Sage

Kovacs Kristof, Magyar Andras, Simon Andras

November 22, 2023

Sage is a Computer Algebra System meaning that it can do both numeric
and symbolic computation. It’s built on the Python programming language, so
it is programmable.

Some resources:

e Paul Zimmermann & al., Computational Mathematics with SageMath
https://www.sagemath.org/sagebook/english.html

e Sage documentation https://doc.sagemath.org/

o Miscellaneous resources http://www.gregory-bard.com/Sage.html
How to try it?

e https://sagecell.sagemath.org/ (you can’t save your work here)

e https://cocalc.com/ (you need to register, but you can save your work,
a bit like with Overleaf)

o (doesn’t work yet) Log in to leibniz, open a terminal, do
leibniz:~$ ssh tarski
...0Qtarski’s password: XXXXX
tarski:~$ sage
where XXXXX is your password. (You can also start sage on leibniz, but
you get an old version.)

1 A taste of what is possible

sage: 1+1
2

sage: factor(123456)
276 * 3 * 643

https://www.sagemath.org/sagebook/english.html
https://doc.sagemath.org/
http://www.gregory-bard.com/Sage.html
https://sagecell.sagemath.org/
https://cocalc.com/

sage: factorial(42)
1405006117752879898543142606244511569936384000000000

sage: factor(x~2-1)

x+ D*(x - 1)

This was a typical symbolic calculation.
sage: solve(x~2-1==0,%)

[x == -1, x == 1]

sage: m = matrix([[1,1,1],[1,2,3],[3,2,1]1])

sage: m

(11 1]
[1 2 3]
[3 2 1]

sage: m+m

[2 2 2]
[2 4 6]
(6 4 2]

sage: m~2

[5 5 5]
[12 11 10]
[8 9 10]

sage: diff (sin(x),x)
cos(x)

sage: integral(sin(x),x)
-cos (x)

What is programmability, and why is it useful?

Here’s a simple example. Fermat conjectured in the 17th century that all num-
bers of the form F,, = 22" + 1 (where n € N) are primes. If he had Sage, he
could’ve easily found a counterexample:

sage: for n in range(1,60):
if not(is_prime(27(2°n)+1)):
print (f"n={n} is a counterexample: 27(27{n})+1 = {factor(27(2°n)+1)}")
break
n=5 is a counterexample: 27(275)+1 = 641 * 6700417

So Fj is a composite number. (Actually, it’s still not known whether there is an
n > 5 such that F), is prime.)
Here’s another:
sage: [[Subsets(n, m).cardinality() for m in range(n+1)] for n in range(10)]

[[11,

(1, 11,

[1, 2, 11,

[1, 3, 3, 11,

[1, 4, 6, 4, 11,

[1, 5, 10, 10, 5, 1],

[1, 6, 15, 20, 15, 6, 1],

[1, 7, 21, 35, 35, 21, 7, 1],

(1, 8, 28, 66, 70, 56, 28, 8, 1],

[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]

This is Pascal’s triangle, because Subsets(n,m) returns all subsets of size m of
the set {1,2,...,n}. We could’ve written

sage: [[binomial(n,m) for m in range(O,n+1)] for n in range(10)]

to get the same result.

2 Basics

= is for assignment
sage: 3 = 3
ValueError

sage: a = 3

sage: a
3

sage: type(a)

<type ’sage.rings.integer.Integer’>

This, by the way, is not the type of a but of the value of a:
sage: a = "Hello World!"

sage: type(a)
<type ’str’>
Let’s do

sage: a = 3

again.

For comparison, use == (and <=, >=, <, > I=):

sage: a == 3
True

sage: a > 3

False

Some mathematical operations:
sage: 2716

65536

sage: 2**16
65536

sage: 13/4
13/4

sage: 13//4 #integer quotient
3

sage: 13)4 #remainder (13 modulo 4)

1

(The next three works only in the command line version.)
sage: _ #the last result

1

sage: ___ #the one before the last but one result
3

sage: __ #the last but one result

1

We can get multiple results in one go:

sage: a == 3, a > 3

(True, False)

sage: type(_)

<type ’tuple’>

And we can give more commands (to be executed in sequence) in one go:
sage: a = 3; a

