
PYTHON EXERCISES

B. CSONKA, A. SIMON

1. Where to start?

∙ Where to find Python?
– You can log in tarski.math.bme.hu the sameway you log in to leibniz (if
you are on leibniz, you just need to write ssh -Y tarski in a terminal)
and you will find yourself in your home directory. There you can start
spyder3 or ipython3 in a terminal. (There is spyder and ipython on
leibniz, too, but avoid them because they are based on an old version of
Python2.)

– On your own windows machine you probably want this: http://wiki.
math.bme.hu/view/AnacondaInstall With this, you’ll get a graphical
development environment called spyder that people seem to like.

– https://colab.research.google.com/ orhttps://cocalc.com. You
need to register here, but get a nice a jupyter notebook.

– https://sagecell.sagemath.org/, choose Python from the available
languages. This is the worst choice.

∙ Lecture notes: http://math.bme.hu/~asimon/info2/python.pdf

2. Simple things

Exercise 2.1. Write code that prints in Celsius the temperature given in Fahrenheit
stored in the variable f. The formula is 𝑇𝑐 =

5
9
(𝑇𝑓 − 32).

Exercise 2.2. Write code that prints all the numbers below the positive integer stored
in the variable n. Do the same with the value of n included.

Exercise 2.3. Write code that prints the sum of the numbers not bigger than the posi-
tive integer stored in the variable n. Do the samewith only the even numbers summed.
(Do this without using if.)

Exercise 2.4. Write code that prints the factorial of the positive integer stored in the
variable n.

Exercise 2.5. Write code that prints the (decimal) digits of the positive integer stored
in n in reverse order. (Integer division is //)

Exercise 2.6. Write code that prints the sum of the (decimal) digits of the positive
integer stored in n.

Exercise 2.7. Write code that prints the first n terms of the Fibonacci sequence. (It’s
not easy using only while. Hint: keep track of the last two terms.) Reminder: 𝐹0 = 0,
𝐹1 = 1, and 𝐹𝑛+2 = 𝐹𝑛 + 𝐹𝑛+1.

Date: April 24, 2024.
1

tarski.math.bme.hu
http://wiki.math.bme.hu/view/AnacondaInstall
http://wiki.math.bme.hu/view/AnacondaInstall
https://colab.research.google.com/
https://cocalc.com
https://sagecell.sagemath.org/
http://math.bme.hu/~asimon/info2/python.pdf


2 B. CSONKA, A. SIMON

Exercise 2.8. Rewrite your solution to exercises 2.2-2.4 using for instead of while.

Exercise 2.9. Write a program that prints the sum of all the positive numbers in the
list l of numbers. Use a for loop and do this with and without continue.

Exercise 2.10. Write a program using a for loop and break that prints the first proper
divisor of the positive int stored in n if it has one, and does nothing otherwise.

Exercise 2.11. Write a function compare() of two arguments (both numbers), that
prints The numbers are equal. if the two arguments are equal, The first number
is bigger. if this is the case, and The second number is bigger. otherwise.

Exercise 2.12. Write a function divisible() of two arguments that returns True if
its second argument is divisible by its first argument, and False otherwise.

Exercise 2.13. Write (using both theif statement and theif expression) a one-argument
function absval() that returns the absolute value of the number given as its argument.
(The built-in function abs() also does this.) Is else required in the version that uses
the if statement?

Exercise 2.14. What does Python print after executing the following pieces of code?

x = 10

def f():
x = 5

f()
print(x)

x = 10

def f():
x = 5
return x

x = f()
print(x)

Exercise 2.15. What are the values of the following expressions
∙ s[3]
∙ s[-3]
∙ s[3:6]
∙ s[3:-4]
∙ s[4::2]
∙ s[-4::2]
∙ s[3::2]
∙ s[5::-2]
∙ s[5:1:-2]

if s = 'abcdefghij'?

Exercise 2.16. Letnumbers = list(range(5)). What’s the difference betweennumbers[1] = [True]
and numbers[1:2] = [True]? Is one of these equivalent to numbers[1] = True?

Exercise 2.17. Generate a list of the first 10 evennumbers (a) using list comprehension
(in two different ways) and (b) as a slice of a suitable list.

Exercise 2.18. Using nested list comprehensions, generate the following lists:
[[[0, 2], [0, 3], [0, 4]], [[1, 2], [1, 3], [1, 4]]]



PYTHON EXERCISES 3

and

[[[0, 2], [1, 2]], [[0, 3], [1, 3]], [[0, 4], [1, 4]]]

Exercise 2.19. Suppose that a == 1, b == 2 and c == 3. Write one command that
results in a == 2, b == 3 és c == 1.

Exercise 2.20. Generate a list of thefirst 10 evennumbers using a loop and the.append()
method.

Exercise 2.21. Write a function solve2(), that, given the three coefficents of a second
order equation, returns the list of its real roots. For example,

>>> solve2(1,1,-2), solve2(1,0,2)
([1.0, -2.0], [])

because 𝑥2 + 𝑥 − 2 = (𝑥 − 1)(𝑥 + 2), and 𝑥2 + 2 has no real roots. To compute square
roots, use the sqrt() function of the mathmodule.

