
PYTHON

A. SIMON

Contents

1. Python from scratch 2
1.1. Python as a calculator 2
1.2. Python as a programming language 3
1.3. Miscellaneous basics 12
1.4. Some examples 16
2. Some useful details 19
3. I/O 25
3.1. User input and simple output 25
3.2. Reading and writing files 27
4. Containers 30
4.1. lists, tuples and strings 30
4.2. dicts 41
4.3. sets 49
4.4. More on list comprehension 50
5. Functions 52
6. Modules 65
7. Debugging 66
8. The 45 minutes introduction to object oriented programming

71
Appendix A. Standalone programs 77

∙ Where to find Python?
– Onyour ownwindowsmachine youprobablywant this: http:
//wiki.math.bme.hu/view/AnacondaInstallWith this, you’ll
get a graphical development environment called spyder that
people seem to like.

– If you use Linux, you already have Python installed. Install
VSCode or spyder3 and/or ipython3.

Date: February 27, 2025.
1

http://wiki.math.bme.hu/view/AnacondaInstall
http://wiki.math.bme.hu/view/AnacondaInstall

2 A. SIMON

– https://colab.research.google.com/ or https://cocalc.
com. You need to register here, but get a nice a jupyter note-
book.

– https://sagecell.sagemath.org/, choose Python from the
available languages. This is the worst but simplest choice.

∙ Reading material:
– http://math.bme.hu/~asimon/info2/python.pdf (the newest
version of the lecture notes (this document))

– Wentworth &al., How to think like a computer scientist
∙ Exercises for the lab sessions are here:

– http://math.bme.hu/~asimon/info2/pythex.pdf

1. Python from scratch

1.1. Pythonas a calculator. If you start the Python interpreter python3,
or, preferably, ipython3 from a terminal, you get a prompt, such as this:
>>>
or this:
In [84]:
Here you can type Python commands and the interpreter will execute
them and return the results (if any). This is the same as Sage’s behaviour,
so should be familiar for most of you.1 For example:
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 2+3
5
or
>>> 2**3
8
or
>>> 2**3 == 8
True
>>> (123**13) % 13 == 123 % 13 #because of Fermat's little theorem
True
(Whatever is written after an # on a line is ignored by Python; it’s a com-
ment for the human reader, just like % in LATEX.)
It’s not just integers (ints) that we can work with, but various other

types of data, too. For example:

1In a jupyter notebook you need to press Ctrl+Enter to execute your command.

https://colab.research.google.com/
https://cocalc.com
https://cocalc.com
https://sagecell.sagemath.org/
http://math.bme.hu/~asimon/info2/python.pdf
https://runestone.academy/ns/books/published/thinkcspy/index.html
http://math.bme.hu/~asimon/info2/pythex.pdf

PYTHON – DRAFT VERSION 3

>>> 3.14 #a floating point number (float)
3.14

>>> 'This is a string' #a string
'This is a string'

>>> [1, 2, 'Hello', 3.5] #a list (of ints, a string, and a float)
[1, 2, 'Hello', 3.5]

>>> [1, 2, 'Hello', 3.5][2] #the 2nd member of the list (indexing starts at 0)
'Hello'
We can also store values (that you type in or get as a result) in variables.
(The usual terminology is assigning a value to a variable.) You can think
of a variable as a box with a name into which you put the value. (That
name should only contain letters of the alphabet, numerals (but mustn’t
start with one), and the underscore (_) character.)
>>> my_first_var = 2**3
From now on, my_first_var will contain 8 until we change it (or quit
the Python interpreter):
>>> my_first_var
8

>>> 2 * my_first_var
16
and I can write my_first_var whenever I mean 8.
1.2. Python as a programming language. Why not write the literal
value2 8 (or 2**3) directly? There are quite a few reasons (for example,
we don’t want to write, say, [1, 2, 'Hello', 3.5] every time we need
it) but the most important by far is that Python is not just a calculator.
Typically, I want to do something (say Action) with lots of different val-
ues, and the way to achieve that is to do what I want to do with the vari-
able, changing it to the different values, instead of doing Action with
each of the literal values. For example, one such action is printing. If I
want to see the square of a few numbers, I can do this:
>>> print(1**2)
1

>>> print(2**2)
4
2A literal value is a value that appears directly in the source code of a program.

4 A. SIMON

>>> print(3**2)
9

>>> print(4**2)
16

but the following is much more practical:

>>> number = 1
>>> while (number < 5):
... print(number ** 2)
... number = number + 1
...
1
4
9
16

Before trying to understand how this worked, let’s see why this is much
better. The main reason is that we only had write how to do Action
once (on the third line). The rest is just specifying for which values of
the variable number we want to do it. One benefit is that if we decide to
print more squares, we just have to change 4 to a bigger number. Or if
we want to print only every third square, we only have to change the last
line:

>>> number = 1
>>> while (number < 15):
... print(number ** 2)
... number = number + 3
...
1
16
49
100
169

This was an example of a loop, more specifically a while loop. Loops are
what make variables not only useful but indispensable. (And loops are
one of the two components that turn a calculator into a programming
language.)
Think about how this could’ve been achievedwith our individual prints!

And it’s not just a matter of convenience. There are ways for a program

PYTHON – DRAFT VERSION 5

to get input from a user (see § 3!). Now what if 15 above was not a con-
stant, but the result of a user input? How could we modify our list of
prints to print the amount of squares the user wishes us to print?
The syntax of a while loop is this:

while condition:
do_this
...
do_that

This executes repeatedly everything in its body (the indented block3, do_this,. . . ,
do_that) as long as condition holds, and then control goes to the part of
the program (if any) that follows the body. Python knows where that
is, because it is indented at most as far as the while keyword itself. For
example,

number = 1
while (number < 15):

print(number ** 2)
number = number + 3

print('Done')

1
16
49
100
169
Done

Remark 1.1. There is a huge difference between

>>> 42
42

and

>>> print(42)
42

Thefirst returns a value, the second only prints one: print() is a built-in
function, but one that is called only for its side-effect, namely printing its
argument(s) on the console, not for its value (which is None). Compare
this:

3Thoses you sometimes see at the beginning of lines are not part of the definition.
They’re the prompts of the command line interface (just like >>>) that show that it
expects more lines.

6 A. SIMON

>>> a = 42
>>> print(a)
42
with this:
>>> a = print(42)
42
>>> print(a)
None
In other words: printing is for giving information to a user (a.k.a. a hu-
man) only.4

Back to our looping example. There is another, often more convenient
way of looping: the for loop. Here’s how our first while loop above:
number = 1
while (number < 5):

print(number ** 2)
number = number + 1

can be written as a for loop:
>>> for number in range(1,5):
... print(number ** 2)
...
1
4
9
16
and the second:
number = 1
while (number < 15):

print(number ** 2)
number = number + 3

can be rewritten as a for loop like this:
>>> for number in range(1,15,3):
... print(number ** 2)
...
1
16
49
100
169
4At least for now. This changes when we use print() for writing in a file (see § 3!)

PYTHON – DRAFT VERSION 7

The nice thing about the for loop is that it can iterate over not just a
range of numbers, but almost anything for which this make sense (these
things are called iterables): the characters of a string, the lines of a file,
records of a database table,. . . and, perhapsmost commonly, the elements
of a list. (What range() returns is not a list, but can be turned into a list
using the function list(); for example, list(range(1,15,3)) returns
[1, 4, 7, 10, 13].) For example, here is one way to compute the product of
the elements of a list:
>>> #I store the list in a variable, because I want to use it later.
>>> l = [4,2,5,9]
>>> product = 1
>>> for n in l:
... product = product * n
...
>>> product
360

We could’ve done this with a while loop, too:
>>> product = 1
>>> index = 0
>>> while index < len(l):
... product = product * l[index]
... index = index + 1
...
>>> product
360

but that is much less elegant.
One technical detail about both kinds of loops: we can jump out of

a loop early with the break statement, and also go immediately to the
next iteration with continue. But to be able to show any meaningful
examples of these, we need the other construction that turns a calculator
into a full-blown programming langue: the if statement.
if condition:

do_this_if
...
do_that_if

which executes everything in its body (do_this_if,. . . ,do_that_if) but
only if condition holds; and the extenden version:
if condition:

do_this_if

8 A. SIMON

...
do_that_if

else:
do_this_if_not
...
do_that_if_not

which executes the body of the else clause if the condition doesn’t hold.
For example:

>>> if 2<3:
... print('OK')
...
OK
>>> if 3<2:
... print('OK')
...
>>> if 3<2:
... print('OK')
... else:
... print('Not OK')
...
Not OK

Now that we have the if statement, we can illustrate what break and
continue does.
Suppose that we only want to compute the product of the odd ele-

ments of a list. Here is one way to achieve this:

>>> l = [4,2,5,9]
>>> product = 1

>>> for n in l:
... if n%2 == 0: #if n is even
... continue #take the next element of the list
... #that is, skip the rest of the body of the loop
... product = product * n
...
>>> product
45

Exercise 1.1. Could we change the loop to achieve the same effect with-
out using continue?