3

Operators \ Description

or boolean or

and boolean and

not boolean not

in, not in membership

is, is not identity test

> <= > >= == I|= | comparison

+, - addition, subtraction

* /% multiplication, division, remainder
**, 7 exponentiation

Here the later an operator comes, the higher its precedence. So for example
sage: 273%4 == (273)*4
True
but
sage: 273*%4 == 27(3%4)
False

sage: sqrt(2) #Sage is exact
sqrt (2)

sage: sqrt(2.0) #but only when it can be
1.41421356237310

sage: n(sqrt(2)) #and even then, we can force it to be nonexact
1.41421356237310

The function n() returns a numerical approximation.

sage: sqrt(2)~2 #Sage is exact

2

There’s more to say about approximation, but before going any further, we
note that the functions we used so far have method “counterparts”, too, so we
can write
sage: 2.sqrt(), 2.sqrt().n(), sqrt(2).n(0
(sqrt(2), 1.41421356237310, 1.41421356237310)

Some more examples of numerical approximations (and methods):
sage: pi #exact
pi
sage: n(pi) #numerical approximation

3.14159265358979

sage: n(pi,digits=50) #...to 50 digits
3.1415926535897932384626433832795028841971693993751
We could have written pi.n(digits=50) instead.

sage: sin(pi/3) #exact
1/2*sqrt (3)

sage: n(sin(pi/3)) #approximation
0.866025403784439

sage: sin(n(pi/3)) #approximation
0.866025403784439

To get general help, type 7. To get help on any sage function, type its name
followed by 7, e.g. sin? or diff?.

When you type something like sin? in the command line version of
Sage, it may start a paging program to display the requested help. Type a
space to scroll to the next page, type h to get help on the paging program,
and type q to quit it and return to the sage: prompt. The up/down arrow
keys and the PgUp/PgDn keys will likely work.

In the command line version, use TAB-completion!

2.1 Basic Algebra and Calculus

When doing symbolic computations, we need symbolic variables, as opposed to
ordinary variables. One difference is that ordinary variables are always eval-
uated, while symbolic ones are not. And the latter is what we usually want
in mathematics, because when we write 2 + 1, we want the polynomial, not
the number that one gets by evaluating this expression using the value of x.
Similarly, in sin’ z (diff (sin(x),x)) we don’t care what the value of z is, we
want to differentiate the function sinz.!

x is a symbolic variable by default:
sage: type(x)
<type ’sage.symbolic.expression.Expression’>
as opposed to
sage: type(y)
NameError: mname ’y’ is not defined
But we can turn y into a symbolic variable like this:
sage: var(’y’)
y
and now we have
sage: type(y)
<type ’sage.symbolic.expression.Expression’>
In fact, we can do this for more than one variable simultaneously like this:

Hn fact, what are called “symbolic variables” here can be found in ordinary programming
languages, such as Python, too. When defining a function, its variables are also not evaluated,
they’re just “placeholders”.

sage: var(’m xx yy zz’)
(m, xx, yy, zz)

Defining mathematical (“callable symbolic”) functions

sage: £(y) = y™3 ; £

y |->y73
sage: £(3)
27

A side effect of defining £ above is that y is turned into a symbolic variable. So
sage: f(2*y)

8+y~3

also works, as does

sage: f(2*x~2)

8xx”6

but not £ (2*z) unless z has already been turned into a symbolic variable. Some
other things to do with our function:

sage: diff (f)

y [-> 3xy~2

sage: diff(f,2) #differentiate it twice

y |=> 6x*y

But diff (f,y) and diff (f,y,2), orindeed diff (f(y),y) and diff (£ (y),y,2)
might be clearer?. And one needs to name the variable anyway for multivariable
functions? , as in this example:

sage: g(x,y) = y*exp(x*y)

sage: diff(g,y)

(x, y) |=> xxyxe~(x*xy) + e~ (x*y)
or

sage: g.diff (y)

(x, y) |=> xxy*e™(x*y) + e” (x*y)
or even

sage: g(x,y) .diff(y)

x*y*e"(x*y) + eA(X*y)

Sage can find a primitive function of a function:
sage: integral (f (y),y)
1/4%y~4

20n the other hand, diff(f) and diff(f,y) are themselves “callable symbolic” functions,
while diff (£(y),y) is just an expression. This means that one can write diff (£,y) (42), but
not diff (£(y),y) (42); we need to substitute 42 for the variable y in diff (£(y),y) like this:
diff (£(y),y) .subs(y=42). We’ll meet the method .subs() very soon.