Exercise 2.22. Write a function sid(x,y) (safe integer division) that for ints x and
y returns their quotient as an int if y divides x, and the float x/y otherwise. For
example,

>>> [sid(x,2) for x in [1, 4, 18530201888518410]]
[0.5, 2, 9265100944259205]

Exercise 2.23. Rewrite the following so it doesn’t use elif:
>>> for i in [-5,5,15,25]:
... if i<0:
... print("negative")
... elif i<=10:
... print("small")
... elif i<=20:
... print("medium")
... else:
... print("big")
...
negative
small
medium
big

Exercise 2.24. Write a function first_divisible(numbers,d) that prints the first
number in the list of numbers numbers that is divisible by 𝑑, or prints that there is no
such number. For example,

>>> nums = [2, 5, 10, 14, 21, 35, 42, 51]
>>> first_divisible(nums, 7)
14 is divisible by 7

>>> first_divisible(nums, 13)
No number in the list is divisible by 13

Don’t use break and else.



4 B. CSONKA, A. SIMON

3. More challenging stuff

Exercise 3.1. Write a function of one argument, that, given a list of numbers𝑛1, 𝑛2,… , 𝑛𝑘
returns a new list containing the numbers 𝑛31−1, 𝑛

3
2−1,… , 𝑛

3
𝑘−1. Do it both with and

without using list comprehension.

Exercise 3.2. Write a function squares() of two arguments, so that squares(m,n)
returns the list of squares between 𝑚 and 𝑛. Do it both with and without using list
comprehension.

Exercise 3.3. Generalize squares() of the previous exercise to every positive expo-
nents! That is, using one of your implementations of squares() as your starting point,
write powers(), so that powers(m,n,k) returns the list of the 𝑘th powers between𝑚
and 𝑛.

Exercise 3.4. Write a function index_of(), which, given an object and a list, returns
the index of the first occurrence of the object in the list, or None if it doesn’t occur in
the list. (Recall that if a function doesn’t do return, it returns None.)

Exercise 3.5. Write a function indices_of(), which, given an object and a list, re-
turns the list of indices of the occurrences of the object in the list. For example:
>>> indices_of(3,[4,1,3,2,3])
[2, 4]
>>> indices_of(0,[4,1,3,2,3])
[]

Exercise 3.6. Write a function substitute(), which, given a list and two objects,
returns a new list with all occurrences of the first object replaced by the second. For
example:
>>> substitute([1,2,3,4,2],2,'a')
[1, 'a', 3, 4, 'a']

Exercise 3.7. Write a version of substitute() which doesn’t return anything, but
does the substitution on its list argument. For example:
>>> mylist = [1,2,3,4,2]
>>> substitute(mylist,2,'a')
>>> mylist
[1, 'a', 3, 4, 'a']

Exercise 3.8. Define a function divisibles_by() of two arguments, a list and an
integer, which returns the list of those members of the list that are divisible by the
integer. For example,
>>> divisibles_by(list(range(30,50)),7)
[35, 42, 49]

Exercise 3.9. Define a function divisors() that returns the list of proper divisors of
its only argument.

Exercise 3.10. Define sigma() of one argument, which computes the number theo-
retic function 𝜎(𝑛) =

∑
1≤𝑑≤𝑛,𝑑∣𝑛 𝑑. Check it for a few values. For example:

>>> [(n,sigma(n)) for n in range (6,60,11)]
[(6, 12), (17, 18), (28, 56), (39, 56), (50, 93)]



PYTHON EXERCISES 5

Exercise 3.11. Define the function is_perfect()which returns True if its argument
is a perfect number (which means that it is equal to the sum of its divisors smaller
than itself) and False otherwise. Using your function, print all perfect numbers below
10000.

Exercise 3.12. Define a function divisors_ival() such that divisors_ival(m,n)
prints the the list of proper divisors of all integers between𝑚 and 𝑛, like this:
>>> divisors_ival(30,35)
30 -> [2, 3, 5, 6, 10, 15]
31 -> []
32 -> [2, 4, 8, 16]
33 -> [3, 11]
34 -> [2, 17]
35 -> [5, 7]

Exercise 3.13. Write a function is_prime which returns True if its argument is a
prime number and False otherwise.

Exercise 3.14. Write a function primes_between() such that primes_between(m,n)
returns the list of primes in the interval [𝑚, 𝑛].

Exercise 3.15. Write a function prime_divisors() that returns the list of prime di-
visors of its argument.

Exercise 3.16. Write a functionmax_exp() such thatmax_exp(m,n) returns the biggest
𝑘 such that𝑚𝑘 ∣ 𝑛. You can assume𝑚 > 1.

Exercise 3.17. Write a function prime_decomp() that returns the prime decomposi-
tion of its argument as a list of pairs (or lists) whose first member is a prime divisor of
the argument and the second is the exponent of the prime divisor in the prime decom-
position. For example:
>>> prime_decomp(90)
[(2, 1), (3, 2), (5, 1)]

Exercise 3.18. Define a function lookup() of two arguments. The second is a list
of 2-long tuples, and the first a “key”. lookup(key, list) should return the second
member of the first tuple in the list whose firstmember is equal to key, or None if there’s
no such member of the list.