PYTHON – DRAFT VERSION 9

What if we only want to take the product until we encounter an odd
number? Here’s where break helps:
>>> l = [4,2,5,9]
>>> product = 1

>>> for n in l:
... if n%2 == 1: #if n is odd
... break #get out of the loop. NOW!
... product = product * n
...
>>> product
8

The last important building block that we need is the ability to define
(and call) functions. This is not absolutely necessary, but would be very
hard to live without.
What problems are they supposed to solve? A few examples ago we

computed the product of the members of a list. If we had to do that for
one list, it’s more than likely that we’ll want to do it again with other lists
of numbers. So what we do is “abstract away” the concrete list from that
program, and give the whole thing a name (product seems like a good
choice) to be able to refer to it. Here’s the result:
>>> def product(l):
... result = 1
... for n in l:
... result = result * n
... return result
...

which can be used (called) like this:
>>> product([4,2,5,9])
360

>>> product([4,2,5,9,10])
3600

The first line of the definition says that the name of the function be-
ing defined is product and its only parameter (or argument) is l. This
means that this function has to be called with one argument, which will
be assigned to the variable (more specifically, the parameter) l, which
can be used in the body (the indented block, as always) of the func-
tion. It is a local variable, which means that even if we have a variable of
the same name outside the function definition, its value will be restored

10 A. SIMON

when the function returns. The same is true for result defined on the
second line. Here’s an example that shows this:
>>> a = 1
>>> b = 2
>>> def fun(a):
... b = a
... return b
...
>>> fun(42)
42
>>> a
1
>>> b
2

Why is defining product() as a function better than copying our old
code that computed the product of a list with the list replaced by a new
one every time we need it? Apart form the obvious reason (that code is
just a few lines, but what if we’re talking about another, which is a few
thousand lines?), there is a decisive one: if we find out that there is a bug
in our implementation of product(), we only need to correct it in one
place, the definition of the function.
Here’s the general syntax of a function definition:

def name(parameter1,parameter2,...):
do_this
...
do_that

There might be one or more
return a_value

statements in the body of the function. What it does ismake the function
return immediately, and give back (return) the

a_value
to the caller. The function can return even without a return statement,
but it will then return the value Nonewhich is as good as returning noth-
ing. (return in itself, with no argument, has the same effect.) We have
already seen that print() does this. There are lots of other examples
where a function doesn’t return anything but is still useful. For exam-
ple, it might write to a file (or delete all our files), make a phone call,
etc. Before showing another example of a function that doesn’t return
anything but may still be useful, we need to know that in Python, every

PYTHON – DRAFT VERSION 11

object has a type, and not only can we ask what it is, but also if an object
is of a certain type:
>>> type(1)
<class 'int'>
>>> isinstance(1,int)
True
>>> isinstance(1,list)
False
Now we’re ready for the example of a potentially useful function that
doesn’t return anything:
>>> def show(arg):
... print(arg, 'is of type', type(arg))
... if isinstance(arg,list) or isinstance(arg,str):
... print('It is of length', len(arg))
... else:
... if isinstance(arg,int):
... print('It is', 'odd.' if arg%2 == 1 else 'even.')
... else:
... print("I can't tell you more about it.")
...
>>> show(['Hell', 'o', 12])
['Hell', 'o', 12] is of type <class 'list'>
It is of length 3
>>> show('Hello')
Hello is of type <class 'str'>
It is of length 5
>>> show(3)
3 is of type <class 'int'>
It is odd.
>>> show(3.14)
3.14 is of type <class 'float'>
I can't tell you more about it.
Here we used the if expression5 (as opposed to the if statement), which
returns its first argument (the one before the keyword if) if its second
argument (the one between if and else) is True, and its third argument
(the one after else) otherwise:
>>> 'Yes' if True else 'No'
'Yes'

5An expression is somethingwhich produces a value (so variables, literals and function
calls, among other things, are expressions).

12 A. SIMON

>>> 'Yes' if False else 'No'
'No'
So this variant of if produces a value depending on a condition. This is
useful in at least two situations. First,
maximum = b if a < b else a
is much more concise than the equivalent
if a < b:

maximum = b
else:

maximum = a

Exercise 1.2. Rewrite the show() function in such a way that it doesn’t
use if expressions.

The second situation is in a lambda, or anonymous function. This is a
special kind of function for those cases when we need a function only
once. Here is an atypical example:
>>> (lambda x : x ** 2)(3)
9
but we will see typical ones later.6
A lambda’s body can only have one expression in it, and it returns the

value of that expression (there’s no need for a return statement). So
the only way to make a decision in a lambda is with the help of an if
expression, as in the following example:
>>> (lambda x : x**3 if x > 0 else -x**3)(-2) #|x^3|
8
or even
>>> (lambda x : (x if x > 0 else -x)**3)(-2) #|x|^3
8

1.3. Miscellaneous basics.

Indexing lists (and strings). We have seen that lists can be indexed with
the operator []:
>>> numbers = list(range(18))
>>> numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

6For the impatients: if l is a list of non-empty lists of numbers, then
sorted(l, key=lambda x : x[0]) will return l sorted by the magnitude of
the first numbers of the lists.

PYTHON – DRAFT VERSION 13

>>> numbers[10]
10
But there’s more to [] than that.
When the index i is negative, len() - i is used instead (so we count

from the end, but this backward indexing starts at 1, not 0).

Exercise 1.3. What would be the problem with starting at 0?

>>> numbers[-3] #we can use this to find the 3rd member counting from the end
15
>>> numbers[len(numbers)-3] #instead of this
15
One can can extract not just individual members, but various slices of

a list:
>>> numbers[:10] #the first 10 members
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> numbers[10:15] #from the 10th up to (but not including) the 15th member
[10, 11, 12, 13, 14]
>>> numbers[15:] #everything from the 15th member
[15, 16, 17]
>>> numbers[::2] #only the ones with even indices
[0, 2, 4, 6, 8, 10, 12, 14, 16]
>>> numbers[1::2] #only the ones with odd indices
[1, 3, 5, 7, 9, 11, 13, 15, 17]
Slices work with negative indices, too:
>>> numbers[:-10] #until the 10th from the end
[0, 1, 2, 3, 4, 5, 6, 7]
>>> numbers[-10:] #the last 10
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
>>> numbers[-10:-3] #the last 10 members except for the last 3
[8, 9, 10, 11, 12, 13, 14]
>>> numbers[:-3][-7:] #the same: forget the last 3 and then take the last 7
[8, 9, 10, 11, 12, 13, 14]
>>> numbers[-10:][:7] #the same: take the last 10 and then take its first 7
[8, 9, 10, 11, 12, 13, 14]
steps can also be negative:
>>> numbers[::-1] #all of them, backwards
[17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> numbers[::-2] #every second of them, backwards
[17, 15, 13, 11, 9, 7, 5, 3, 1]
but then start and end are interchanged:

14 A. SIMON

>>> numbers[4:1:-1] # from the 4th (incl.) to the 1st (excl.)
[4, 3, 2]
>>> numbers[4::-1] # from the 4th, to the beginning
[4, 3, 2, 1, 0]
All these tricks work for strings, too. For example:

>>> s = 'abcdefgh'
>>> s[3]
'd'
>>> s[-3]
'f'
>>> s[5:]
'fgh'
>>> s[5::-1]
'fedcba'
But there is one feature of the indexing and slicing operators that don’t
apply to strings (because strings are immutable): they can be used for
assignment, too:
>>> numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
>>> numbers[0]=-10
>>> numbers
[-10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
>>> numbers[1:4] = [11,22,33]
>>> numbers
[-10, 11, 22, 33, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
>>> numbers[-1:-4:-1] = [111,222,333]
>>> numbers
[-10, 11, 22, 33, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 333, 222, 111]

Exercise 1.4. What’s the difference between numbers[1] = [True] and
numbers[1:2] = [True]? Is one of these equivalent to numbers[1] = True?
List comprehension. Given a list (or in fact any iterable, such as a range)
l, [f(x) for x in l] returns a list whose 𝑖th member is the result of
f applied to the 𝑖th member of l. So for example
>>> [x/2 for x in range(10)]
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
We can filter l if we want:
>>> [x/2 for x in range(10) if x%2 == 0]
[0.0, 1.0, 2.0, 3.0, 4.0]
List comprehensions can of course be nested (and then should be read
“outside in”):

PYTHON – DRAFT VERSION 15

>>> [[str(i)+j for j in 'abc'] for i in range(3)]
[['0a', '0b', '0c'], ['1a', '1b', '1c'], ['2a', '2b', '2c']]

Here we use the str() function, which returns a string representation
of its argument, and the fact that the sum of two strings is their concate-
nation.