3unless one wants its Jacobi matrix

or integrate it:

sage: integral(f(y), y, 1, 4)

255/4

(that is, f14 f(y)dy = £2) or compute its limits:
sage: g(y) = (1 + pi/y)7y

sage: limit(g(y), y=infinity)

e pi

or

sage: g(y).limit(y=infinity)

e’pi

It can also mislead us:

sage: limit(1/y, y = 0)

Infinity

even though it knows that

sage: 1limit(1/y, y = 0, dir = ’-?)
-Infinity

By the way, infinity can be written as oo, too.

If we want to do just one thing with a function, there’s no need to define it.
For example, instead of defining £(y) = y~3 and then integrating it as above,
we could just say
sage: integral(y~3,y,1,4)

255/4

And even if we want to do more with it, the command line client has history
(we can easily recall earlier commands, using not just the arrow keys, but in-
cremental backward search, started by Ctrl-r, just as on the command line),
so we may not want to define it. On the other hand, TAB-completion seems to
work better on defined names. So for example, pressing TAB after writing f.in
shows

f.integral f.inverse_laplace
f.integrate f.inverse_mod

but does nothing after y~3.in. Try it! The situation is similar with help for
methods.

While dealing with terms (“expressions”), sometimes we want to substitute
a term for a variable (or even for another, more complex subterm). We can do
that with the method subs(). Some examples:
sage: ((x+cos(y)) ~3+x*y) .subs(y=z+1)
(x + cos(z + 1))73 + xx(z + 1)
This was typical. Don’t forget the parentheses around the expression you want
to do the substitution in:
sage: (x+cos(y)) ~3+x*y.subs(y=z+1)
(x + cos(y))"3 + xx(z + 1)
Here the first y was left alone, because Sage didn’t know it was part of the
expression subs () was supposed to operate on.

Less typical is when we want to replace a more complex subterm. In this
case we need to use either == in place of =:
sage: ((x+cos(y)) ~3+x*y).subs(x*y==z+1)
(x + cos(y))™3 +2z + 1
or a dictionary (this is a Python data structure):
sage: ((x+cos(y)) ~3+x*y) .subs({x*y: z+1})
(x + cos(y))™3+z +1

Two other often used methods for expressions are expand () and collect ():
sage: ((x+cos(y)) ~3+xxy) .expand()
x73 + 3*x72xcos(y) + 3*x*xcos(y)~2 + cos(y)~3 + x*y

sage: ((x+cos(y)) "3+x*y) .expand().collect(x)
X"3 + 3*x72xcos(y) + cos(y)~3 + (3*cos(y)~2 + y)*x
This grouped the coefficients of the powers of x.

Solving equations

We have already seen the solve() function at work.

sage: solve(x~2-1==0,x)

[x == -1, x == 1]

This works too:

sage: solve(x~2-1,x)

[x == -1, x == 1]

because if only a term is given, not an equation, it will assume that we want to
find its roots. What solve() returned is the list* of solutions.

sage: type(_)

<class ’sage.structure.sequence.Sequence_generic’>

This is a special kind of list but a list nonetheless:

sage: isinstance(solve(x~2-1,x), list)

True

For this reason, the individual solutions can be accessed by indexing it with
[i]; so for example, after

sage: sols = solve(x~2-1,x)

we can write

sage: sols[1]

x ==

Note that the indexing starts with 0. And if we want the actual value (we
probably do), for example, to test that it really is a solution (see subs() above),
then we take the right hand side of this equation:

sage: sols[1].rhs()

1

41ist is a Python data structure which contains a collection of objects that can be accessed
by indexing with natural numbers.

