
TikZ

KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

Contents

1. The simplest drawings 1
1.1. Circles, lines,. . . 1
1.2. Naming the parts 3
1.3. Polar coordinates 4
1.4. Arcs 4
2. Phase Two 6
2.1. Advanced Labeling 6
2.2. Aesthetics 7
2.3. Relative coordinates 7
2.4. Cropping 8
2.5. Transparency 10
3. Advanced 10
3.1. Loops 10
3.2. Transformations 13
3.3. Plotting functions 14
Appendix A. How to really plot functions 15

1. The simplest drawings

First of all, put \usepackage{tikz} in the preamble.

1.1. Circles, lines,. . . Simple things, like this inline circle are easy
to draw, just write
\begin{tikzpicture}
\draw (0,0) circle (0.5);

\end{tikzpicture}
What is says is: draw a circle with (0, 0) as its center with diameter 0.5 cm.
It doesn’t matter where the centre is now that there is nothing else in the
drawing, because only the part of the “paper” where something is drawn
appears. So there’s no way to distinguish the previous drawing from this

even though this was drawn by
1

2 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

\begin{tikzpicture}
\draw (0.2,0.2) circle (0.5);

\end{tikzpicture}

But of course, if the two circles are in the same drawing, then the
(relative) positions of the centres do matter:
\begin{tikzpicture}
\draw (0,0) circle (0. 5);
\draw (0.2,0.2) circle (0.5);
\end{tikzpicture}

Typically, we do not draw inline figures, but (floating) pictures, which there-
fore have a “skeleton” that looks like this:
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}

...
\end{tikzpicture}

\end{center}
\caption{Your caption}
\end{figure}

We already know how to draw a circle; here’s how to draw a line segment:
\begin{tikzpicture}
\draw (0,0) -- (1,1) ;

\end{tikzpicture}
A broken line (?) can be drawn line segment by line segment:

\begin{tikzpicture}
\draw (0,0) -- (1,1);
\draw (1,1) -- (2,0);

\end{tikzpicture}
or in one go:

\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (2,0);

\end{tikzpicture}
This one-shot thing (actually, what is between \draw and the semicolon) is
called a path, and we’ll see that it can contain more than just line segments.

One can close a path without having to specify its starting point again:
\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (2,0) -- cycle;

\end{tikzpicture}
One advantage of this is that TikZ knows that the path is closed, which is
useful for example if we want to fill the domain it borders:

TikZ 3

\begin{tikzpicture}
\draw[fill, color=red]

(0,0) -- (1,1) -- (2,0) -- cycle;
\end{tikzpicture}

We could have gotten same result with
\begin{tikzpicture}
\fill[red] (0,0) -- (1,1) -- (2,0) -- cycle;

\end{tikzpicture}

We can put arrows at the ends of paths:
\begin{tikzpicture}
\draw[<->>] (0,0) -- (1,0) -- (1,1);

\end{tikzpicture}
It would be easy to draw a rectangle as a closed broken line (?), but it can
be done simply like this:

\begin{tikzpicture}
\draw (0,0) rectangle (2,1);

\end{tikzpicture}
The two arguments are the coordinates of two opposite vertices.

1.2. Naming the parts. To label the different parts of the figure, we create
a “node”, which is essentially a box in which we can write:

A

C

B

\begin{tikzpicture}
\draw (0,0) node[left] {A} -- (1,1)

node[above] {C} -- (2,0)
node[right] {B} -- cycle;

\end{tikzpicture}
A node can be created anywhere in the path. Their position can be con-
trolled by optional arguments. Here’s another example, which also has a
point with two nodes:

O
•

(−1, −1)

(1, 1)
\begin{tikzpicture}
\draw[very thin, gray]

(-1.2,-1.2) grid (1.2,1.2);
\draw (0,0)

node[below right] {O}
node {\bullet};

\draw (-1,-1) node[below] {$(-1,-1)$};
\draw (1,1) node[above] {$(1,1)$};

\end{tikzpicture}
\draw (x, y) grid (x’, y’) draws the intersection of the rectangle whose
lower left corner is (x, y) and upper right corner is (x′, y′), and the grid whose
lines intersect each other in points with integer coordinates.