Variable unpacking (basic version). Besides lists, there is another data
structure, tuple, that can hold objects in a sequential order. If you write
>>> 2+3, 2*3, 2**3
(5, 6, 8)

the result is not three separate object, it’s one tuple (of three objects).
Here’s proof of that:
>>> a = 2+3, 2*3, 2**3
>>> a
(5, 6, 8)
>>> type(a)
<class 'tuple'>

But it’s easy to unpack a tuple into its components:
>>> a, b = 2+3, 2*3
>>> a
5
>>> b
6

A useful consequence of this is that instead of writing
>>> a = 5
>>> b = 10

one can write
>>> a, b = 5, 10

The two are not completely equivalent, because in the second case, the
two assignments happen in parallel. But that means, that we can ex-
change the values of two variables like this:
>>> a, b
(5, 10)
>>> a, b = b, a
>>> a, b
(10, 5)

instead of having to use a temporary variable, as in more primitive lan-
guages:

16 A. SIMON

>>> temp = a ; a = b; b = temp
>>> a, b
(5, 10)

Methods. We’ll frequently talk about methods without formally intro-
ducing them (until § 8). It’s safe to think that they’re just like ordinary
functions but called in a peculiarmanner. Instead ofwriting upper('abc')
to get the uppercase version of 'abc', we write
>>> 'abc'.upper()
'ABC'
and say that .upper() is a method of strings. The latter means that this
call only makes sense if what’s before the dot is (or evaluates to) a string.
Another example is .append(), which is a method of lists. It appends
its argument to the list it’s called on:
>>> l = [1,2,3]
>>> l.append(100)
>>> l
[1, 2, 3, 100]
Note that unlike .upper(), it doesn’t return a value: it changes the object
it’s called on. For now, we can imagine that, say,
obj1.m(obj2, obj3)
is like the function call
m(obj1, obj2, obj3)
it’s just that the type (class) of obj1 and m have a special relationship.

Modules. We’ll learn about modules later, for now it’s enough to know
that whenever the keyword import appears, it means that some extra
functionality will be provided for the rest of the program. In each case it
will be clear what. For example:
>>> import math
>>> math.sqrt(2), math.pi
(1.4142135623730951, 3.141592653589793)
Once imported, we can get a lot of information about the math modul by
writing
help(math)

1.4. Some examples.

Example. Define a function repeats() of one argument, a list of num-
bers, which returns True if two consecutivemembers of the list are equal,
and False otherwise.
For example:

PYTHON – DRAFT VERSION 17

>>> repeats([])
False
>>> repeats(range(10))
False
>>> repeats([1,2,1,4])
False
>>> repeats([1,2,1,4,4])
True
>>> repeats([1,2,1,1,4])
True
def repeats(l):

for i in range(1,len(l)):
if l[i-1] == l[i]:

return True
return False

or
def repeats(l):

if l == []: return False #need to check because of the next line
last = l[0]
for i in l[1:]:

if i == last:
return True

last = i
return False

or
def repeats(l):

for x, y in zip(l, l[1:]):
if x == y:

return True
return False

Wehaven’t learned about the function, but you can look up its documen-
tation (help(zip) or zip?) or wait until we encounter it on page 34.

Example. Write a function squares() of two arguments, so that squares(m,n)
returns the list of squares between𝑚 and 𝑛.
def squares(m,n):

return [i**2 for i in range(n+1) if m <= i**2 <= n]
or
def squares(m,n):

res = []
i = isquare = 0 #this works as expected

18 A. SIMON

while isquare <= n:
if isquare >= m:

res.append(isquare)
i = i + 1
isquare = i**2

return res
or, since 𝑚 ≤ 𝑖2 ≤ 𝑛 ⟺

√
𝑚 ≤ 𝑖 ≤

√
𝑛 ⟺

⌈√
𝑚

⌉
≤ 𝑖 < 1 +

⌊√
𝑛
⌋

for 𝑖 ∈ ℕ,
import math
def squares(m,n):

return [i**2 for i in range(math.ceil(math.sqrt(m)),1+math.isqrt(n))]

Example. Write a function of one (integer) argument that computes an
approximation to 𝜋 by throwing darts randomly at the unit square with
a quarter of the unit circle in it, and comparing the number of throws
that landed in the quarter circle with the total number of throws (the
argument of the function).

(0,0)

(1,1)

The function random() of the package random below returns a float in
the interval [0, 1]. Since we use it a lot7, we import it in such a way that
it doesn’t need to be qualified with the package name.
from random import random

def mcpi(n): #Monte Carlo pi
incircle = 0
for _ in range(n): #we don't care about the loop variable

px,py = random(),random()
if px ** 2 + py ** 2 <= 1:

incircle += 1 #a concise way of incrementing incircle
#see below!

return(4*incircle/n)
7twice

PYTHON – DRAFT VERSION 19

>>> mcpi(10) ; mcpi(10) ; mcpi(10 ** 3) ; mcpi(10 ** 6)
3.6
2.4
3.144
3.14164

incircle += 1 in line 6 is an example of an in-place assignment; it does
the same as incircle = incircle + 1. This works for all binary op-
erations in Python, not just +: if o is a binary operation applicable to
the values of x and v, where x is a variable (vmay be a variable, a func-
tion call, a literal such as 42, 'a literal string', etc.), then x o= v
is equivalent to x = x o v. So for example,
>>> b = 3; b **= 2; b
9

because b **= 2 is equivalent to b = b ** 2. Similarly:
>>> b = 14; b %= 3; b
2

2. Some useful details

We’ve already learned enough Python to be able to use it for writing
simple programs. Herewe collect (in no particular order) some basic fea-
tures of the language that are useful but would’ve only served to distract
us when we made our first steps.

Simple types. Some “simple” types (of which we have already encoun-
tered two) are listed in Table 1. Complex literals can be written as a+bj,
where a and b are int or float literals.
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> (1+1j)**2
2j

j in itself is just a variable name:
>>> j**2 == -1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'j' is not defined
>>> 1j**2 == -1
True

But if we want complex numbers, we probably want Sage (or SymPy),
too.

20 A. SIMON

A warning: dividing an int with another results in a float, even if
the second int divides the first:
>>> 2/2, type(2/2)
(1.0, <class 'float'>)

And since the precision of floats are limited, this can lead to some un-
expected results:
>>> 18530201888518410 / 2
9265100944259204.0

There are ways to work around such problems. If you know that the
result should be an int, you can use // instead of /. If you don’t, you
can write
x//y if x%y == 0 else x/y

For example,
>>> [x//3 if x%3 == 0 else x/3 for x in range(5,10)]
[1.6666666666666667, 2, 2.3333333333333335, 2.6666666666666665, 3]

The function divmod(), which returns the pair (x//y, x%y), can also
be useful in this context.
Finally, we have seen None, the value that functions which don’t re-

turn a value return. (It has other uses, too). It is of type NoneType.

Complex types. A not so simple type is string. We’ve met it already, and
will learn more about it in Section 4; for the time being it’s enough to
know that a string literal is whatever is written between quotationmarks
of various kinds, most importantly ' and ". Another important “com-
plex” type is list, but what we have learned about lists will be enough
for us for a while, assuming we haven’t forgotten about the .append()
method (see 1.3 and 1.4), which is often used for accumulating objects
in a list. Finally, there are tuples which we’ve seen in connection with
variable unpacking on page 15.
There are more to come.

Type Description
int integer
float floating point number
complex complex number
bool boolean (True and False)
NoneType None (null value)

Table 1. Some simple types

PYTHON – DRAFT VERSION 21

Generalized booleans. The condition in an if or while statement or in
an if expression is usually a boolean, but can be of other type, too, as
shown in the following examples:
>>> if 0: print('Yes')
...
>>> if 10: print('Yes')
...
Yes
>>> if []: print('Yes')
...
>>> if [0]: print('Yes')
...
Yes
>>> if '': print('Yes')
...
>>> if 'nonempty string': print('Yes')
...
Yes
>>> if None: print('Yes')
...

More on if. We know everything there is to know about the if state-
ment, except that it can optionally have one or more elif clauses:
if cond_1:

do_this_1
...

elif cond_2:
do_this_2
...

else:
do_this_3
...

do_this_no_matter_what

does the same as, but is more compact than
if cond_1:

do_this_1
...

else:
if cond_2:

do_this_2
...

22 A. SIMON

else:
do_this_3
...

do_this_no_matter_what
For example:
>>> for i in range(-5,26,10): #i.e. [-5,5,15,25]:
... if i<0:
... print('negative')
... elif i<=10:
... print('small')
... elif i<=20:
... print('medium')
... else:
... print('big')
...
negative
small
medium
big

Exercise 2.1. Do the same without elif!

Binary operators and relations. See Table 2 for an (incomplete) list of
binary operators. One noteworthy change from Sage is that ^ no longer
means exponentiation.
For binary relations R and S, x R y S zmeans x R y and y S z; for

example
>>> 3 <= 4 > 2 < 10
True
This lets us get away with fewer ands.