solve() will always attempt to find exact solutions (at least with single
equations). If it can’t, it returns the original equation, sometimes in slightly
disguised form:
sage: solve(x~7-3%x"2+1,x)
[0 == x77 - 3*x72 + 1]
If this happens, we can use find_root® to find real roots :
sage: find_root (x~7-3*x~2+1,-100,100)
-0.5715684166370613
to get a numerical approximation to one of its solutions. The last two arguments
specify the interval on which to look for a root. So to find a different root we
may try this:
sage: find_root (x~7-3*x"2+1,0,100)
1.1792979467976112
Inequalities can also be solved by solve():
sage: solve(x"2>8,x)
[[x < -2xsqrt(2)], [x > 2*sqrt(2)]]
We can solve equations for one variable in terms of others:
sage: var(’x a b c¢’)

sage: solve(a*x~2 + b*x + c,x)
[x == -1/2%(b + sqrt(b”2 - 4*a*c))/a, x == -1/2*%(b - sqrt(b~2 - 4*axc))/a]
We can also solve the same equation for the other variables, even though this is
not very useful in this case:
sage: solve(a*x™2 + bxx + c¢==0,b)
[b == -(a*x™2 + ¢)/x]
Solving multiple equations (systems of equations) and inequalities simultane-
ously is also possible:
sage: solve([x+y==6, x*xy==4], x, y)
[[x == -sqrt(5) + 3, y == -4/(sqrt(5) - 3)], [x == sqrt(5) + 3, y ==
4/ (sqrt(5) + 3)1]
The first argument in this case is the list of equations (and inequalities) we want
to solve, and the remaining arguments are the “unknowns”.
Here’s an example with an inequality:
sage: solve([x"2 -1==0, x<0],x)
[[x == -1]1]
Sometimes solve() doesn’t return all solutions:
sage: solve(sin(x),x)
[x == 0]
But we can force it to work harder:
sage: solve(sin(x),x, to_poly_solve=’force’)
[x == pi*z35]
235 is freshly generated symbol and stands for any integer. Another example:
sage: solve(abs(x)==1,%)
[abs(x) == 1]

5or the keyword argument to_poly_solve of solve() — see below!

10

but

sage: solve(abs(x)==1,x,to_poly_solve=’force’)

[x == —1’ x == 1]

Much better. See the help or the documentation for other possibilities.

Assumptions

sage: solve(x"2==1,%)
[X == —1’ X == 1]

sage: assume(x>0); solve(x~2==1,x)
[x == 1]

sage: assumptions()
[x > 0]

sage: forget(x>0); solve(x~2==1,x)

[x == -1, x == 1]

There are other kinds of assumptions. For example:
sage: assume(y,’integer’)

or even

sage: assume(y,’odd’)

Linear algebra

We have already seen how to solve (systems of) equations: of course, these
equations can be linear.
sage: solve([2*x + 4%y == 14,3%x + 2%y == 13],x,y)
[[x == 3, y == 2]]
Here is one with infinitely many solutions (not surprisingly):
sage: solve([4*x - 2%y + 3%z == 1, 8%x - 4xy + 6%z == 2, 12%x - 6%y
+ 9%z == 3],x,y,2)
[[x == -3/4*r3 + 1/2xr4 + 1/4, y == r4, z == r3]]
r3 and r4 are freshly generated symbols and stand for any real numbers.
If there are no solutions, solve() returns the empty list:
sage: solve([x + y == 0, x + y == 1],x,y)
(]

We can solve the system of equations above (the one with infinitely many
solutions) in matrix form, too. The simplest way to define a matrix is to call the
function matrix () with the list of rows (each of which is a list of its entries):
sage: A = matrix([[4,-2,3],[8,-4,6]1,[12,-6,9]]1) ; A

—/
w
[et

11

[12 -6 9]

But it’s safer to write

sage: A = matrix(QQ, [[4,-2,3],[8,-4,6],[12,-6,9]])

to let Sage know that it’s OK to do computations in Q and not just in Z (where
the coeflicients come from). (Writing RR in place of QQ would work, too, but
then we’d lose exactness.)

sage: v = vector([1,2,3]).column() ; v

(1]
[2]
(3]

sage: A.solve_right(v)
(or A \ v)

[1/4]
[o]
(o]

This is a particular solution, and is correct, because
sage: Ax(A \ v)

[1]
(2]
(3]

If we want all solutions, we need to add to this all linear combinations of a basis
of the null space (or kernel) of A®. These are the rows of
sage: k = A.right_kernel() ; k

Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:

[1 0 -4/3]

[0 1 2/3]

This looks like a matrix but it is not. (Check with type(k)!) To get a matrix,
do
sage: m=k.matrix() ; m, type(m)

[1 0 -4/3]
[0 1 2/3]
<type ’sage.matrix.matrix_rational_dense.Matrix_rational_dense’>

SIf Axg = b, then the set of all solutions of the equation Ax = b is zo + Ker A(={zo+z:
Az =0}).