Not only can we name the parts of interest in the figure, we can also name
the coordinates when drawing:

4 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

\begin{tikzpicture}
\coordinate (O) at (0,0) ;
\coordinate (O’) at (2,0);
\coordinate (A) at (1,2) ;
\coordinate (B) at (1,3) ;
\draw (O) -- (A) (B) -- (O);
\draw (O’) -- (A) (B) -- (O’) ;

\end{tikzpicture}
Another new feature here is that we “picked up the pen” while drawing,
between points (A) and (B). (Although it would have been simpler to draw
this without raising the pen.) Apart from making the code more readable,
it also makes it easier to change, because we may only need to redefine one
of the names, rather than going through the code changing the coordinates
one by one.

1.3. Polar coordinates. As we have already seen, we can work in the usual
Descartes coordinate system. But one can also use the polar coordinate
system (in which case the reference point is the point (0, 0) and the reference
direction is the vector (1, 0)). The syntax is (angle:distance), where
angle is given in degrees. The point (1,0) in polar coordinates is (0:1).

\begin{tikzpicture}
\draw[very thin, gray] (0,0) grid (2,2) ;
\draw (0,0) -- (45:{sqrt(2)})

-- (2,0) -- cycle ;
\end{tikzpicture}

See §3.3 for the list of functions one can use. Here sqrt(2) must be enclosed
in braces because it contains (normal) parentheses.

1.4. Arcs. Arcs can be drawn with arc, but beware of a potential surprise:
the point preceding it is not the center but the starting point of the arc.

A
O

B \begin{tikzpicture}
\draw (2,0) node[right] {A}

-- (0,0) node[below] {O}
-- (2,2) node[right] {B};

\draw (1,0) arc (0:45:1) ;
\end{tikzpicture}

Further illustration of this:

A
O

B

\begin{tikzpicture}
\draw (2,0) node[right] {A}
-- (0,0) node[below] {O}
-- (2,2) node[right] {B};

\draw[green] (0,0) arc (0:45:1) ;
\draw (1,0) arc (0:45:1) ;
\draw[red] (2,0) arc (0:45:1) ;

\end{tikzpicture}

TikZ 5

The syntax is (b:e:r), where [b,e] is the interval of angles and r is the
radius.

Of course, an arc may be part of a bigger path1:
\begin{tikzpicture}
\draw (0,0) arc (0:90:1) arc (180:270:1);
\draw (1,0) arc (270:360:1) arc (90:180:1);
\draw (0.5,-0.5)

circle[x radius=0.25, y radius=0.1];
\end{tikzpicture}

which may of course contain a mixture of arcs and line sections (and grids
and circles, etc.):

\begin{tikzpicture}
\draw (0,0) -- (1,0) arc (180:0:1) -- (4,0);

\end{tikzpicture}
It’s because of 0 − 180 < 0 that of the two possible semi-circle the one
traversed in the negative direction is drawn. If we want to draw the other
arc, we need to specify the interval of angles so that its end is bigger than
its beginning:

\begin{tikzpicture}
\draw (0,0) -- (1,0) arc (180:360:1) -- (4,0);

\end{tikzpicture}
or even

\begin{tikzpicture}
\draw (0,0) -- (1,0) arc (-180:0:1) -- (4,0);

\end{tikzpicture}
Speaking of circles as parts of a path:

\begin{tikzpicture}
\draw (0,0) -- (1,1) circle (1) -- (2,0);

\end{tikzpicture}

This drawing shows that the “current point” is the center of the circle after
drawing it, unlike with line sections and arcs.