More on loops. Both for and while loops have extended versions that
are useful when break is used in the body. Here’s the syntax for for
loops, but it’s similar for while:
for variable in iterable:

do_this
...
do_that

else:
do_this_too
...
do_that_too

PYTHON – DRAFT VERSION 23

Thisworks as before (the body (do_this ... do_that) will be executed
with variable bound to successive values of the iterable), but the body of
the else clause will only be executed if the loop terminates normally,
not by executing a break. (The while loop’s else clause behaves simi-
larly.) Here’s an example where this is useful. Suppose we have a list
of numbers and we want to print the first number that is divisible by 7,
or print that there is no such number.
numbers = [2, 5, 10, 14, 21, 35, 42, 51]

for n in numbers:
if n % 7 == 0:

print(n, "is divisible by 7")
break

else:
print("No number in the list is divisible by 7")

14 is divisible by 7
We can’t just write the last print() statement after the loop, because

then it would be executed even if there were amember of the list that is
divisible by 7. Without an else clause we’d have to keep track of what’s
going on with an extra variable:
numbers = [2, 5, 10, 14, 21, 35, 42, 51]
broke = False

for n in numbers:
if n % 7 == 0:

print(n, "is divisible by 7")
broke = True

Operators and relations Description
or boolean or
and boolean and
not boolean not
in, not in membership
is, is not identity test
<, <=, >, >=, ==, != comparison
+, - addition, subtraction
*, /, //, % multiplication, division, truncating division, remainder
** exponentiation

Table 2. Binary operators and relations

24 A. SIMON

break
if not(broke):

print("No number in the list is divisible by 7")
14 is divisible by 7
This is not only ugly, but error prone, for what if this whole piece of code
is part of a larger one that also happens to use a variable named broke?
But in cases like this, wemay be better offwriting and calling a function,
and use return instead of break. This will also prevent the execution of
commands after the loop when they shouldn’t be executed.

Exercise 2.2. Write a function first_divisible(numbers,d) that prints
the first number in the list of numbers numbers that is divisible by 𝑑, or
prints that there is no such number. For example,
>>> nums = [2, 5, 10, 14, 21, 35, 42, 51]
>>> first_divisible(nums, 7)
14 is divisible by 7

>>> first_divisible(nums, 13)
No number in the list is divisible by 13
Don’t use break and else.

It’s quite common thatwewant to iterate over something but also keep
track of where we are. To help with this, Python provides enumerate(),
which can be used like this:
>>> for index, number in enumerate(range(10,15)):
... print(index, number)
...
0 10
1 11
2 12
3 13
4 14
This ismuchmore concise thanwhatwewould have towrite otherwise:
index = 0
for number in range(10,15):

print(index, number)
index += 1

With an optional argument, enumerate() can start counting from inte-
gers other than 0:
>>> for index, number in enumerate(range(97,107),1):
... print(index,chr(number))

PYTHON – DRAFT VERSION 25

...
1 a
2 b
3 c
4 d
5 e
6 f
7 g
8 h
9 i
10 j

It may seem strange that we have two loop variables, index and number.
But this is just a case of variable unpacking, something we have seen on
page 15. What happens here is that enumerate() returns collection of
pairs:
>>> list(enumerate(range(10,15)))
[(0, 10), (1, 11), (2, 12), (3, 13), (4, 14)]

so on each round we get a pair whose first member is assigned to the
variable index, and whose second member is assigned to the variable
number.

3. I/O

One could go quite far with what we’ve learned so far. But one area
where we’d soon feel constrained is the ability to provide data for our
programs and to display their output in a usable form. This, especially
the lack of our ability to utilize various data sources, is often fine for
mathematically oriented (for example, typical Sage) programs, but not
for real-life Python programs.

3.1. User input and simple output. Asking for keyboard input from
the user is the simplest way to get a small amount of data from the out-
side our programs (not known at the time they’re written) with which to
work. For a more substantial amount, it’s reading from a text file, which
will be covered in the next subsection8.
The input() function returnswhatever the user types until she presses

Return, as a string. Here’s an example:
x = int(input())
print(2*x)

8other methods include reading from a network socket or a database

26 A. SIMON

This will wait until you enter a number, and will then print its double.
The call to int() is there to convert the string representation (say '9')
of the input to an integer (9, in this case).
To make it more usable, we should call input() with the optional ar-

gument prompt, which will be displayed to the user. Try this version:
x = int(input('Enter an integer: '))
print (2*x)
With this, the user will see that there is something to be done.

Exercise 3.1. Write a program that asks for numbers, one after the other,
and if the user presses Return without entering a number first, it re-
turns the average of the numbers. So an interaction with your program
should look something like this:
Enter a number: 1
Enter a number: 4
Enter a number: 12
Enter a number: 3
Enter a number:
The average is 5.0

For more complex inputs you may have to preprocess the string in
other ways to make it usable for your program. For example, if we want
a list of integers, we do this:
input_str = input('Please input a list of integers separated by spaces: ')
l = [int(i) for i in input_str.split()]
What the .split() method does here is to return the list of the words
(substrings separated by whitespace) in the string. For example:
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> '12 23 42 135 '.split()
['12', '23', '42', '135']
Returning to our doubling example: it’s OK to return the double of

the integer the user typed in, but it’s better to tell her what the answer is
an answer to, as in
The double of the number 21 is 42.
This will almost do that:
x = int(input('Enter an integer: '))
print ('The double of the number', x, 'is', 2*x, '.')
That’s because, as we have seen before, print() accepts any number of
arguments, and prints them, by default, separated by a space. For this
reason the output will not exactly be what we wanted, but this:

PYTHON – DRAFT VERSION 27

The double of the number 21 is 42 .
There are other (arguably better) ways of circumventing this problem
(see for example the discussion of f-strings later), but a simple one is to
use the sep keyword argument to print(). This determines what gets
printed between the various arguments, and is a space by default.
x = int(input('Enter an integer: '))
print ('The double of the number ', x, ' is ', 2*x, '.', sep='')
The value of sep can be any string. There is another useful keyword
argument of print(), end, newline ('\n') by default, which determines
what is printed after all the arguments are. For example:
>>> for i in range(5): print(i,end='|')
...
0|1|2|3|4|
An ugly but simple workaround for getting rid of the last sep is to delete
it after the loop with a print('\b'). '\b' is the backspace backslash
escape sequence, just as '\n' is newline and '\t' is tabulator. It’s best to
avoid these, except possibly '\n'.
For our problem above,

>>> print('|'.join([str(i) for i in range(5)]))
0|1|2|3|4
is a better solution. This works because if s is a string and l is a list
of strings, then s.join(l) is the concatenation of the strings in the list
separated by s. For example,
>>> '<>'.join(['this', 'looks', 'strange'])
'this<>looks<>strange'

Exercise 3.2. Write a program that asks for numbers separated by spaces,
and prints their average. So an interaction with your program should
look something like this:
>>> Enter some numbers separated by spaces: 1 4 13 2
The average is 5.0
>>>

3.2. Reading and writing files. Suppose that
$ cat data.txt
one
two
three
very long
four
five

28 A. SIMON

We can get the contents of data.txt from Python this way:
>>> with open('data.txt') as file:
... for line in file:
... print(line.rstrip())
...
one
two
three
very long
four
five
with opens a new block (see the colon at the end of the line and the
indentation of the next lines); since it is followed by

open('data.txt') as file
what it does is open the file named data.txt in the current directory
for reading, and assigns an iterable of the lines of the file to the variable
file. The .rstrip() is there only to strip whitespace and newline from
the end of each line. Try it without .rstrip() to see the difference!
To make us feel that our program actually does something, we may

want to prepend each line with its line number in the output.
>>> with open('data.txt') as file:
... for i, line in enumerate(file,1):
... print(str(i)+': '+line.rstrip())
...
1: one
2: two
3: three
4: very long
5: four
6: five
(We’ve met enumerate() on page 24.)
There is a more primitive way to open a file (for reading or writing),

namely with the function open(); so our first program above could’ve
been written like this:
file = open('data.txt')
for line in file:

print(line.strip())
file.close()
but the with construction guarantees that our file will be closed (there’s
no need to invoke the method .close()) once control leaves its body.

PYTHON – DRAFT VERSION 29

This is particularly important when writing files, because closing a file
opened for writing ensures that all data sent to it is actually written to
it. As an example of writing to a file, let’s write to out.txt the lines of
data.txt in reverse order:

>>> lines = []

>>> with open('data.txt') as file:
... for line in file:
... lines.append(line.rstrip())
...
>>> with open ('out.txt','wt') as out:
... for line in lines[::-1]:
... print(line,file=out)
...
>>> #we check the result by escaping back to the shell
>>> import os
>>> print(os.popen('cat out.txt').read())
five
four
very long
three
two
one

Herewe opened the the file out.txt for writing in textmode; that’s what
wtmeans in the second argument to open(). Some important other pos-
sibilities are rt (read in text mode — the default), rb (read in binary
mode) and wb (write in binary mode).
Another novelty here is that print() has a keyword argument file,

which can be an open (for writing) file; in that case print()writes there
instead of the standard output.
A shorter way to achieve the same result is this:

>>> with open('data.txt') as file:
... with open ('out.txt','wt') as out:
... for line in reversed(list(file)):
... print(line.rstrip(),file=out)
...

Thisworks because list() creates a list froman iterable, which reversed()
can reverse. Instead of reversed(list(file)) we could have written
list(file)[::-1].