Exercise 3.19. Using the functions in the two previous exercises, write a function
gcd() that computes the greatest common divisor of its two arguments.

Exercise 3.20. Define a function that computes 𝜑(𝑛) (the number of relative primes
to 𝑛 below 𝑛) for every natural number 𝑛.

Exercise 3.21. Write a function separate(), which, when called with a list 𝑙 of num-
bers, returns a pair of lists, the first containing thenegative, the second thenon-negative
members of 𝑙.

Exercise 3.22. Define a function is_sorted() of one argument, a list, which returns
True if it is sorted in ascending order and False otherwise.
Hint: if you have trouble defining it, look up the definition of repeats() in the

notes!



6 B. CSONKA, A. SIMON

Exercise 3.23. Write a function which returns the minimal member of the nonempty
list that is given as its only argument. Call it my_min(), because there is a built-in
function min() which does this. Needless to say, don’t use that. What other ways
are there to cheat here? (It’s good to be aware of the possibilities, but write a version
without using any of them.)
Hint (for cheating): there’s a built-in max() fuction.

Exercise 3.24. Write a function min_index() which returns the index of the first oc-
currence of the minimal member of the nonempty list of numbers that is given as its
only argument.

Exercise 3.25. Write a function min_indices()which returns the list of the indices of
the occurrences of the minimal member of the nonempty list of numbers that is given
as its only argument. For example:
>>> min_indices([1,3,4,2,1,3,1,2])
[0, 4, 6]

Exercise 3.26. Write a function nearest_to_avg() that, given a list of numbers, re-
turns themember closest to the average of themembers (if it’s not unique, then the one
with the smallest index), or None if the list is empty. You can use the function abs().

Exercise 3.27. Define a function has_duplicates() of one argument, a list, which
returns True if there is an object which occurs at least twice in the list, and False
otherwise.

Exercise 3.28. Write a function longest_run() of one argument, a list of numbers,
which returns the length of the longest sequence of the same number. So, for example:
>>> longest_run([])
0
>>> longest_run([1])
1
>>> longest_run([1,2,3])
1
>>> longest_run([1,2,3,3,4])
2
>>> longest_run([1,2,2,2,1,2,3,3,4])
3

Exercise 3.29. Print the following ugly multiplication table:
1: 1 2 3 4 5 6 7 8 9
2: 2 4 6 8 10 12 14 16 18
3: 3 6 9 12 15 18 21 24 27
4: 4 8 12 16 20 24 28 32 36
5: 5 10 15 20 25 30 35 40 45
6: 6 12 18 24 30 36 42 48 54
7: 7 14 21 28 35 42 49 56 63
8: 8 16 24 32 40 48 56 64 72
9: 9 18 27 36 45 54 63 72 81
Hints: print(42, end='whatever') prints 42 followed by whatever instead of a
newline. And print() simply prints a newline.

Exercise 3.30. Print all permutations (one by one) of 012!



PYTHON EXERCISES 7

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

Modify your program so that it prints the list of all such permutations as a list of list:
[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]

Exercise 3.31. Write a function that computes the factorial of a natural number! Do
a version without recursion, too. (C.f. 2.4, where we didn’t have a choice!)

Exercise 3.32. Write a function lucas(n) which returns the 𝑛th Lucas-number. Lu-
cas numbers are defined recursively as follows:

𝐿0 = 2, 𝐿1 = 1, 𝐿𝑛+2 = 𝐿𝑛 + 𝐿𝑛+1

Try writing the function following the pattern of this definition, and another version
that is not recursive.

Homework 3.1. Using the lucas() function (preferably the non-recursive one) from
the previous exercise, print out the first few members of the subsequence of Lucas
numbers whose indices are divisible by 3. Can you observe some regularity? If yes,
can you verify it for the first 100 or so members of the subsequence? (Do this with
the iterative version; if you only have the recursive one, make it 10 instead of 100.)
Does this regularity hold if we consider indices whose remainders modulo 3 is 1 or 2?
Can you formulate a theorem? If yes, can you verify it for the first few hundred Lucas
numbers?

Exercise 3.33. Goldbach’s conjecture says that every even number greater than 2 is
the sum of two primes. Write a function goldbach(), which, given 1 < 𝑛 ∈ ℕ, returns
the number of ways 2𝑛 can be written as the sum of two primes. (𝑝1 + 𝑝2 and 𝑝2 + 𝑝1
count as the same decomposition.) For debugging your function, you may want to use
print(), which, if given multiple arguments, will print them all, separated by a space.

Exercise 3.34. Convince yourself that Goldbach’s conjecture will not be easy to re-
fute, by exploring various intervals using your goldbach() function from the previous
exercise.
For example: what’s the minimal number of “Goldbach decompositions” of the 100

even numbers from 2000? 20000? 200000?