1Here’s a little help for understanding what is going on:

(0,1)

(−1,0)

6 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

2. Phase Two

2.1. Advanced Labeling. We can also label the segments of a path (for
example, a line section), but this is necessarily a bit more complicated. First,
we need to say (after the definition of the segment) whether the label should
be at its the beginning (near start), middle (midway), or end (near end):

e
k

v

\begin{tikzpicture}
\draw (0,0) -- (3,2)

node[near start] {e}
node[midway] {k}
node[near end] {v};

\end{tikzpicture}
If we don’t want to write on the line but above or below it, we can say so:

e k

v
\begin{tikzpicture}
\draw (0,0) -- (3,2)
node[near start, above] {e}
node[midway, below] {k}
node[near end, above] {v};

\end{tikzpicture}
If we do but don’t want the line to obscure the label, we paint the background
white:

e
k

v

\begin{tikzpicture}
\draw (0,0) -- (3,2)

node[near start,fill=white] {e}
node[midway,fill=white] {k}
node[near end,fill=white] {v};

\end{tikzpicture}
In the examples above, we put multiple labels on a segment; here’s an ex-
ample with multiple segments with one label each:

a

b

a

\begin{tikzpicture}
\draw (0,0) -- (1,0) node[midway,below] {a}
arc (180:0:1) node[midway,above] {b}
-- (4,0) node[midway,below] {a};

\end{tikzpicture}
TikZ concludes from the presence of the optional arguments near start
&c. that the node belongs to the segment and not to its endpoint:

a

b

a A

\begin{tikzpicture}
\draw (0,0) -- (1,0) node[midway,below] {a}
arc (180:0:1) node[midway,above] {b}
-- (4,0) node[midway,below] {a} node[below] {A};

\end{tikzpicture}
Here one can freely swap the two node definitions in the last line.
We can also write in parallel with a line segment using the sloped option:

TikZ 7

e
|

v

\begin{tikzpicture}
\draw (0,0) -- (3,2)

node[near start, above, sloped] {e}
node[midway,sloped] {$|$}
node[near end, above, sloped] {v};

\end{tikzpicture}

2.2. Aesthetics.

Optional arguments: line thickness. \draw[thickness] ..., where thickness
is one of the following 6:

ul
tr

a
th

in

ve
ry

th
in

th
in

th
ic

k

ve
ry

th
ic

k

ul
tr

a
th

ic
k

Optional arguments: line type. \draw[linetype] ..., where linetype is
one of the following 7:

lo
os

el
y

do
tt

ed

de
ns

el
y

do
tt

ed

do
tt

ed

da
sh

ed

de
ns

el
y

da
sh

ed

lo
os

el
y

da
sh

ed

do
ub

le
Optional arguments: colour. \draw[color] ..., where color is one of the
following 9:

re
d

gr
ee

n

bl
ue

cy
an

ye
llo

w

m
ag

en
ta

bl
ac

k

w
hi

te

gr
ay

These colours can be mixed like this: green!30!blue (that’s 30% green,
70% blue () if the second colour is missing, it defaults to white.

2.3. Relative coordinates. Instead of “absolute coordinates”, it is often
more convenient to specify a deviation from the previous point. For exam-
ple, in the following drawing, thanks to the use of relative coordinates, the
definition of the path defining the triangle needs to be changed in only one
place.

\begin{tikzpicture}
\coordinate (A) at (0,0) ;
\coordinate (A’) at (0.6,-0.3) ;
\draw (A) -- ++(1,1) -- ++(1,-1) -- cycle;
\draw (A’) -- ++(1,1) -- ++(1,-1) -- cycle;

\end{tikzpicture}

8 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

But it is also easier to draw a regular polygon with relative (polar) coordi-
nates:

\begin{tikzpicture}
\draw (0,2) -- ++(1,0) -- ++(72:1)

-- ++(144:1) -- ++(216:1) -- cycle;
\draw (0,0) -- ++(1,0) -- ++(60:1)

-- ++(120:1) -- ++(180:1) --
++(240:1) -- ++(300:1) -- cycle;

\end{tikzpicture}

2.4. Cropping. The effect of drawing a closed path with \clip is to hide
the part of all that is drawn later which lies outside the region bounded by
this path. Here the closed path is a circle, so all we can see from the grid
drawn later is what’s inside it:

\begin{tikzpicture}
\draw (-2,-2) -- (2,2);
\clip (0,0) circle (2);
\draw (-3,-3) grid[step=0.25] (3,3);