12

and then we can access its rows:

sage: m[0] , m[1]

(1, o, -4/3), (0, 1, 2/3))

whose linear combinations should be added to the particular solutions above to
get all solutions.

Some other things to do with matrices: A is still the matrix we used before:
sage: A

[4 -2 3]
[8 -4 6]
[12 -6 9]

Asking for a specific row or column of a matrix:
sage: A.row(1)

(8, -4, 6)

or

sage: A[1]

(8, -4, 6)

and

sage: A.column(1)
(-2, -4, -6)

We can augment a matrix with extra columns
sage: A.augment (v)

[4-2 3 1]
[8-4 6 2]
[12 -6 9 3]

and reduce it to echelon form:
sage: A.augment (v) .echelon_form()

[1 -1/2 3/4 1/4]
[o 0 0 0]
[o 0 0 0]

From this we know already that

sage: A.rank()

1

If B is an invertible matrix

sage: B = matrix(QQ, [[2,4,0],[0,-1,1],[1,1,8]1]); rank(B)
3

then inverting it is just a matter of taking its —1st power:

sage: B, B7(-1), B7(-1)*B

13

(
2 4 o] [9/14 16/7 -2/71 [1 0 0]
[0 -1 1] [-1/14 -8/7 1/71 [0 1 0]
(1 1 81, [-1/14 -1/7 1/71, [0 O 1]
)

A.eigenvalues() and A.eigenvectors_right() and A.charpoly () return
the eigenvalues, the eigenvectors, and the characteristic polynomial, respec-
tively, of the matrix A.7
sage: A.charpoly()

x"3 - 9%x"2

sage: A.eigenvalues()
(9, 0, 0]

sage: A.eigenvectors_right ()

[Co,
L
(1, 2, 3)
1,
D,

(o,
L
(1, 0, -4/3),
(0, 1, 2/3)
1,
2)

And indeed:
sage: Axx*vector([1,2,3]), Ax(x*vector([1, 0, -4/3]) + y*vector([O,
1, 2/31))

((9*x, 18xx, 27*x), (0, 0, 0))

But even Sage didn’t have such functions, we could compute eigenvalues/eigenvectors:
sage: I3 = identity_matrix(QQ,3) ; I3

[1 0 0]
[0 1 0]
[0 0 1]

"Recall that the eigenvalues of A are the roots of det (A — AI) = 0, the characteristic
equation (det (A — AI) is the characteristic polynomial) of A. The eigenspace (the null vector
and the eigenvectors) corresponding to the eigenvalue A are the solutions of the equation
A — A, that is, Ker(A — \I).

14

sage: x * I3

[x 0 0]
[0 x 0]
[0 0 x]

So we can get the characteristic polynomial of A by evaluating

sage: det (A - x*I3)

-((x + D*(x - 9) + 36)*(x - 4) + 20%x

which, after some simplification, will look familiar:

sage: _.simplify_full()

-x"3 + 9%x72

Then we get the eigenvalues of A with

sage: solve(det(A - x*I3),x)

[x == 0, x == 9]

In this case we may be interested in the multiplicities of the roots, so we evaluate
sage: solve(det(A - x*I3),x,multiplicities=True)

([x == 0, x == 9], [2, 1])

meaning that 0 is a double root. And now we can get a basis for the eigenvectors
belonging to the various eigenvalues like this:

sage: (A - x*I3).subs(x=9).right_kernel()

Vector space of degree 3 and dimension 1 over Symbolic Ring
Basis matrix:
[1 2 3]

sage: (A - x*I3).subs(x=0).right_kernel()

Vector space of degree 3 and dimension 2 over Symbolic Ring
Basis matrix:

[1 0 -4/3]

[0 1 2/3]

Some other things to do with vectors:
sage: v = vector([1,2,3]) ; w = vector([3,2,1]); v, w
1, 2, 3, 3, 2, 1))

sage: v.norm()
sqrt (14)

sage: v.dot_product (w)
10

sage: v.cross_product (w)
(_4: 8’ _4)

15

sage: v.cross_product (w) .dot_product(v),v.cross_product(w) .dot_product (w)
(0,0)
as it should be.