Exercise 3.35. Write a function pascal() that, given a positive natural number 𝑛,
returns, as a list of lists, the first 𝑛 lines of Pascal’s triangle. Use the recursive definition
of Pascal’s triangle (this does not mean that your function must be recursive, see for
example 3.31!): the 𝑛th row is of length 𝑛; the first row consists of one 1, and each entry
of each subsequent row is the sum of the number above and to the left and the number
above and to the right, treating blank entries as 0 (Wikipedia). For example:
>>> pascal(5)
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

You might want to use n*[1] to create a list of 1s of length 𝑛.

https://en.wikipedia.org/wiki/Pascal's_triangle


8 B. CSONKA, A. SIMON

Exercise 3.36. Anassociative array is a data structure thatmaps values to keys. (Python
has such a data structure: it’s called dict, and we will use it later – but in this exercise
we roll our own.)
There are four activites related to an associative array: we need to be able to create

one, add key-value pairs to it, look up the value associated to a key in it, and remove a
key-value pair from it.
Wehave alreadywritten the third component inExercise 3.18. Thefirst could simply

be

def make_new_aa(): return list()

Write the remaining two: insert(key,value,aa) should return a copy of aa, ei-
ther extended with the tuple (key,value) or, if key is already present in aa, it should
return a copy of aa in which (key,value') is replaced by (key,value).
Finally, delete(key,aa) should return a copy of aa with no tuple of the form

(key,value).
For example:

>>> d = make_new_aa()
>>> d = insert('one',1,d); d = insert('two',2,d); d = insert('three',3,d)
>>> d
[('one', 1), ('two', 2), ('three', 3)]
>>> lookup('two',d)
2
>>> d = insert('two',22,d); d = insert('four',4,d); d
[('one', 1), ('three', 3), ('two', 22), ('four', 4)]
>>> d = delete('five',d); d
[('one', 1), ('three', 3), ('two', 22), ('four', 4)]
>>> d = delete('two',d); d
[('one', 1), ('three', 3), ('four', 4)]

Exercise 3.37. Write a function insert_sort() of one argument, a list of numbers,
which returns the sorted (in ascending order) version of the list.
You should use the Insertion sort algorithm, which works as follows: we read the

elements of the list from left to right, and any time we encounter a member 𝑒 that is
smaller than the previous one, we shift to the right all the members that are left of 𝑒
and are bigger than 𝑒, and insert 𝑒 where the leftmost of these members were.
In other words, we scan the list from left to right, and whenever we find that the

first 𝑘 element is not in order, we correct this.
or

def insert_sort(lst):
def insrt(x, l): #l is ordered

if l == []: return [x]
hd,*tl = l
if x <= hd: return [x]+l
return [hd] + insrt(x, tl)

if lst == []: return lst
return insrt(lst[0], insert_sort(lst[1:]))

https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Insertion_sort#Algorithm


PYTHON EXERCISES 9

4. I/O

Exercise 4.1. Write a program that asks for numbers, one after the other, and if the
user presses RETURNwithout entering a number first, it returns the average of the num-
bers. So an interaction with your program should look something like this:
Enter a number: 1
Enter a number: 4
Enter a number: 12
Enter a number: 3
Enter a number:
The average is 5.0

Exercise 4.2. Write a program that asks for numbers separated by spaces, and prints
their average. So an interaction with your program should look something like this:
>>> Enter some numbers separated by spaces: 1 4 13 2
The average is 5.0
>>>

Exercise 4.3. Write a function read_first_lines() of two arguments: the name of
a file and an integer 𝑛. It should read and print the first 𝑛 lines of the file (or all lines
if there are no more than 𝑛 lines in it).

Exercise 4.4. Write a function copy_first_lines() of three arguments: the name
of an input and an output file, and an integer. It should do what the function in the
previous exercise did, except that the output should go to the file named by the second
argument. Check with an editor, or with cat or less at the command line that your
function did what it’s supposed to do.

Exercise 4.5. Write a function count_lines() of one argument, the name of a file. It
should return the number of lines in the file (that’s what wc -l does on the command
line).

Exercise 4.6. Write a function read_to_string() that returns a string containing
all the text in the text file named by its only argument. It shouldn’t contain newline
characters (\ns) but of course the last word of a line should not run into the first word
of the next line.
Help: strings can be concatenated using +. And use .rstrip(), as in the lecture!

5. Containers

Exercise 5.1.⋆Why do you think the following works? Doesn’t this contradict the fact
that tuples are immutable?
>>> tup = ([0,1],[2]) ; tup[0][1] = 'a' ; tup
([0, 'a'], [2])
Hint: try it in Pythontutor!

Exercise 5.2. Write a function list_diff() of two arguments, both lists, which re-
turns the list of those members of the first list (in the original order) which are not in
the second. For example:
>>> list_diff(list(range(10)),list(range(0,15,3)))
[1, 2, 4, 5, 7, 8]

Exercise 5.3. Print the following pattern:

https://pythontutor.com/visualize.html


10 B. CSONKA, A. SIMON

1
22
333
4444
55555
666666
7777777
88888888
999999999

Exercise 5.4. Write a functionwave() of two arguments, such that for examplewave(5,2)
prints the pattern
o
oo
ooo
oooo
ooooo
ooooo
oooo
ooo
oo
o
o
oo
ooo
oooo
ooooo
ooooo
oooo
ooo
oo
o
Note that the maximum “height” is 5 and there are two waves.
If it works, write new_wave(), which is similar to wave(), except that there is only

one row of maximum “height”. For example, new_wave(5,1) should print
o
oo
ooo
oooo
ooooo
oooo
ooo
oo
o

Exercise 5.5. Write a function merge() which accepts two lists as arguments, and
returns a new list that contains the first member of the first list, then the first member
of the second list, then the second member of the first list, etc. In the first version, you
can assume that the lists are of equal length. But in the final one if one of the lists is



PYTHON EXERCISES 11

longer, its remaining elements should come last, after the proper “merging” is done.
For example:
>>> merge(list(range(5)),list(range(10,18)))
[0, 10, 1, 11, 2, 12, 3, 13, 4, 14, 15, 16, 17]

Exercise 5.6. Write a function cat() that prints in upper case the lines of the file
whose name is given as its argument.