\end{tikzpicture}

Here’s the same with a diamond instead of a circle:

\begin{tikzpicture}
\draw (-2,-2) -- (2,2);
\clip (-2,0) -- ++(2,2) -- ++(2,-2)

-- ++(-2,-2) -- cycle;
\draw (-3,-3) grid[step=0.25] (3,3);

\end{tikzpicture}

Of course we can also cut out something from the cutout:

\begin{tikzpicture}
\draw[gray!20,very thin]

(-5,-5) grid (5,5);
\clip (-1,0) circle (2);
\clip (1,0) circle (2);
\fill[gray] (-4,-3) rectangle (4,3);

\end{tikzpicture}

Here are the components of the previous drawing with no clipping:

TikZ 9

\begin{tikzpicture}
\draw[gray!20,very thin] (-5,-5) grid (5,5);
\fill[gray] (-4,-3) rectangle (4,3);
\draw[green] (-1,0) circle (2);
\draw[blue] (1,0) circle (2);

\end{tikzpicture}

If \clip is in a scope environment, then its effect is restricted to this
environment:

\begin{tikzpicture}
\draw[gray!20,very thin]

(-5,-5) grid (5,5);
\begin{scope}
\clip (-1,0) circle (2);
\clip (1,0) circle (2);
\fill[gray] (-4,-3) rectangle (4,3);

\end{scope}
\draw[red] (-4,-3) rectangle (4,3);
\draw[red] (-1,0) circle (2);
\draw[red] (1,0) circle (2);

\end{tikzpicture}

Here we could have achieved the same effect without scope by changing the
order:

\begin{tikzpicture}
\draw[gray!20,very thin]

(-5,-5) grid (5,5);
\draw[red] (-4,-3) rectangle (4,3);
\draw[red] (-1,0) circle (2);
\draw[red] (1,0) circle (2);
\clip (-1,0) circle (2);
\clip (1,0) circle (2);
\fill[gray] (-4,-3) rectangle (4,3);

\end{tikzpicture}

But varying the order is not always feasible, because what is drawn later
obscures what is already on the paper. This will be discussed in more detail
in the next section. In the meantime: here’s another application of scope:

10 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

\begin{tikzpicture}[ultra thick,red]
\draw (0,0) -- (0,1);
\begin{scope}[thin,blue]
\draw (1,0) -- (1,1);
\draw (2,0) -- (2,1);

\end{scope}
\draw (3,0) -- (3,1);

\end{tikzpicture}

2.5. Transparency. An example showing that the order of drawings counts:
\begin{tikzpicture}
\draw (-1,2) grid ++(2,2) ;
\fill[gray!20] (-1,2) -- ++(1,2)

-- ++(1,-1) -- cycle ;
\fill[gray!20] (-1,-1) -- ++(1,2)

-- ++(1,-1) -- cycle ;
\draw (-1,-1) grid ++(2,2) ;

\end{tikzpicture}
So even light gray obscured black. In fact, white would also have obscured
it, and we would have gotten this: , we chose gray only for the sake of
symmetry, because in the bottom figure the white triangle would have been
just as spectacular as the white line on a white background was a little
earlier. If we want the thing we drew later to not obscure what we drew
earlier, we can use the optional parameter opacity. Its value is a number
between 0 (completely transparent) and 1 (completely opaque, which is the
default).

\begin{tikzpicture}
\draw (-1,2) grid ++(2,2) ;
\fill[gray!20,opacity=0.5] (-1,2)
-- ++(1,2) -- ++(1,-1) -- cycle ;

\fill[gray!20] (-1,-1)
-- ++(1,2) -- ++(1,-1) -- cycle ;

\draw[opacity=0.1] (-1,-1) grid ++(2,2) ;
\end{tikzpicture}

3. Advanced

3.1. Loops.

0
2

4
6

8
10

\begin{tikzpicture}
\draw (0,0) foreach \x in {0,2,...,10}
{ -- ({mod(\x,4)/4},\x/4) node[right] {\x}};