Number theory

We've seen already that numbers (as well as polynomials) can be factorized
using factor():

sage: factor(123456)

276 * 3 * 643

divisors() returns the list of divisors of a number

sage: divisors(12)

[1, 2, 3, 4, 6, 12]

If we just want to take the remainder of a number on division by another,
Python’s % is fine:
sage: 13711
2
But there’s also Sage’s own mod () which returns a representative of the appro-
priate equivalence class:
sage: a = mod(13,11) ; a
2
But there’s more here than meets the eye:
sage: a.parent ()
Ring of integers modulo 11
and
sage: a~4
5
because 24 (mod 11) = 5. So for example, to get 51 mod 26, we evaluate
sage: m = mod(5,26)7(-1); m
21
and indeed,
sage: m*mod (5,26)
1

gcd () computes the greatest common divisor of its two arguments, or of the
elements of the list which is given as its only argument:
sage: gcd(123,240)
3

sage: gcd([123,240,500])
1
lem() (least common multiple) works similarly.
Euler’s ¢ function (the number of natural numbers below a number relatively
prime to it) is computed by euler_phi():

16

sage: euler_phi(8)
4
the number of odd numbers below 8.
solve_mod () returns all solutions to an equation or list of equations modulo
the given integer modulus. Each equation must involve only polynomials in
one or more variables. For example, to solve the linear congruence 12z = 15
(mod 21) we write
sage: solve_mod(12*x==15,21)
[(3,), (10,), (17,)]
We could’ve computed 5~ mod 26 above this way, too:
sage: solve_mod(5*x == 1, 26)
[(21,)]
But we’re not stuck with linear congruences. We can solve a congruence like
1225 = 15 (mod 21), too:
sage: solve_mod(12*x~5==15,21)
[(12,), (19,), (5,)]
and indeed, for example
sage: mod(12%575,21)
15

For simultaneous solution of linear congruences with different moduli we can
use crt () (which is acronym for “Chinese Remainder Theorem”). For example,
to solve

x=3 (mod) z=4 (mod?9) x=5 (mod 25)

we write

sage: crt([3,4,5],[8,9,25])

355

and this result means that the set of all solutions is {n : n = 355 (mod 8-9-25)}.

Polynomials

If we want x to not simply be a mathematical variable but an indeterminate in
a polinomial ring, we should write
sage: x = polygen(QQ, ’x’)

or
sage: x = polygen(CC, ’x’)

or

sage: x = polygen(Integers(8), ’x’)
or

sage: x = polygen(GF(5), ’x’)

etc. depending on which ring (Q[z], Clz], Zg[x] or Z5[x]) we want, instead of sim-
ply var (’x?) (which, in interactive use, is equivalent to writing x = var(’°x’)).
Here’s how we can check this:

17

sage: y = var(’y’); q = (2xy+1)*(y+2)*(y~4-1); y.parent(),q.parent(),q
(Symbolic Ring, Symbolic Ring, (y~4 - 1)*(2xy + 1)*(y + 2))

but

sage: y = polygen(QQ,’y’); q = (2xy+1)*(y+2)*(y~4-1); y.parent(),q.parent(),q
(Univariate Polynomial Ring in y over Rational Field, Univariate Polynomial
Ring in y over Rational Field, 2*%y~6 + b5%y~5 + 2xy~4 - 2%y~2 - bxy

- 92)

or

sage: y = polygen(GF(5),’y’); q = (2*xy+1)*(y+2)*(y~4-1); y.parent(),q.parent(),q
(Univariate Polynomial Ring in y over Finite Field of size 5, Univariate
Polynomial Ring in y over Finite Field of size 5, 2xy~6 + 2%y 4 + 3%y 2

+ 3)

Example. How many different roots does the polynomial y* — 2 have as a
polynomial over Q, C, R and Zg?
sage: rings = [QQ, RR, CC, Integers(8)]

sage: for r in rings:

celat y = polygen(r,’y’)

ceas q=y4-2

et print(r, len(q.roots(multiplicities=False)))
(Rational Field, 0)

(Real Field with 53 bits of precision, 2)

(Complex Field with 53 bits of precision, 4)

(Ring of integers modulo 8, 0)