Exercise 5.7. Write a function that accepts one argument: the name of a text file. The
file can be assumed to contain floating point numbers, one per line. It should return
the average of these numbers.
Hint:Use the float() function to convert the string representation of a floating

point number to a float. And enumerate() works for text files, too (see §2 of the
lecture notes).

Exercise 5.8. Define a function transpose() of one argument, that, given a square
matrix represented as a list of lists, returns its transpose. For example:
>>> transpose([[1,2,3],[4,5,6],[7,8,9]])
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Make a new list of lists, don’t change the argument!

Exercise 5.9. Define a function matrix_add() of two arguments that returns the sum
of two matrices (of the same shape) represented as lists of rows, where each row is
represented as a list of numbers. For example:
>>> m1 = [[1,0,0],[0,1,0],[0,0,1]]
>>> m2 = [[1,2,3],[4,5,6],[7,8,9]]
>>> matrix_add(m1,m2)
[[2, 2, 3], [4, 6, 6], [7, 8, 10]]
Make a new list of lists, don’t change either of the arguments!

Exercise 5.10. Define a function matrix_mult() of two arguments that returns the
product of two matrices (of the appropriate shape) represented as lists of rows, where
each row is represented as a list of numbers. For example:
>>> matrix_mult([[1,2],[3,4],[5,6]],[[1,0,0],[0,1,0]])
[[1, 2, 0], [3, 4, 0], [5, 6, 0]]
>>> matrix_mult([[1,0,0],[0,1,0]],[[1,2],[3,4],[5,6]])
[[1, 2], [3, 4]]
Make a new list of lists, don’t change either of the arguments!

Exercise 5.11. Define a function myzip2() of two arguments, both sequences (lists or
strings), that returns a list of tuples: the 𝑖th member of the 𝑗th tuple in the list should
be the 𝑗th member of the 𝑖th argument. The length of the list should be the length of
its shortest argument. For example:
>>> myzip2('abcdefg', list(range(4)))
[('a', 0), ('b', 1), ('c', 2), ('d', 3)]
Do not use zip()!

Exercise 5.12. Write a function date_to_day() that, given a month and a day in that
month, returns the number of that day in the year. For example:
>>> date_to_day(3,15) #31+28+15
74



12 B. CSONKA, A. SIMON

We can assume that the year is not a leap year: so the lengths of the months are as in
the following list:
MONTHS = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

Exercise 5.13. Write a function day_to_date() that is the inverse of date_to_day().
That is, given a number between 1 and 365, it returns the corresponding date (month,
day pair). For example,
>>> day_to_date(74)
(3, 15)
As before, we can assume that the year is not a leap year and the lengths of the months
are as in the following list:
MONTHS = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

Exercise 5.14. Write a function lindex(string, substring) that returns the small-
est index in string where substring is found, or −1 if substring is not found. This
is almost what the .index()method does, so don’t use that! For example,
>>> lindex("At the turn of the century", "the")
3
>>> lindex("At the turn of the century", "them")
-1

Exercise 5.15. Write a functioncount_occurrences() of two arguments, both strings.
It should return the number of times its second argument occurs as a substring in its
first argument. For example:
>>> count_occurrences("At the turn of the century", "the")
2
>>> count_occurrences("At the turn of the century", "them")
0

Exercise 5.16. Suppose we have a text file inventory.csv, each line of which has the
structure

good, amount, unit price
That is, within each line, the three “fields” are separated by commas. (This is a well
known format called “comma separated values”.) Write a short program that prints the
content of each line in the format

Name: good
Amount: amount
Unit price: unit price

For example, if inventory.csv contains this:
>>> import os
>>> print(os.popen("cat inventory.csv").read())
ball,570,0.13
table,3,2000
racket,12,185
net,17,23
then the output should be
Good: ball
Amount: 570
Unit price: 0.13



PYTHON EXERCISES 13

Good: table
Amount: 3
Unit price: 2000
Good: racket
Amount: 12
Unit price: 185
Good: net
Amount: 17
Unit price: 23
Use an f-string!

Exercise 5.17. Modify your solution to the previous exercise so that it prints lines in
the following format:

Name: good
Total price: amount * unit price

Don’t forget to convert amounts and unit prices into numbers first!