\end{tikzpicture}

TikZ 11

mod(\x,4)/4 must be enclosed in braces because it contains (normal) paren-
theses. foreach here was a “operation” (the official term is path extension
operation) just like -- or arc or rectangle. Hence outside of a path it
doesn’t make sense, but there is a command \foreach that one can use:

0
2

4
6

8
10

\begin{tikzpicture}
\foreach \x in {0,2,...,10} \draw
({mod(\x,4)/4},\x/4) node[right] {\x};

\end{tikzpicture}

The \foreach command can in fact be used anywhere, even outside the
tikzpicture environment. An example is x1 = 1, x2 = 2, x3 = 3, which
was written like this:

\foreach \x in {1,2,3} {$x_\x=\x$, }

Loops can be nested:

\begin{tikzpicture}
\foreach \x in {1,...,10}{
\foreach \y in {1,...,10}{
\ifnum \x>\y
\fill[red] (\x,\y) circle (0.2);

\fi
}

}
\end{tikzpicture}

\ifnum ... \fi (in all its glory: \ifnum ... \else ... \fi) is not a
TikZ, but a LATEX, and in fact, a TEXcommand. An example of using
\else:

\begin{tikzpicture}
\foreach \x in {1,...,10}{
\foreach \y in {1,...,10}{
\ifnum \x>\y
\fill[red] (\x,\y) circle (0.2);

\else
\fill[blue] (\x,\y) circle (0.2);

\fi
}

}
\end{tikzpicture}

When drawing a coordinate system, it is very natural to use loops:

12 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

\draw (-4,0) node[below] {$\scriptstyle-4$}
foreach \i in {-3,-2,...,4} {-- (\i,0)

node[below,fill=white] {$\scriptstyle\i$}} ;
\foreach \i in {-4,-3,...,4} \draw (\i,-1pt) -- (\i,1pt);
\draw[->] (-4.6,0) -- (4.6,0);
\draw (0,-4) node[left] {$\scriptstyle-4$}

foreach \i in {-3,-2,...,4} {-- (0,\i)
node[left,fill=white] {$\scriptstyle\i$}} ;

\foreach \i in {-4,-3,...,4} \draw (-1pt,\i) -- (1pt,\i);
\draw[->] (0,-4.6) -- (0,4.6);

The same goes for drawing regular polygons:

\begin{tikzpicture}
\draw (0,2)

foreach \i in {0,...,3}
{-- ++(72*\i:1)} -- cycle;

\draw (0,0)
foreach \i in {0,...,4}
{-- ++(60*\i:1)} -- cycle;

\draw (3,0)
foreach \i in {0,...,10}
{-- ++(30*\i:1)} -- cycle;

\end{tikzpicture}

The figure way above showing line types was also made with \foreach:

TikZ 13

lo
os

el
y

do
tt

ed

de
ns

el
y

do
tt

ed

do
tt

ed

da
sh

ed

de
ns

el
y

da
sh

ed

lo
os

el
y

da
sh

ed

do
ub

le

\begin{tikzpicture}
\foreach \x / \y in

{loosely dotted/1,densely dotted/2,dotted/3,dashed/4,
densely dashed/5,loosely dashed/6,double/7}
{ \draw[\x] (12*\y/7,0) -- ++(0,2)

node[midway,above,sloped] {\x};}
\end{tikzpicture}

What is new here is that the list consists of ordered pairs where the members of the
pair (and the variables running over them) are separated by /. One can similarly
loop over a list of ordered triples, quadruplets, etc.:

lower left lower right

top righttop left
\begin{tikzpicture}
\draw (0,0) rectangle (1,3);
\foreach \x / \y / \label / \where in
{0/0/lower left/left, 1/0/lower right/right,
1/3/top right/right, 0/3/top left/left}

{\draw (\x, \y) node[\where]{\label}; }
\end{tikzpicture}

The same with the path extension operation foreach instead of the command
\foreach:
\begin{tikzpicture}
\draw (0,) foreach \x / \y / \label / \where in
{0/0/lower left/left, 1/0/lower right/right,
1/3/top right/right, 0/3/top left/left}