30 A. SIMON

4. Containers

4.1. lists, tuples and strings. We’ve encountered plenty of lists al-
ready, but there’s a lot that can be done with them that we haven’t cov-
ered yet. A subset of these are applicable to tuples and strings, too. This
is not surprising, considering that both tuples and strings are a bit like
lists, in that all of them are mappings from a proper initial segment
of the natural numbers into all Python objects (in the case of lists and
tuples) and characters (in the case of strings). That is, they are all se-
quences9. The main difference between lists and tuples is that tuples are
immutable.
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> l = list(range(0,10,2)) ; l # one way of creating a list
[0, 2, 4, 6, 8]

>>> t = tuple(l) ; t # one way of creating a tuple
(0, 2, 4, 6, 8)

>>> l[3]
6

>>> l[3] = 5 ; l[3]
5

>>> t[3]
6

>>> t[3] = 5 #not going to work
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> s = 'abcdef ghijk' ; s
'abcdef ghijk'

>>> s[3]
'd'

>>> s[3] = 'q' #not going to work either
Traceback (most recent call last):

9as are ranges, which are the return values of the function range()

PYTHON – DRAFT VERSION 31

s[i] Element i of s
s[i:j] A slice of s
s[i:j:stride] An extended slice of s
len(s) Length of s
min(s) Minimum value in s
max(s) Maximum value in s
sum(s [,initial]) Sum of items in s (not applicable to strings – use .join())
all(s) True iff all items in s are True
any(s) True iff there is an item in s that is True
x in s True iff x is a member of s

Table 3. Operations and functions on sequences

s[i] = v Item assignment
s[i:j] = v Slice assignment
s[i:j:stride] = v Extended slice assignment
del s[i] Item deletion
del s[i:j] Slice deletion
del s[i:j:stride] Extended slice deletion

Table 4. Operations applicable to lists

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

But other than this, everything that we have learned so far about lists
(mostly various methods of indexing them) applies to tuples and strings,
too. So do the following, which are new:

>>> l + l, t + t
([0, 2, 4, 5, 8, 0, 2, 4, 5, 8], (0, 2, 4, 6, 8, 0, 2, 4, 6, 8))
>>> l*2, t*2
([0, 2, 4, 5, 8, 0, 2, 4, 5, 8], (0, 2, 4, 6, 8, 0, 2, 4, 6, 8))
>>> s + s, 3*s
('abcdef ghijkabcdef ghijk', 'abcdef ghijkabcdef ghijkabcdef ghijk')

Exercise 4.1.⋆Why do you think the following works? Doesn’t this con-
tradict the fact that tuples are immutable?

>>> tup = ([0,1],[2]) ; tup[0][1] = 'a' ; tup
([0, 'a'], [2])

Hint: try it in Pythontutor!

https://pythontutor.com/visualize.html

32 A. SIMON

Here are the list of methods applicable to lists, and to tuples (courtesy
of IPython’s TAB-completion10):
list.

append() count() insert() reverse()
clear() extend() pop() sort()
copy() index() remove()

tuple.
count() index()

Some of the list methods are understandablymissing from tuples: for ex-
ample, l.sort() sorts the list l in place, so, unless l is already sorted, it
must do “item assignment” (to use the terminology of the error message
above). 11 The same holds for .reverse():
>>> l.reverse() ; l
[8, 5, 4, 2, 0]
>>> l.sort(); l
[0, 2, 4, 5, 8]
which doesn’t mean we can’t easily reverse a tuple or a string:
>>> t[::-1]
(8, 6, 4, 2, 0)
>>> s[::-1]
'kjihg fedcba'
but, unlike reverse(), this of course doesn’t change the tuple or string
itself.12 l.append(obj), as we have already seen, appends obj to the
end of the list l, and l.extend(obs) extends lwith the members of the
iterable (list, tuple, string, . . .) obs. This example should make clear the
difference between the two:
10An alternative way of obtaining a list of them is dir(list), or dir(l), where l
is a list. So for example dir([]) works, too. If you want them together with their
documentation, enter help(list) (or help(l) if l is a list) at the interpreter’s prompt
or a Jupyter notebook cell. But with either of these techniques (which of course work
for other types, too), ignore the methods whose name starts with an underscore (_)
character. We will see later why.
11There is a sorted() function, applicable to both lists, tuples and strings (and in fact,
any iterable, and, in particular, any sequence). But whatever the type of its argument, it
returns a list. .reverse() also has a function counterpart, reversed(), but it returns
an iterable (technically, an iterator) that is not a list.
12We can write t = t[::-1], thereby changing the value of t to a tuple that has
the same members as t’s original value, but in reverse order — but this is nev-
ertheless a new tuple under an old name (i.e., assigned to the same variable that
held the original tuple). Try print(id(l)) ; l.reverse() ; print(id(l)) and
print(id(t)) ; t = t[::-1] ; print(id(t)) to see the difference!

PYTHON – DRAFT VERSION 33

>>> l
[0, 2, 4, 5, 8]
>>> l.append(['a','b','c']) ;l
[0, 2, 4, 5, 8, ['a', 'b', 'c']]
>>> l.extend(['a','b','c']) ;l
[0, 2, 4, 5, 8, ['a', 'b', 'c'], 'a', 'b', 'c']
.extend()differs from + (concatenation) in two respects: first, l.extend(obs)
modifies l, it doesn’t create a new list, unlike concatenation. (That is
whyneither tuples, nor strings have thismethod.) And second, in l.extend(obs),
obs can be any iterable, not just a list, while the arguments of +must be
of the same type.
>>> l = l[:5] ; l.extend('def') ; l
[0, 2, 4, 5, 8, 'd', 'e', 'f']
but
>>> l + 'def' #not going to work
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list
Finally, the index()method returns the index of the first occurrence of
its argument in the list, tuple or string (and throws a ValueError if it’s
not a member of the sequence):
>>> [2,0,1,'a',1,0].index(1)
2
And count() returns the number of occurrences of its argument in the
sequence:
>>> [2,0,1,'a',1,0].count(1)
2
Although it is perfectly fine to access members of a tuple by indexing

it, as in, say, t[2], it’s more common to access them by variable unpack-
ing (see page 15):
>>> t
(0, 2, 4, 6, 8)
>>> a, _, c, _, e = t
>>> c, a
(4, 0)
(This works, but is used less with other kinds of sequences, too.) The un-
derscore signals that we’re not interested in (that is, don’t want to assign
to a variable) the corresponding value.
Variable unpacking features in a very common pattern: when travers-

ing some iterable which consists of tuples. We’ve seen an example of

34 A. SIMON

this with enumerate() in Section 3.2. Here’s an other: suppose we have
three lists, the first containg names of goods, the second containing the
corresponding unit prices, and the third the amounts stocked, and our
task is to produce a list with (good, total value) pairs.
>>> goods = ['ball', 'table', 'racket', 'net']

>>> amounts = [570, 3, 12, 17]

>>> uprices = [0.13, 2000, 185, 23]

>>> [(good, a*up) for good, a, up in zip(goods, amounts, uprices)]
[('ball', 74.10000000000001), ('table', 6000), ('racket', 2220), ('net', 391)]

What’s new here is zip(), which, according to the documentation:
returns an iterable of𝑛-length tuples, where𝑛 is the num-
ber of iterables passed as positional arguments to zip().
The 𝑖-th element in every tuple comes from the 𝑖-th iter-
able argument to zip(). This continues until the shortest
argument is exhausted.

For example:
>>> list(zip([1, 2, 3, 4], ['a', 'b', 'c']))
[(1, 'a'), (2, 'b'), (3, 'c')]

or, in the example above,
>>> list(zip(goods, amounts, uprices))
[('ball', 570, 0.13), ('table', 3, 2000), ('racket', 12, 185), ('net', 17, 23)]

Very useful if we want to iterate parallel over more than one iterable.
Tuples can be written as literals, the same way as lists, but enclosed in

parentheses instead of brackets:
>>> type((1,2,3))
<class 'tuple'>

In fact, it’s the comma that is important, not the parentheses:
>>> x = 1,2,3 #we've been using this all the time
>>> x
(1, 2, 3)
>>> type(x)
<class 'tuple'>

There is a quirk though: for a tuple of length one, we need to signal to
Python that it is a tuple, by writing a comma after its onlymember (since
any expression can be surrounded by parentheses, they don’t help here):

PYTHON – DRAFT VERSION 35

>>> (1) == 1
True
>>> type((1)), type((1,))
(<class 'int'>, <class 'tuple'>)
This is an ugly corner case which one should be aware of but probably
never going to encounter.
Finally, a last word about variable unpacking: what if we don’t know

in advance the length of the tuple on the right hand side of an assign-
ment? We should be able to indicate that some variable is there to receive
all the members that don’t get assigned to other variables. And “all the
members” can only mean “some kind of collection of all the members”.
This can be done with a * preceding the name of the variable, and the
“kind of collection” is always a list:
>>> u,_,v,*w = list(range(10))
>>> u,w
(0, [3, 4, 5, 6, 7, 8, 9])

>>> _,_,v,*w,u = tuple(range(10))
>>> u,w
(9, [3, 4, 5, 6, 7, 8])

>>> u,_,v,*w = 'what goes where'
>>> u,w
('w', ['t', ' ', 'g', 'o', 'e', 's', ' ', 'w', 'h', 'e', 'r', 'e'])
Wewill see something similar when we learn about functions with vari-
able number of arguments in §5.