Exercise 5.18. Using f-strings, print the following multiplication table:
1 2 3 4 5 6 7 8 9

+++++++++++++++++++++++++++
1: 1 2 3 4 5 6 7 8 9
2: 2 4 6 8 10 12 14 16 18
3: 3 6 9 12 15 18 21 24 27
4: 4 8 12 16 20 24 28 32 36
5: 5 10 15 20 25 30 35 40 45
6: 6 12 18 24 30 36 42 48 54
7: 7 14 21 28 35 42 49 56 63
8: 8 16 24 32 40 48 56 64 72
9: 9 18 27 36 45 54 63 72 81

Exercise 5.19. Suppose we have the mid-season standing of a football league as a csv
file. The fields are: the name of the club, games played and points won by it. Write
a function whose only argument is the name of the csv file, and which prints a nicely
formatted list of the clubs ordered by the number of points lost (the less the better, of
course) or the average points/game so far. (For the former, we need one additional
information: each win is worth 3 points.) The idea is that these orderings give a better
picture of how things stand when different clubs have not played the same number of
matches. For example, if the csv file looks like this:
>>> import os
>>> print(os.popen("cat pl.csv").read())
Man City,23,57
Liverpool,22,48
Chelsea,24,47
Man Utd,22,38
West Ham,23,37
Arsenal,21,36
Tottenham,20,36
Wolverhampton,21,34
Brighton,22,30



14 B. CSONKA, A. SIMON

Leicester,20,26
Aston Villa,21,26
Southampton,22,25
Crystal Palace,22,24
Brentford,23,23
Leeds,21,22
Everton,20,19
Norwich,22,16
Newcastle,21,15
Watford,20,14
Burnley,18,12
then the function should print this:
>>> by_lost_points("pl.csv")

Club GP Pts -Pts
1 Man City 23 57 12
2 Liverpool 22 48 18
3 Tottenham 20 36 24
4 Chelsea 24 47 25
5 Arsenal 21 36 27
6 Man Utd 22 38 28
7 Wolverhampton 21 34 29
8 West Ham 23 37 32
9 Leicester 20 26 34

10 Brighton 22 30 36
11 Aston Villa 21 26 37
12 Southampton 22 25 41
13 Leeds 21 22 41
14 Everton 20 19 41
15 Crystal Palace 22 24 42
16 Burnley 18 12 42
17 Brentford 23 23 46
18 Watford 20 14 46
19 Newcastle 21 15 48
20 Norwich 22 16 50
Use f-strings!

Exercise 5.20. Define a function is_palindrome() that checkswhether its argument,
which is a sequence (a list, a tuple, or a string) is a palindrome, that is, it reads the same
forwards and backwards. Don’t reverse the sequence!

Exercise 5.21. Define a function palindromes() of one argument, the name of a text
file (such as /usr/share/dict/words) with one word on each line, that prints all the
palindromes in the file and returns the number of palindromes it has found.

5.1. dict.

Exercise 5.22. Define a function substitute() of two parameters: a string and a
dictionary. It should return a new string which is a copy of the old one except that
each character that is a key in the dictionary is replaced by the corresponding value (a
string). For example:



PYTHON EXERCISES 15

>>> substitute("acbcade",{'a':'xyz','c':'zyx'})
'xyzzyxbzyxxyzde'
>>> substitute("acbcade",{'a':'c','c':'a'})
'cabacde'

Could this be done with repeated use of the .replace() method of the str class?
Would it do the second example correctly?

Exercise 5.23. Modify your substitute() function of the previous exercise so that if
the value associated in the dictionary to a character is None, it is deleted (replaced by
the empty string ''). For example:
>>> substitute("acbcade",{'a':'c','c': None})
'cbcde'

Exercise 5.24. Write a function to_dict() of one argument, a list of pairs (tuples).
It should return a dictionary that has the first members of the tuples as keys, and the
second members as corresponding values. For example:
>>> to_dict([('one',1), ('two',2), ('three',3)])
{'one': 1, 'two': 2, 'three': 3}

Exercise 5.25. Write a function word_count(), which, given the name of a text file,
returns the number of words in it. Turn it into a standalone program that can be started
from the command line, like this:
python word_count.py text.txt

This should return the same number as
wc -w text.txt

Try it on a longer text, such as this.

Exercise 5.26. Write a function top_freq(), which, given the name of a file and a
natural number 𝑛, returns the list of the 𝑛 most frequent words in the file, with their
frequencies. Formore realistic results, make sure “this” and “This” are treated as being
the same word. Test it on a small text file where you know the word frequencies, and
then try it on a longer text, such as this, for which it should return the list
[('the', 12436), ('and', 8311), ('of', 7327), ('a', 4997), ('to', 4412)]

Hints: the dictionary methods .items() returns the contents of the dictionary as a list
of tuples of key-value pairs. You can sort a list of such tuples on their second members
with
sorted(list_of_tuples, key=lambda x : x[1])

or
sorted(list_of_tuples, key=lambda x : x[1],reverse=True)

if you want descending order.