{ -- (\x, \y) node[\where]{\label} } -- cycle ;
\end{tikzpicture}

3.2. Transformations. Previously, a figure like the following was used to illustrate
relative coordinates:

\begin{tikzpicture}
\draw (0,0) -- ++(1,1)

-- ++(1, -1) -- cycle;
\draw[red] (0.6, -0.3) -- ++(1,1)

-- ++(1, -1) -- cycle;
\end{tikzpicture}

The same effect can be achieved by drawing the same triangle shifted:
\begin{tikzpicture}
\draw (0,0) -- ++(1,1) -- ++(1,-1) -- cycle;
\draw[red,shift ={(0.6,-0.3)}] (0,0) -

++(1,1) -- ++(1,-1) -- cycle;
\end{tikzpicture}

14 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

This could have been written like this:

\draw (0,0) -- ++(1,1) -- ++(1,-1) -- cycle
[shift ={(0.6,-0.3)}] (0,0) -- ++(1,1) -- ++(1,-1) -- cycle;

that is, we can apply shift (or more generally: a transformation) in the middle of a
path .

Technical remark: in the original example, we named the coordinates of the
lower left corners, but here

\begin{tikzpicture}
\coordinate (A) at (0,0);
\draw (A) -- ++(1,1) -- ++(1,-1) -- cycle;
\draw[red,shift ={(0.6,-0.3)}] (A) --

++(1,1) -- ++(1,-1) -- cycle;
\end{tikzpicture}

would not work because (A) stores the actual point whose coordinates are (0,0)
(before applying the shift), and not the coordinates. Try it!

Besides shifting, there is also rotation (rotate):

\begin{tikzpicture}
\draw (0,0) -- ++(1,1) -- ++(1,-1) -- cycle;
\draw[red,rotate=30] (0,0) --

++(1,1) -- ++(1,-1) -- cycle;
\draw[blue,rotate around={30: (1,1)}]

(0,0) -- ++(1,1) -- ++(1,-1) -- cycle;
\end{tikzpicture}

scaling (scale), also separately along the axes (xscale, yscale):

(2, 0)

\begin{tikzpicture}
\draw (0,0) -- ++(1,1)

-- ++(1,-1) -- cycle;
\draw[red,yscale=1.5] (0,0) --

++(1,1) -- ++(1,-1) -- cycle;
\draw[blue,xscale=-1] (0,0) --

++(1,1) -- ++(1,-1) -- cycle;
\draw [opacity=0.5,green,

scale around={1.5:(2,0)}]
(0,0) -- ++(1,1) -- ++(1,-1)
node[below] {$(2,0)$} -- cycle;

\end{tikzpicture}

3.3. Plotting functions.

TikZ 15

0 3
−3

\begin{tikzpicture}
\draw[very thin,gray]
(-3.5,-1.2) grid (3.5,1.2);

\draw (0,0)
node[below,fill=white]{0};

\draw (3,0)
node[below,fill=white]{3};

\draw (-3.0)
node[above,fill=white]{-3};

\draw plot[domain=-3.3:3.3]
(\x,{sin(deg(\x))});

\end{tikzpicture}
Available functions:

• +, -, *, /
• mod, min, max
• abs, exp, ln, sqrt
• round, floor, ceil
• sin, cos, tan
• asin, acos, atan
• pi, deg, rad
• rnd (random number between 0 and 1), rand (random number between −1

to 1)
• ==, <, > (result is 0 if false, 1 if true)

Trigonometric functions expect their argument in degrees, that’s why we wrote
sin(deg(\x)) in the drawing above. This is such a common problem that one can
write the same thing as sin(\x r).

plot, like all path extension operations, can be part of a path (in the example
above it was also part of a path, it’s just that it was the only part):

\fill[gray] (1,0) -- (1,1) --
plot[domain=1:2] (\x,1/\x) -- (2,0) -- cycle;

This is useful, e.g. in a figure like this:

\draw (3,0) -- (0,0) -- (0,2);
\draw plot[domain=0.5:3] (\x,1/\x);
\fill[gray,draw=black] (1,0) -- (1,1) --

plot[domain=1:2] (\x,1/\x) -- (2,0) -- cycle;

Appendix A. How to really plot functions

We have already seen how to make the graph of a function part of a path. Most
of the time, however, we do not want this, but we want to plot a function in some
coordinate system, including not having to draw the coordinate axes ourselves. In
this case, it is better to use the pgfplots package. To do this, put the following in
the preamble:
\usepackage{pgfplots}
\pgfplotsset{compat = newest}

As an example, let’s plot the function sin 2x on the interval [−5, 5]!