4.1.1. More on strings. String literals can bewritten in four differentways:
>>> 'ab' == "ab" == """ab""" == '''ab'''
True
Each have their uses. For example,
>>> print("No I don't") #no need to escape '
No I don't
>>> print('"Yes," he said') #no need to escape "
"Yes," he said
>>> #not going to work:
>>> print("This is

File "<stdin>", line 1
print("This is

^
SyntaxError: unterminated string literal (detected at line 1)

36 A. SIMON

>>> too long to fit in one line")
File "<stdin>", line 1

too long to fit in one line")
^

SyntaxError: unterminated string literal (detected at line 1)
>>> #use this instead:
>>> print("This is \
... too long to fit in one line")
This is too long to fit in one line

>>> print("""This is
... too long to fit in one line""") #handy for multiline strings
This is
too long to fit in one line
>>> print("This is \ntoo long to fit in one line") #but not strictly necessary
This is
too long to fit in one line
Methods applicable to strings:
str.

capitalize() encode() format() isalpha()
casefold() endswith() format_map() isascii()
center() expandtabs() index() isdecimal() >
count() find() isalnum() isdigit()

isidentifier() isspace() ljust() partition()
islower() istitle() lower() removeprefix()

< isnumeric() isupper() lstrip() removesuffix() >
isprintable() join() maketrans() replace()

rfind() rsplit() startswith() translate()
rindex() rstrip() strip() upper()

< rjust() split() swapcase() zfill()
rpartition() splitlines() title()

Wehave alreadymet .join() in section 3.1 and .rstrip() in Section 3.2.
Someof the abovemethods are particularly useful. For example, .replace()

replaces (by default, all) occurrences of a substring with another.
>>> s = "you think you can do it"
>>> s.replace("you","we")
'we think we can do it'
>>> s.replace("you","we",1)
'we think you can do it'

PYTHON – DRAFT VERSION 37

The third (optional) argument specifies the number of occurrences .replace()
should replace at most. For more complex replacements, regular expres-
sions should be used.
Another useful method is .split(), which we have met already in

section 3.1. With no arguments, it splits the string into a list of words:
>>> s.split()
['you', 'think', 'you', 'can', 'do', 'it']
But with an argument, which is a string, it considers that string as the
boundary of “words”:
>>> s.split("ou")
['y', ' think y', ' can do it']
>>> [w.strip() for w in s.split("ou")]
['y', 'think y', 'can do it']
The method .strip() that was used here is the symmetric version of
.rstrip(): with no argument, it strips the whitespace from each end of
the string it is called on.
We have already met the str function, which usually returns a string

representation of an object.
>>> 2**3+1
9
>>> str(2**3)+str(1)
'81'
Conversely, the function int() can be used to turn a string representa-
tion of an integer into an int, and the corresponding function for float-
ing point numbers is float()13.
>>> int("2")**int("3")+int("1")
9
>>> float("1.4142135623730951")**2
2.0000000000000004
If int() or float() cannot parse its string argument into an int or a
float, it will throw a ValueError.
>>> int("nine")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'nine'
We’ll see in Section 4.2.1 how we can deal with this situation. But how
we should is a harder question and the answer depends on the context.
(For example: should we silently return 0? Or 1? Or 42? Or return

13Both int and float() have other uses, too.

38 A. SIMON

some number but warn the user? Or give her a chance to specify another
number? Or just let her face the error?)
Being able to move between an object, a number, for example, and its

string representation is important, among other things because text (file
or message) is a very popular medium of communication. For example,
every spreadsheet program (MS Excel, Openoffice Calc) can export and
import sheets (tables) in text format (we’ll meet this format, CSV, be-
low). And the main protocol that the web uses (the Hypertext Transfer
Protocol (HTTP)), or the popular JSON data interchange format, is text
based. And since we often want to send/receive not just genuine text,
such as names or newspaper articles, but also numbers, it’s important to
have functions that can recover a number from its text representation.14

f-strings. A piece of information one wants to display is almost always
part constant, part variable. For example, even though the result a long
computation may be 42, it’s never a good idea to print just a number.
Printing something like the following
The answer is: 42
Please enter your question:
is much more useful. This is especially true when the result consists of
more numbers (and/or other types of data). For example, suppose we
have a little “database” of goods, their amounts and unit prices.
>>> db = [
... ('ball', 570, 0.13),
... ('table', 3, 2000),
... ('racket', 12, 185),
... ('net', 17, 23)
...]
If we want to present it, or something derived from it, as we did earlier:
>>> [(good, a*up) for good, a, up in db]
[('ball', 74.10000000000001), ('table', 6000), ('racket', 2220), ('net', 391)]
labeling the various items displayed is a mimimum requirement, unless
we are the only user of our program. At the very least, we want some-
thing like this:
Name: ball
Total price: 74.10000000000001
Name: table
Total price: 6000

14Of course, a newspaper article may also contain numbers, but it’s safe to treat them
as text, because we usually don’t need to use them as numbers, e.g. square them.

PYTHON – DRAFT VERSION 39

Name: racket
Total price: 2220
Name: net
Total price: 391

Every line here consist of two parts: a constant string, for example Name:
and a variable (string representation of a) number, such as 6000. We’ve
encountered this problem already, and solved this by converting every-
thing to string (with the function str()) and concatenating the results
with +. But f-strings (formatted string literals) are much better suited to
this task: they are strings with “holes” (the official name is replacement
fields) in them, which are Python expressions enclosed in braces. What’s
inside these holes get evaluated at the time of printing. For example:
>>> f'1+1 = {1+1}'
'1+1 = 2'
>>> f'The first record of our database is {db[0]}'
"The first record of our database is ('ball', 570, 0.13)"

The f signifies that the string that follows isn’t just any constant string,
because Python code may be found in it between braces. With this, we
can present our database in the desired form:
>>> for good, a, up in db:
... print(f'Name: {good}\nTotal price: {a*up}')
...
Name: ball
Total price: 74.10000000000001
Name: table
Total price: 6000
Name: racket
Total price: 2220
Name: net
Total price: 391

There’s much more to f-strings. Among other things, we have more
control over how the data within braces is presented. For example, if
we’re bothered by the lots of decimals, we canwrite {a*up:.2f} in place
of {a*up} (the part after the colon is called a format specifier) and this
will ensure that the number will be written as a float with exactly 2
decimal places.
>>> for good, a, up in db:
... print(f'Name: {good}\nTotal price: {a*up:.2f}')
...
Name: ball

40 A. SIMON

Total price: 74.10
Name: table
Total price: 6000.00
Name: racket
Total price: 2220.00
Name: net
Total price: 391.00

We can also declare the width of a replacement field, which is useful for
presenting data in tabular form15:
>>> def doit():
... print(f'{"Name":20}Total price')
... for good, a, up in db:
... print(f'{good:20}{a*up:10.2f}')
...
>>> doit()
Name Total price
ball 74.10
table 6000.00
racket 2220.00
net 391.00

What’s new here is that "Name":20 and good:20 ensure that "Name" and
good are printed in a column of width 20 characters, and because of
a*up:10.2f, a*up is printed in a column of width 10 characters, right
aligned, because it is a numeric field. We could’ve forced it to be left
aligned with a*up:<10.2f and centered with a*up:^10.2f. Here are
some more examples:
>>> ans = 42
>>> print(f'|{ans:7d}|'); print('|1234567|') # 'd' stands for 'decimal'
| 42|
|1234567|
>>> print(f'|{ans:<7d}|'); print('|1234567|')
|42 |
|1234567|
>>> print(f'|{ans:^7d}|'); print('|1234567|')
| 42 |
|1234567|
>>> print(f'|{ans:07d}|'); print('|1234567|') #padding by '0'
|0000042|
|1234567|

15There’s no reason to define a function for this; I did it here for LATEXnical reasons.

PYTHON – DRAFT VERSION 41

>>> print(f'|{ans:7b}|'); print('|1234567|') # 'b' stands for 'binary'
| 101010|
|1234567|
>>> print(f'|{ans:7.2f}|'); print('|1234567|')
| 42.00|
|1234567|
>>> print(f'|{ans:07.2f}|'); print('|1234567|')
|0042.00|
|1234567|
The official documentation of f-strings can be found here.

4.2. dicts. Like lists and tuples, dictionaries hold a collection of ob-
jects, but unlike them, these objects are not indexed by natural numbers,
but by keys (strings, numbers, tuples, . . .), just like in real world dictio-
naries. So in the example above with goods and their values, it would
make more sense to put the result of our computation in a dictionary,
and not in a list of tuples, because then the total value of balls could be
accessed simply by total_values['ball']. For this reason, we’ll soon
redo that example with a dictionary (and dictionary comprehension) in
place of list and list comprehension.
But let’s first see the basics of dicts.