Exercise 5.27. Using your solutions to 5.24 and 5.26, write a functiontop_freq_dict()
which does exactly what top_freq() does, but returns the result as a dictionary. For
example, for this file, it should return the dictionary
{'the': 12436, 'and': 8311, 'of': 7327, 'a': 4997, 'to': 4412}

Hint: if the definition of your function is longer than two lines, then there’s probably
some misunderstanding.

https://www.gutenberg.org/files/3176/3176-0.txt
https://www.gutenberg.org/files/3176/3176-0.txt
https://www.gutenberg.org/files/3176/3176-0.txt


16 B. CSONKA, A. SIMON

Exercise 5.28. There is a datatype set in Python, but let’s make a new one. Represent
a set by a dict whose keys are the members of the set and whose values are all None.
For example, union could be defined on this representation of sets like this:
>>> def union(s1,s2):
... return dict.fromkeys(list(s1.keys()) + list(s2.keys()))
...
>>> union({1: None, 2: None}, {1: None, 3: None})
{1: None, 2: None, 3: None}
Heredict.fromkeys()does the same ass1.fromkeys() ors2.fromkeys(), but since
the result (a new dictionary whose keys come from the iterable that is given as its ar-
gument and all of whose values are None) has nothing to do with either s1 or s2, we
can write dict.fromkeys(). (That is, .fromkeys() is a so called class method, not an
instance method.)
Define intersection(), difference(), and also set_add(), which adds an ele-

ment (its second argument) to the set (its first), and set_remove(), which removes
an element (its second argument) to the set (its first) if it’s present, and leaves it alone
otherwise. For example:
>>> s1 = empty_set() ; set_add(s1,1) ; set_add(s1,2) ; s1
{1: None, 2: None}
>>> s2 = empty_set() ; set_add(s2,2) ; set_add(s2,3) ; s2
{2: None, 3: None}
>>> 1 in union(s1,s2)
True
>>> 1 in intersection(s1,s2)
False
>>> 1 in difference(s1,s2)
True
Fortunately, the in operator works automatically as expected, because if 𝑑 is a dict,
then k in d returns True iff k is a key in d.
Exceptions.
Exercise 5.29. Redo Exercise 5.14, but this time using the built in .index()method.
The challenge is thatstring.index(substring) raises aValueError exceptionwhen
substring is not found in string, but lindex() should return −1. Other exceptions
should go through, and not be hidden by returning −1 (or any other value, for that
matter). For example,
>>> lindex("At the turn of the century", "the")
3
>>> lindex("At the turn of the century", "them")
-1
>>> lindex("At the turn of the century", 42) #should raise an exception
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in lindex

TypeError: must be str, not int

Exercise 5.30. Modify your solution to the previous exercise in such a way that if an
exception other than ValueError is raised by .index(), themessage "Unknown error"
is printed before the error is passed on to the caller.



PYTHON EXERCISES 17

For example,
>>> lindex("At the turn of the century", "the")
3
>>> lindex("At the turn of the century", "them")
-1
>>> #So far everything is as before. But note the (only) difference
>>> #in the following output!
>>> lindex("At the turn of the century", 42)
Unknown error
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in lindex

TypeError: must be str, not int

5.2. List comprehension.

Exercise 5.31. Write a functioneven_odd() that accepts two lists of integers. It should
return a list with all even members of the first list followed by the odd members of the
second list. Use list comprehension!

Exercise 5.32. Using list comprehension, write a function same_mod() that accepts
two lists of natural numbers and a positive natural numbers as arguments. It should
return a list of all pairs of numbers whose first component comes from the first list,
second component from the second list, and such that their remainders modulo the
third argument are equal. For example:
>>> same_mod(list(range(4)), list(range(2,8)),3)
[(0, 3), (0, 6), (1, 4), (1, 7), (2, 2), (2, 5), (3, 3), (3, 6)]

Exercise 5.33. Modify your solution to the previous exercise so that same_mod() re-
turns only those pairs which not only satisfy the condition in the previous exercise but
also the extra condition that the first component of each pair is not divisible by the
third argument. For example:
>>> same_mod(list(range(4)), list(range(2,8)),3)
[(1, 4), (1, 7), (2, 2), (2, 5)]

Exercise 5.34. Write a function squares() of two arguments: a list of integers and a
positive natural number. squares(lst,n) should return a list of lists: the 𝑖th list in
this list should contain the squares of the first n numbers starting from the 𝑖th member
of lst. For example:
>>> squares(list(range(1,8,3)),3)
[[1, 4, 9], [16, 25, 36], [49, 64, 81]]
Use list comprehension(s)!

Exercise 5.35. Write a function concatenate() using list comprehension, that con-
catenates the list of lists that it is passed. For example:
>>> concatenate([list(range(3)),list(range(3,6)),list(range(6,8))])
[0, 1, 2, 3, 4, 5, 6, 7]

Exercise 5.36. As in 5.9, define a function matrix_add() of two arguments that re-
turns the sum of two matrices (of the same shape) represented as lists of rows, where
each row is represented as a list of numbers. But this time do it with the help of list
comprehension!



18 B. CSONKA, A. SIMON

Hint: use zip()!

Exercise 5.37.⋆ Define a function merge() which merges two sorted list (that is, re-
turns a sorted list with members of both lists). For example,
>>> merge([2,7,9], [1,5,6])
[1, 2, 5, 6, 7, 9]
Hint: try to write a recursive function, and think about what possibilities are there for
the arguments.