16 KOVÁCS KRISTÓF, MAGYAR ANDRÁS, SIMON ANDRÁS

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

\begin{tikzpicture}
\begin{axis}[domain=-5:5]
\addplot []

{sin(deg(2*x))};
\end{axis}

\end{tikzpicture}

This is a bit rough, but we can improve it with the samples parameter, which tells
pgfplots how many points to compute the function values on the interval, which
are then connected.

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

\begin{tikzpicture}
\begin{axis}[]
\addplot [blue, domain=-5:5, samples=100]

{sin(deg(2*x))};
\end{axis}

\end{tikzpicture}

If we’re bothered by the unit being different on the two axes (i.e., that the aspect
ratio is not 1), we can do this:

−6 −4 −2 0 2 4 6
−1

0
1

\begin{tikzpicture}
\begin{axis}[axis equal image=true]
% ^^^ aspect ratio = 1
\addplot [blue, domain=-5:5, samples=100]

{sin(deg(2*x))};
\end{axis}

\end{tikzpicture}

The automatic aspect ratio can come in handy, e.g. here:

−6 −4 −2 0 2 4 6

0

50

100

150

\begin{tikzpicture}
\begin{axis}[]
\addplot [blue, domain=-5:5, samples=100]

{exp(x)};
\end{axis}

\end{tikzpicture}

But it does not always help:

TikZ 17

−4 −2 2 4

−10

10

20

x

y \begin{tikzpicture}
\begin{axis}[axis x line=center,
axis y line=center,
xlabel={x}, ylabel={y}]

\addplot [blue, domain=-5:5, samples=100]
{1/x))};

\end{axis}
\end{tikzpicture}

(By the way, we switched to the usual way of drawing coordinate axes.) Here we
are better off clipping the outlying values: this is what ymin and ymax are for.

−5 −3 −1 1 3 5

−5
−4
−3
−2
−1

1
2
3
4
5

x

y \begin{tikzpicture}
\begin{axis}[axis equal image=true,
ymax=5, ymin=-5, axis x line=center,
axis y line=center, xtick={-5,-3,...,5},
ytick={-5,-4,...,5}, xlabel={x}, ylabel={y}]
\addplot [blue, domain=-5:5, samples=100]

{1/x))};
\end{axis}

\end{tikzpicture}
Finally: we can plot several functions at once. In this case, it is worth using more
colors, and with the \legend command tell which color belongs to which function.

−5 −3 −1 1 3 5

−5
−4
−3
−2
−1

1
2
3
4
5

x

y
1/x

sin(x)

\begin{tikzpicture}
\begin{axis}[axis equal image=true,
ymax=5, ymin=-5, axis x line=center,
axis y line=center, xtick={-5,-3,...,5},
ytick={-5,-4,...,5}, xlabel={x}, ylabel={y}]
\addplot [blue, domain=-5:5, samples=100]

{1/x))};
\addplot[red, domain=-5:5, samples=100]

{sin(deg(x))};
\legend{$1/x$,$\sin(x)$}
\end{axis}

\end{tikzpicture}

	1. The simplest drawings
	1.1. Circles, lines,…
	1.2. Naming the parts
	1.3. Polar coordinates
	1.4. Arcs

	2. Phase Two
	2.1. Advanced Labeling
	2.2. Aesthetics
	2.3. Relative coordinates
	2.4. Cropping
	2.5. Transparency

	3. Advanced
	3.1. Loops
	3.2. Transformations
	3.3. Plotting functions

	Appendix A. How to really plot functions

