Info1, 1st and 2nd midterm retakes

December 13, 2022

Download https://math.bme.hu/~asimon/info1/retake.tex (or retake.tex from Teams) and write in it your solutions to both the TikZ and the Sage problems (the latter after \end\{document\}). You have } 6 0 minutes for each of the retakes. When ready, send the .tex file to sa42bme@gmail.com, and put your neptun code in the subject.

1 First midterm retake

1.1 $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$

1. There aren't many who know that $\arctan x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ on the interval $(-1,1]$.

Solution.

There aren't many who know that $\$ \backslash \arctan \mathrm{x}=$ \sum_0^\infty (-1)^n\frac\{x^\{2n+1\}\}\{2n+1\}\$ on the interval $\$[-1,1] \$$.
inline math, \sum (with limits), exponent, \frac, \arctan
2.

$$
\left(\begin{array}{ccc}
1 & e^{x} & e^{-x} \\
0 & e^{x} & -e^{-x} \\
0 & e^{x} & e^{-x}
\end{array}\right) \neq\left|\begin{array}{ccc}
1 & e^{x} & e^{-x} \\
0 & e^{x} & -e^{-x} \\
0 & e^{x} & e^{-x}
\end{array}\right|
$$

(10 points)
Solution.
\begin\{pmatrix\}1 \& } e ^ { \wedge } x \& e ^ { \wedge } \{ - x \} \backslash \backslash 0 \& e ^ { \wedge } x \& - e ^ { \wedge } \{ - x \} \backslash \backslash 0 \& e ^ { \wedge } x \& e ^ { \wedge } \{ - x \} \end\{pmatrix\}\neq }
\begin\{vmatrix\}1 \& } e ^ { \wedge } x \& e ^ { \wedge } \{ - x \} \backslash 1 0 \& e ^ { \wedge } x \& - e ^ { \wedge } \{ - x \} \backslash \backslash 0 \& e ^ { \wedge } x \& e ^ { \wedge } \{ - x \} \end\{vmatrix\}\] }

displayed math, pmatrix, vmatrix, \&s and $\backslash \backslash s$, exponent

1.2 TikZ

1. Draw the red part with one command (that is, as one path), if you can. Do the same with the gray part, too.

$(0,0)$

Solution.

\draw[thin,gray] (-0.2,-0.2) node[below] \{\$(0,0)\$\} grid (3.2,2.2) node[above] \{\$(3,2)\$\};
\draw[red,fill] (0,0) circle (0.1) -- (1,2) circle (0.1) -- $(2,0)$ circle (0.1) -- $(3,2)$ circle (0.1);
draw[fill] or fill, circle (4, if used as a path ext. op.), grid, node
2. The radius of the circle below is 2 .

Solution.

\draw $(0,0)$-- ($90: 2$) node[midway,above,sloped] \{\$90\$\} $(0,0)$
-- (210:2) node[midway, below, sloped] \{\$210\$\} $(0,0)$-- $(330: 2)$
node[midway, above, sloped] $\{\$ 330 \$\}(0,0)$ circle (2) ;

2 Second midterm retake

2.1 TikZ

1. Write TikZ code that produces the following drawing.

Hint:

(6 points)
Solution. \clip (0,0) circle (2);
\backslash fill[red] (-2,-1.5) rectangle (2,1.5);
or
\clip (-2,-1.5) rectangle ($2,1.5$) ;
$\backslash f i l l[r e d] ~(0,0)$ circle (2);

```
clip, filled rectangle or circle, circle
```

2. Write $\mathrm{Ti} k \mathrm{Z}$ code that uses a loop to produce the following picture!

Hint: the drawing contains rotated (by 30 degrees) versions of an equilateral triangle, around one of its vertices. You do not need any computation to draw the triangle.

(10 points)

```
Solution. \foreach \(\backslash x\) in \(\{0, \ldots, 11\}\) \{
    \draw [red, fill, rotate=\{\x*30\}] (0,0) -- \((1,0)\)-- ++(120:1) -- cycle ;
\}
```

 relative coordinates, polar coordinates, loop, rotate,fill

2.2 Sage

Use whichever Sage client (the one running on your own laptop, https: //sagecell.sagemath.org/, https://cocalc.com/, etc.) you're used to to solve the problems below. The solution you need to submit is the Sage command or commands that you used, not what Sage returns as its/their result(s).

1. (a) $\lim _{x \rightarrow-0} \arctan (1 / x)=$? (The name of the function arctan in Sage is atan or arctan.)
(4 points)
limit, dir
(b) Define the function $f(x)=\arctan (2 x)$.
(2 points)
(c) Find a primitive function of $f(x)$.
(2 points)
(d) Plot the graphs of f and its primitive function you've found in on the interval $[-3,3]$ with different colors and so that it is shown which color belongs to which function, as in the figure below.

(12 points)
```
plot,+, interval, legend_label, color, raw string
```

Solution. $\operatorname{limit}(\operatorname{atan}(1 / x), x=0, \operatorname{dir}=$ - ' $)$
$f(x)=\operatorname{atan}(2 * x)$
$\mathrm{g}=$ integral $(\mathrm{f}(\mathrm{x}), \mathrm{x})$
plot (f, ($\mathrm{x},-3,3$), legend_label=r'\$ $\left.{ }^{\prime} \arctan (2 \mathrm{x}) \$^{\prime}\right)+$
plot ($\mathrm{g},\left(\mathrm{x},-3,3\right.$), color='red', legend_label=r'\$\int $\left.\backslash, \arctan (2 \mathrm{x}) \${ }^{\prime}\right)$
or
plot($(f, g),(x,-3,3), l e g e n d _l a b e l=(r \prime \$ \backslash \arctan (2 x) \$ ', r \prime \$ \backslash i n t \backslash \arctan (2 x) \$ ')$, color=('blue', 'red'))
2. Is the matrix $\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 2 & 3 & 2\end{array}\right)$ invertible?

Solution. $m=\operatorname{matrix}([[1,2,1],[0,1,0],[2,3,2]]) ; \operatorname{rank}(m)==3$
or

$$
\operatorname{det}(m) \quad!=0
$$

(6 points)
defining a matrix, rank or det, == or !=