6. Functions

Exercise 6.1. What is the value of mylist after running the following piece of code?
Why?
def side_effect_or_not (l):

l = [2*i for i in l]
return l

mylist = [1,2,3] ; side_effect_or_not(mylist)

Exercise 6.2. What is the value of mylist after running the following piece of code?
Why?
def side_effect_or_not (l):

l.append(len(l))
return l

mylist = [1,2,3] ; side_effect_or_not(mylist)

Exercise 6.3. Let’s call for the duration of this and the next exercise an object a tree if
either it’s a number, or a list of trees. So 0, 1 and 2 are trees, because they are numbers,
and thus [0, 1, 2] is also a tree, because it’s a list of trees. Consequently,

[0, 1, [0, 1, 2], 2]
being a list of trees, is also a tree. And so is

[0, [0, 1, 2], [0, [0, 1, 2], 1, [0, 1, 2], 2], 2]
for the same reason.
Write a function sumtree()which computes the sum of the numbers of a tree. For

example, it should return 14 for the last tree above.

Exercise 6.4.⋆ Write a function flatten() that, given a tree, returns the list of the
numbers it encounters by traversing it in a depth-first manner. “Depth-first” means
starting from the beginning of the list (if the tree is a list— if it’s not, then it is a number
and the return value should be the list which has this number as its only element) and
that whenever we encounter a list, we process that list first. A few examples should
make it clearer:
>>> flatten(1)
[1]
>>> flatten([1])
[1]
>>> flatten([1, 2])
[1, 2]
>>> flatten([1, 2, [3, 4]])



PYTHON EXERCISES 19

[1, 2, 3, 4]
>>> flatten([0, [0, 1, 2], [0, [0, 1, 2], 1, [0, 1, 2], 2], 2])
[0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 2, 2]
>>> flatten([[0, 1, 2], -1, [-2, [3, 4], [5, 6, 7, 8],
... [9, 10, 11]], [13, 14, 15], [16, 17]])
[0, 1, 2, -1, -2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17]

Exercise 6.5.⋆ Write a function sublists() that returns the list of all sublists (in any
order) of its argument. (Here l1 is a sublist of l2 if it’s a subsequence of l2 in the sense
you learned in calculus. That is, all members of l1 occur in l2, and in the same order.)
For example:
>>> sublists([])
[[]]
>>> sublists([1])
[[1], []]
>>> sublists([1,2])
[[1, 2], [1], [2], []]
>>> sublists([1,2,3])
[[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3], []]

Exercise 6.6. Redo 3.18 but this time around lookup() should accept a keyword only
argument called default, whose value it should return if it cannot find the key. If it’s
not given, lookup() should, as before, return nothing in this situation.

Exercise 6.7. Modify concatenate() from Exercise 5.35 so that instead of a list of
lists, it accepts any number of list as arguments. For example:
>>> concatenate(list(range(3)),list(range(3,6)),list(range(6,8)))
[0, 1, 2, 3, 4, 5, 6, 7]
Hint: apart from one character, the two definitions should be the same.

Exercise 6.8. Define a function myzip() of any number of arguments, all sequences
(lists or strings), that returns a list of tuples: the 𝑖th member of the 𝑗th tuple in the list
should be the 𝑗th member of the 𝑖th argument. The length of the list should be the
length of its shortest argument. For example:
>>> myzip('abcdefg', list(range(3)), list(range(10,14)))
[('a', 0, 10), ('b', 1, 11), ('c', 2, 12)]
Do not use zip()!
Hint: start from Exercise 5.11!

Exercise 6.9. As in Exercise 5.8, define a function transpose() of one argument,
that, given a (not necessarily) square matrix represented as a list of lists, returns its
transpose, but this time computed with list comprehension. For example:
>>> transpose([[1,2],[3,4],[5,6]])
[[1, 3, 5], [2, 4, 6]]
Hint: use * and zip()!

Exercise 6.10.⋆ Redo Exercise 5.10 but this time using only list comprehension.
For simplicity, you can use transpose().

Exercise 6.11. Define a function apply() of two arguments, which returns the result
of applying its first argument, which should be a one-argument function, to its second.



20 B. CSONKA, A. SIMON

Exercise 6.12. Write a function self_compose of two arguments such that
self_compose(fun, n)
where fun is a function of one argument and n is a natural number, returns fun com-
posed with itself n times. In particular, self_compose(fun, 1) should return fun
itself, self_compose(fun, 2) the composition of fun with itself, etc. What should
self_compose(fun, 0) return? If youdon’t know, just assume (and checkwithassert)
that the second argument is always positive.
For example:

>>> (self_compose(lambda x: x+1,3))(0)
3

Exercise 6.13. Write a function compose12() of two arguments, so that if f1 is a func-
tion of one argument and f2 is a function of two arguments, then compose12(f1,f2)
returns the two argument function f1(f2(_,_)). For example,
>>> compose12(lambda x: 2*x,lambda x,y: x+y)(2,3)
10

Exercise 6.14. Write a function compose1n() of two arguments, so that if f1 is a func-
tion of one argument and f2 is a function of 𝑛 arguments, then compose1n(f1,f2)
returns the 𝑛 argument function f1(f2(_,_, ... , _)). For example,
>>> compose1n(lambda x: 2*x,lambda x,y: x+y)(2,3)
10
>>> compose1n(lambda x: 2*x,lambda x,y,z: z*(x+y))(2,3,4)
40


	1. Where to start?
	2. Simple things
	3. More challenging stuff
	4. I/O
	5. Containers
	5.1. dict
	5.2. List comprehension

	6. Functions

