SageLab

November 15, 2022

1. Define in Sage various functions, such as $f(x)=\sin ^{2}(x) \cos (x), g(x, y)=$ $(x-y)^{3}, \ldots$ and some functions that appeared in one of your Algebra or Calculus homework. Evaluate them in different places, make sure you got a reasonable result. For example, evaluate them at places where you know what result to expect: in the above examples, $f(\pi / 2)$ and $g(42,42)$ should evaluate to 0 .
2. Compute the first, second, etc. derivatives of your functions. Find primitive functions of these functions. Check that they really are their primitive function.
3. Give all complex solutions of the equation $z^{5}+4 z=0$. Check that these are indeed solutions! Do this without writing the equation again (give a name to the equation and use substitution).
4. $\lim _{x \rightarrow \infty} \frac{\operatorname{arctg}\left(x^{2}\right)}{\sqrt{x}}$
5. $\int(x+2) e^{2 x+1} d x=$? Check the answer by derivation!
6. $\int \frac{x^{2}+4 x}{x^{3}+6 x^{2}+5} d x=$? Check the answer by derivation!
7. On which interval is the function $f(x)=(x \cdot \ln x)^{3}$ monotonous? Where and what are its local minima and maxima (if any)? (Beware of false roots!)
8. Solve the linear systems of equations
$2 x+y+z=-1 \quad x+y-2 z=1 \quad 3 x+2 y-z=1 \quad x+3 z=-2$
and
$2 x+y+z=-1 \quad x+y-2 z=1 \quad 3 x+2 y-z=0 \quad x+3 z=-2$

Check the ranks of their (augmented) matrices, to see that the number of solutions are what the ranks say they should be.
9. For what values of a will the matrix $\left(\begin{array}{ccc}2 & 4 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & a\end{array}\right)$ be invertibe? What is the inverse of the matrix when it is invertible?
10. For what values of a and b will the linear system of equations

$$
2 x+4 y=-2 \quad-y+z=1 \quad x+y+a z=b
$$

have 0,1 or infinitely many solutions?
11. $2^{67}(\bmod 71)=$?
12. What are the last two digits of $3^{3^{3^{2}}}$ written in base 8 ?
13. $\varphi(10!)=$?
14. Solve the congruence $3 x^{7} \equiv 1(\bmod 26)$ and check that what you got is indeed a solution!
15. Solve the following system of congruences and check that what you got is indeed a solution!

$$
x \equiv 2 \quad(\bmod 3) \quad x \equiv 8 \quad(\bmod 9) \quad x \equiv-4 \quad(\bmod 1) 1
$$

16. Is the polynomial $x^{4}+x^{3}+x+2$ divisible by $x^{2}+1$ in $\mathbb{Z}_{3}[x]$?
17. Are the polynomials $x^{3}-2 x^{2}+x-1$ and $x^{2}+1$ relative primes in $\mathbb{Q}[x]$?
18. Plot the function arctg on the interval $[-5,5]$. Then plot its first few derivatives. Finally, put all these plots in one figure (make sure that they're drawn with different colours.)