>>> d = dict()
>>> type(d)
<class 'dict'>
>>> d
{}
>>> d['one']=1 ; d['two']=2; d
{'one': 1, 'two': 2}
>>> d['two']
2
>>> d.get('two')
2
>>> 'two' in d, 'three' in d
(True, False)
>>> d['three'] #not going to work
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'three'
>>> None == d.get('three')
True
>>> d.get('three',"can't find it")
"can't find it"

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

42 A. SIMON

>>> d.get('two',"can't find it")
2

As you can see, the method .get() has a second, optional argument,
None by default, which is returned in case the key (its first argument) is
not present in the dict.
Other methods applicable to dicts, again, courtesy of IPython’s Tab-

completion:
dict.
clear() get() pop() update()
copy() items() popitem() values()
fromkeys() keys() setdefault()

For example, items() and values() help iterating over the contents
of a dict:
>>> #iterating over the keys
>>> for key in d:
... print(key)
...
one
two
>>> #iterating over the values
>>> for val in d.values():
... print(val)
...
1
2
>>> #iterating over the key-value pairs
>>> for key,val in d.items():
... print(key, val)
...
one 1
two 2

Just like lists and tuples, dicts can bewritten as literals, and in exactly
the same way they’re printed. So d above could’ve been defined with
d = {'one': 1, 'two': 2}.
Now we can come back to our inventory example.

>>> db
[('ball', 570, 0.13), ('table', 3, 2000), ('racket', 12, 185), ('net', 17, 23)]

>>> total_values = {good: a*up for good, a, up in db}
>>> total_values

PYTHON – DRAFT VERSION 43

{'ball': 74.10000000000001, 'table': 6000, 'racket': 2220, 'net': 391}
>>> total_values['ball']
74.10000000000001
Thiswas a case of dictionary comprehension, which is verymuch like list
comprehension, with parentheses replaced by braces, andwhich collects
“key:value” pairs and not just any objects. Here’s an other example of
dictionary comprehension:
>>> words = 'some words are longer then others'.split(); words
['some', 'words', 'are', 'longer', 'then', 'others']
>>> lengths = {word:len(word) for word in words}; lengths
{'some': 4, 'words': 5, 'are': 3, 'longer': 6, 'then': 4, 'others': 6}
>>> lengths['are']
3

4.2.1. Exceptions. Programs sometimes run into situations they can’t deal
with. For example:
>>> 1/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
or
>>> 1 / int('two')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'two'
It’s unlikely thatwewrite 1/0 directly, but perhaps 0 or 'two' came from
user input that wasn’t carefully checked. Such an error need not lead to
the termination of our programs. We canuse the try: ... except: ...
construction to give us a chance to continue.
>>> try:
... print(1/0)
... except:
... print("Something is wrong: I assume you wanted 42")
...
Something is wrong: I assume you wanted 42
or
>>> try:
... print(1 / int('two'))
... except:
... print("Something is wrong: I assume you wanted 42")

44 A. SIMON

...
Something is wrong: I assume you wanted 42

while of course

>>> try:
... print(1/2)
... except:
... print("Something is wrong: I assume you wanted 42")
...
0.5

This doesn’t solve the problem, just hides it. But we can always give
the user a second chance:

def divide():
divisor = int(input("Enter the divisor: "))
return 1 / divisor

try:
print(divide())

except:
print("This didn't work, sorry. Let's try again!")
print(divide())

This is better, but the program (and hence the user) doesn’t know what
kind of problem it (she) is facing. If it did, perhaps it would take the
appropriate measure. What’s wrong with the input? Because except:
catches everything, we can’t even be sure that the problem has some-
thing to dowith the input. Maybewhat happenedwas that the computer
ran out of memory, resulting in a MemoryError.
But if we look at how Python reported the errors above, before we

caught itwith try: ... except: ..., we see the type of the error (printed
in red), and that is not just a name, but an object on which we can dis-
criminate by writing it after except.

try:
print(divide())

except ValueError:
print("I want a NUMBER, not some junk!")
print(divide())

except ZeroDivisionError:
print("Can't divide by 0. Perhaps later, in version 2.0.")
print(divide())

or even

PYTHON – DRAFT VERSION 45

while True:
try:

print(divide())
break

except ValueError:
print("I want a NUMBER, not some junk!")

except ZeroDivisionError:
print("Can't divide by 0. Perhaps later, in version 2.0.")

to give the user as many chances as possible. Now an interaction with
the user may look like this:
Enter the divisor: zero
I want a NUMBER, not some junk!
Enter the divisor: 0
Can't divide by 0. Perhaps later, in version 2.0.
Enter the divisor: 5
0.2
This is good, and solves the “the error may have a completely different
origin” problem, too. For if a third kind of exception occurs, our excep-
tion handlers will not catch it, and we won’t ask the user to reinput the
number, which is good. But we can make this a little more elegant by
saying goodbye before bailing out. Here is how:
while True:

try:
print(divide())
break

except ValueError:
print("I want a NUMBER, not some junk!")

except ZeroDivisionError:
print("Can't divide by 0. Perhaps later, in version 2.0.")

except:
print("\nI don't know what happened and I can't deal with it. Sorry!")
raise

Enter the divisor: two
I want a NUMBER, not some junk!
Enter the divisor: #here I pressed Ctrl-d which means End-Of-File
I don't know what happened and I can't deal with it.
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/tmp/mc.py", line 67, in <module>
File "/tmp/mc.py", line 62, in divide

EOFError

46 A. SIMON

>>>
Here the final except clause is activated if the exception is not of type
ValueError or ZeroDivisionError; and raise raises the same excep-
tion that got us here. This is good practice because we don’t want to hide
information from the user (who, though not in this case, may be another
part of our program).
For a different kind of example, suppose that we have to administer

a popularity contest for actors. Since there is no catalogue of all actors,
we need to keep track of the number of votes for an unknown number
of people. We can put this data in a dictionary where the keys are the
names of the actors who got at least one vote, and the values are the cor-
responding number of votes. But then we need to do something special
(put the new key with value 1 in the dictionary) when an actor is voted
for for the first time.
>>> votes = {} #empty dictionary

>>> def vote(name):
... if name in votes:
... votes[name]+=1
... else:
... votes[name]=1
...
>>> vote('Brad Pitt'); vote('Julia Roberts'); vote('Brad Pitt')
>>> votes
{'Brad Pitt': 2, 'Julia Roberts': 1}
Alternatively, we can omit checking every time whether a name is in the
dictionary already, and instead, only put it in there if its absence leads to
an error.
>>> votes = {} #empty dictionary

>>> def vote(name):
... try:
... votes[name]+=1
... except KeyError:
... votes[name]=1
...
>>> for n in ['Brad Pitt', 'Julia Roberts', 'Brad Pitt', 'Julia Roberts', \
... 'Chris Pratt', 'Julia Roberts', 'Michelle Yeoh']:
... vote(n)
...
>>> for name, n in votes.items():

PYTHON – DRAFT VERSION 47

... print(f'{name:20} {n:5d}')

...
Brad Pitt 2
Julia Roberts 3
Chris Pratt 1
Michelle Yeoh 1
This has nothing to do with handling exceptions, but if we want to see

the twomost popular actors, we can use the .items()method of dicts,
which return all key-value pairs as an iterable; we can sort it (in reverse
order) according to the number of votes:
>>> sorted(votes.items(), reverse = True, key=lambda kv: kv[1])[:2]
[('Julia Roberts', 3), ('Brad Pitt', 2)]
The reverse keyword argument makes sorted() sort in descending or-
der. The key keyword argument (this has nothing to do with keys in a
dict!) of sorted() lets us supply a function of one argument, which,
given a member of the list to be sorted, returns the value on which the
sorting should be based. In our case, it’s the number of votes in the
(name, number of votes) pair.
If we only care about the most popular actor, we can use the max()

function (see table 4.1), which can also take a keyword argument key:
>>> max(votes.items(), key=lambda kv: kv[1])
('Julia Roberts', 3)

Remark 4.1. There are some fine points about exceptions that are good
to be aware of.

∙ More than one kind of exception can be dealt with in the same
except clause: we need to write them as a tuple. For example:
except (ValueError, ZeroDivisionError):

∙ The try: ... except: ... block may have an else: clause,
too. It will get executed if the try: succeeded.

Exercise 4.2. What’s the point of else:? Why not just write
try:

do_something
do_this_if_all_went_well

except:
do_something_else

instead of
try:

do_something
except:

do_something_else

48 A. SIMON

else:
do_this_if_all_went_well

∙ There may also be a finally: clause, which will get executed no
matter what, and in particular, whether an exception occurred in
the try clause or not.
while True:

try:
print(divide())
break

except ZeroDivisionError:
print("Can't divide by 0. Perhaps later, in version 2.0.")

finally:
print("Finally!")

print("At last")
Here, if the input is correct, "At last"will not be printed (since
control leaves while because of the break), but "Finally!"will,
because of the "no matter what" rule.