Why different roots? Because the method .roots(multiplicities=False)
returns the list of different roots. Without this keyword argument (or with
.roots(multiplicities=True)) it returns the list of pairs (r, n), where r is
the root and n is the multiplicity, so the length of the list is still the number of
different roots.® For example
sage: x = polygen(QQ,’x’); p = (x-1)72 * (x+3); p, p.roots()

(x™3 + x72 - Bxx + 3, [(-3, 1), (1, 2)1)

Of course, we can add, multiply, etc. polynomials. For example,
sage: y = polygen(Integers(3),’y’); p = 2*y+1l; p+p, p*p, p 2, p/p
(y+2, y2+y+1,y2+y+1, 1)

Division with remainder:
sage: x = polygen(QQ,’x’); p = x"3+1; q = 2*x-1; p//q, phq
(1/2%x"2 + 1/4xx + 1/8, 9/8)
which says that 23 + 1= 2z — 1) (322 + 1o+ %) + 2.

8] used multiplicities=True here because Sage can’t compute the multiplicities of roots
of polynomials over Z,, for composite n. This is not a shortcoming of Sage but that of the
universe.

18

Greatest common divisor:

sage: x = polygen(QQ,’x’); p = x"4-4*x"3-x"2+16%x-12; q = x"2-2%x-3;
p-gcd(q)

x -3

Factorization:

sage: x = polygen(GF(2),’x’); p = x"5+3*x-1 ; p.factor()
"2 +x+1) x (x°3+x72+ 1)

but

sage: x = polygen(ZZ,’x’); p = x"5+3*x-1 ; p.factor()
x"5+3*x-1

and this is how it should be, because

sage: p.is_irreducible()

True

Example. What are the rational roots of 2z* — 523 — 822 + 172 — 67

sage: x = polygen(QQ,’x’); p = 2*x"4 - 5*x"3 - 8*x"2 + 17*x - 6; p.factor()
(2) * (x-3) * (x-1) x (x-1/2) * (x +2)

or

sage: p.roots()

(@3, v, @, O, @2, 1, -2, 1]

(the second members of the pairs are the multiplicities).

Plotting functions

The command plot (f(x), (x,a,b)) plots the graph of f restricted to the in-
terval [a,b]. How the graph will appear can be changed by various keyword
arguments. (If we don’t specify their values, plot () will work with their de-
fault values.) For example, the keyword argument aspect_ratio describes the
height/width ratio of a unit square. So to make the vertical units be twice as
big as the horizontal units, we need to specify an aspect ratio of 2.

On Figure 1, we see the effect of the default aspect_ratio=’automatic’,
and on Figure 2 the effect of aspect_ratio=1.

The following animation shows that affect of aspect_ratio:
sage: 1 = [plot(sin(2*x),(x,-5,5),aspect_ratio=2, color=’red’), plot(sin(2*x),(x,-5,5),
aspect_ratio=1)]

sage: an = animate(l); an.show(iterations=3, delay=100)

The automatic aspect_ratio comes in handy sometimes, see for example
Figure 3.

If the problem is only some extremely big or small values, we can use the
keyword arguments ymin and ymax. For example, Figure 4 is a much more
informative version of the graph of 1/x than the one shown in Figure 5.

19

1.0 1

) A /\

T T T T T T T T T T T
2 4

_1.0 -

Figure 1: plot(sin(2*x), (x,-5,5))

1.0

1.0

Figure 2: plot(sin(2*x),(x,-5,5), aspect_ratio=1)

The area between the x axis and the graph can be filled (see Figure 6) using
the keyword argument £ill. But one can chose any other horizontal line in
place of the x axis (that is, the line y = 0): £i11=42 will fill the area between
the line y = 42 and the graph, see Figure 7.

One can annotate the figure with the name of the function whose graph
it contains using the keyword argument legend_label (see Figure 8). Its
value is a WTEX string, but if that contains a ’\’ character, we need to write
r’latexstring’ in place of ’latexstring’ (this is needed because otherwise
Python would think that we want to escape the character following ’\’).

This is especially useful if a figure contains the graphs of two or more func-
tions, as in Figure 9.

20

140 +

120 1

100 1

80

60

40 A

20 1

Figure 3: plot(exp(x), (x,-5,5))

There are two more interesting points here. The first is that one can specify
the colour of the graph (color=’red’). The other is a nice feature of Python:
since we need the character ’ within the ITEXstring (to denote derivation),
we can use the character " instead of the character > to delimit the string
"$\sin(2x) ’$".

