) & & + \text { is associative } \\
& =-x+(x+z) & & \text { assumption } \\
& =(-x+x)+z & & + \text { is associative } \\
& =0+z & & -x \text { is the additive inverse of } x \\
& =z & & 0 \text { is neutral }
\end{aligned}
$$

6. $x y=x(y+0)=x y+x 0$ due to distributivity, from which adding $-(x y)$ to both sides (cf. (5)!) gives the result.
7. $x+(-1) x=1 x+(-1) x=(1+(-1)) x=0 x=0$ and this is enough because of the uniquness of - . In the first equality, we used (3), in the second, (4) of the definition, in the third, the fact that -1 is the additive inverse of 1 , and in the last, (6).