We can graph functions in polar coordinate system, by using the keyword
arguments polar=True and aspect_ratio=1. This is how Figure 10 was cre-
ated. (This, by the way, is one of the exercises in tikzlaben.) But it could
have been created with the command polar_plot() as follows:
sage: polar_plot(exp(x/8),(x,0, 4*pi))

Parametric plots

These are the curves that are given by their coordinate functions. We have
encountered such in TikZ when we plotted functions, but there we may have
used the identity function as the first coordinate function, as in Figure 11. But
there is no need to “simulate” plot () this way, see Figures 12, 13 and 14.

One can also fill the inside of a closed curve, but here the value of £i1l can
only be True (or False, which is the default). See Figure 15.

21

Figure 4: plot(1/x,(x,-5,5), ymax=5, ymin=-5)

5000

4000 A

3000 A

2000

1000 +

Figure 5: plot(1/x,(x,-5,5))

22

NN V\ /\

Figure 6: plot(sin(2*x),(x,-5,5), fill=’axis’,aspect_ratio=1)

S

Figure 7: plot(sin(2*x),(x,-5,5), £i1l1l=0.5,aspect_ratio=1)

—xz+sin(l/z)

-0.2 1

Figure 8: plot(x*sin(1/x),(x,-1,1), legend_label=r’$x\sin(1/x)$’)

23

= sin{2z)
— sin(2z)’

Figure 9: £(x) = sin(2*x); P1 = plot(f(x),(x,-5,5), aspect_ratio=1,
legend_label=r’$\sin(2x)$’); P2 = plot(diff(f(x),x),(x,-5,5),
aspect_ratio=1, color=’red’, legend_label=r"$\sin(2x)’$"); P1 +
P2

Figure 10: plot(exp(x/8),(x,0, 4*pi), polar=True, aspect_ratio=1)

24

1.0
0.5 %
T T T T T T
-6 —4 M 2 4
-1.0

Figure 11: parametric_plot((x,sin(x)), (x,-2%pi,2*pi) ,aspect_ratio=1)

/‘Oj
T
.0 —-0.5

T
0.5 0

Figure 12: parametric_plot((cos(x),sin(x)), (x,0,2*pi) ,aspect_ratio=1)

/Z

T T T
0 -1.5 -1.0 -0.5

Figure 13: parametric_plot((2*cos(x),sin(x)), (x,0,2*pi) ,aspect_ratio=1)

25

=0.00

Figure 14: parametric_plot ((5*cos(x),5*sin(x),x), (x,-4*pi,4*pi),plot_points=150,
color="red")

1.0 A

—1.0 1

Figure 15: parametric_plot((sin(x),sin(2*x)),(x,0,2%pi),fill=True)

26

27

3 Appendix

Eigenvalues and eigenvectors of square matrices

Definition.) is the eigenvalue of the square matrix? A if 3z # 0 for which
Az = Az; in this case x is an eigenvector of A with eigenvalue X. (A can be
0, but not z! If 0 were an eigenvector, it would always be an eigenvector with
eigenvalue 0.) The eigenspace associated with the eigenvalue A is 0 and the
eigenvectors with eigenvalue .

Example. The identity matrix has 1 as its only eigenvalue, and the whole space
is the associated eigenspace. The matrix 0 has 0 as its only eigenvalue and the
whole space is the corresponding eigenspace. The matrix of rotation by the
angle 7/2 around the origin in the plane has no eigenvalues.

How can these be calculated?

A is an eigenvalue of A < (3x # 0)Az = \x
— Bx#£0)(A-MN)x=0 < det(A—X)=0.

Hence the eigenvalues of A are the roots of det (A — AI) = 0, the characteristic
equation of A. (det (A — AI) is called the characteristic polynomial of A.) The
eigenspace (the null vector and the eigenvectors) corresponding to the eigenvalue
A are the solutions of the equation A — AI, that is, Ker(A — AI).

9In reality, it’s linear transformations that have eigenvalues and eigenvectors, but so do
square matrices because they encode linear transformations

28

	A taste of what is possible
	Basics
	Basic Algebra and Calculus

	Appendix