When writing bigger programs it’s important to be able to define and
raise various exceptions. But there is one way (apart from reraising,
whichwe have done before) to raise an exception that can be useful even
in the simplest functions. It’s done with the assert statement, whose
first (and only mandatory) argument must be an expression that evalu-
ates to a boolean (or something that can be cast to a boolean, see page 21
in Section 2). When this evaluates to False, an AssertionError excep-
tion is raised, and if the second, optional argument to assert is present,
it is printed.
>>> for n in range(10):
... assert n % 2 == 0
... print("Everything is fine so far.")
...
Everything is fine so far.
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
AssertionError
>>> #we could handle it too, but we do this instead:

>>> for n in range(10):
... assert n % 2 == 0, f"There is a problem: {n} is not even"
... print("Everything is fine so far.")
...
Everything is fine so far.

PYTHON – DRAFT VERSION 49

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

AssertionError: There is a problem: 1 is not even
We don’t want to handle an AssertionError because the goal is not

for the program to keep running, but finding out that there is a problem.
And in this case assert’s second, optional argument (the assertion mes-
sage) is easier to use than a try: ... except: ... construct, which
would only print out some informative text in the except AssertionError:
branch anyway.
assert-s shouldnot be relied on in afinished program, because check-

ing them can be turned off.

4.3. sets. This is the last and least important kind of container. Its
methods are:
add() difference_update() isdisjoint() remove()
clear() discard() issubset() symmetric_difference()
copy() intersection() issuperset() symmetric_difference_update()
difference() intersection_update() pop() union()

update()
The syntax for literal sets is writing the set’s elements separated by com-
mas between braces:
>>> type({1,2,3})
<class 'set'>
The set() function, given an iterable as argument, also returns a set:
>>> set(range(5))
{0, 1, 2, 3, 4}
This makes it easy to remove duplicates from a list (provided the order
is not important):
>>> list(set([1,3,2,3,1]))
[1, 2, 3]
But the usefulness of sets is limited by the fact that not every object can
be put in a set:
>>> set([1,[2,3]]) #doesn't work
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
The error message means that Python cannot encode lists in such a way
that identical lists get the same code. (Just think aboutwhatwould/should
happen if a list in a set changed. Should the code change, too?) And that
wouldmake it problematic to checkwhether a list is in the set or not. For

50 A. SIMON

the same reason, a set also cannot be put in a set, and neither can it be
a key in a dict.
The names of most of the important methods speak for themselves.

For example:

>>> s1 = {1,2,3}; s2 = {2,3,4} ; s1.intersection(s2)
{2, 3}
>>> s1.difference(s2)
{1}
>>> s1
{1, 2, 3}

But some don’t:

>>> s1.difference_update(s2) ; s1
{1}
>>> s1.update(s2) ; s1 # why not union_update()?
{1, 2, 3, 4}
>>> s1.discard(5) ; s1
{1, 2, 3, 4}
>>> s1.discard(2) ; s1
{1, 3, 4}

>>> try:
... s1.remove(1) ; s1
... except KeyError:
... "Can't remove what's not there!"
...
{3, 4}
>>> try:
... s1.remove(1) ; s1
... except KeyError:
... "Can't remove what's not there!"
...
"Can't remove what's not there!"

As a data structure, set doesn’t offer much over dict (with values
all set to None). But the applicable methods listed above may come in
handy.

4.4. More on list comprehension. We know that if l is a list, then

result = [expr for i in l]

is equivalent to

PYTHON – DRAFT VERSION 51

result = []
for i in l:

result.append(expr)
and
result = [expr for x in l if c]
is equivalent to
result = []
for i in l:

if c:
result.append(expr)

For example,
>>> [i**2 for i in range(20) if i%2 == 1]
[1, 9, 25, 49, 81, 121, 169, 225, 289, 361]
But more generally,
result = [expr for i1 in l1 if c1

for i2 in l2 if c2
...
for iN in lN if cN]

is equivalent to
result = []
for i1 in l1:

if c1:
for i2 in l2:

if c2:
...
for iN in lN:

if cN:
result.append(expr)

For example,
>>> [(i,j) for i in [1,2,3] for j in ['a','b']]
[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')]
because it should be read “from left from right” unlike nested list com-
prehensions:
>>> [[(i,j) for i in [1,2,3]] for j in ['a','b']]
[[(1, 'a'), (2, 'a'), (3, 'a')], [(1, 'b'), (2, 'b'), (3, 'b')]]
which are read “outside in”.
Here’s another example that shows that in a list comprehension such

as
[(i,j) for i in [1,2,3] for j in ['a','b']]

52 A. SIMON

the inner loop (here for j in ...) the local variable established by the
outer loop (for i in ...) is available:
>>> [j for i in range(3) for j in [range(3),range(3,6),range(6,8)][i]]
[0, 1, 2, 3, 4, 5, 6, 7]

It’s worth abstracting away the essence of this in a function:

Exercise 4.3. Write a function concatenate() that concatenates the
lists in the list that it is passed. For example:
>>> concatenate([list(range(3)),list(range(3,6)),list(range(6,8))])
[0, 1, 2, 3, 4, 5, 6, 7]

The original example with a condition:
>>> [(i,j) for i in [1,2,3] if i%2 == 1 for j in ['a','b']]
[(1, 'a'), (1, 'b'), (3, 'a'), (3, 'b')]

The concatenating example with multiple conditions:
>>> [j for i in range(3) if i%2 == 1
... for j in [range(3), range(3,10), range(11,15)][i]
... if j%2==0]
[4, 6, 8]

Example 4.1. Suppose that l is a list of lists of numbers that are all
shorter than len(l). The idea is that l[i] is the list of neighbours of
i. Here is a function n2(i,l) that returns the list of all neighbours of
neighbours of i:
>>> def n2(i,l):
... assert i < len(l)
... return [k for j in l[i] for k in l[j]]
...

and then for example
>>> n2(2,[[1,2,3],[1],[0],[2]])
[1, 2, 3]

5. Functions

We have been using and defining functions since forever. We know
that a function definition looks like this:
def fun(par_1,par_2,...):

statement_1
statement_2
...

PYTHON – DRAFT VERSION 53

Whena function defined thisway is calledwith fun(arg_1,arg_2,...),
what happens is that the arguments arg_1, arg_2,. . . get evaluated (so
for example, if arg_1 is another function call, that function is called be-
fore fun), and then the statements in the body of the definition get eval-
uated, with par_1 set to the value of arg_1, par_2 set to the value of
arg_2, etc. par_1, . . . are the parameters of the function. In the body,
these are local variables, so if there is a variable of the same name in the
program, it is “shadowed” by the parameter. Its value cannot be seen or
changed by the function. Assignment to a variable in the body makes
that variable local, too. Here’s the example that shows this.
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 1 ; b = 2
>>> def some_fun(a):
... b = a
... print(f'''In the body of the function,
... a={a} and b={b} after the assignment''')
...
>>> some_fun(42)
In the body of the function,
a=42 and b=42 after the assignment
>>> a,b
(1, 2)
(This is a good place to introduce a neat trick of f-strings, very useful
while debugging: instead of writing expr={expr}, as in the previous ex-
mample, one can simply write {expr=} for any expression expr. And
this is what we’re going to do from now on.)
The global value of b is available in the body but only if we don’t create

a local variable with the same name:
>>> a = 1 ; b = 2
>>> def some_fun(a):
... print(f'In the body of the function {a=} and {b=}')
...
>>> some_fun(42)
In the body of the function a=42 and b=2
>>> a,b
(1, 2)
but
>>> a = 1 ; b = 2
>>> def some_fun(a):
... print(f'In the body of the function, {b=} before the assignment')

54 A. SIMON

... b = a

... print(f'''In the body of the function,\

... {a=} and {b=} after the assignment''')

...
>>> some_fun(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in some_fun

UnboundLocalError: cannot access local variable 'b' where it is not associated with a value

doesn’twork because even if it happens later, Python knows thatwehave
created a local variable b (but used it before having assigned a value to
it). The fact that we never actually get to touch b doesn’t change the fact
that it’s a local variable:

>>> a = 1 ; b = 2
>>> def some_fun(a):
... print(f'In the body of the function, {b=} before the assignment')
... if False:
... b = a
... print(f'''In the body of the function,\
... {a=} and {b=} after the assignment''')
...
>>> some_fun(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in some_fun

UnboundLocalError: cannot access local variable 'b' where it is not associated with a value

The statement b = a, even if it is guaranteed not to be executed, is the
givaway.
If, for some reason, we didwant to change the value of the global vari-

able b in the function, we could do it like this:

>>> a = 1 ; b = 2
>>> def some_fun(a):
... global b
... b = a
... print(f'''In the body of the function
... {a=} and {b=} after the assignment''')
...
>>> some_fun(42)
In the body of the function
a=42 and b=42 after the assignment

PYTHON – DRAFT VERSION 55

>>> a,b
(1, 42)
but we shouldn’t.

Remark 5.1. There’s a way to change (usually inadvertently) the value
of a global variable in a different way, as the following example shows.
Suppose we want to define a function that sorts a list of numbers using
the “bubble sort” algorithm. The idea of this algorithm is that whenever
we find a pair of numbers in the wrong order, we reverse it.
>>> def bubble(lst): #bad
... for i in range(len(lst)):
... for j in range(len(lst[i+1:])):
... jj = i+1+j
... if lst[jj]<lst[i]:
... lst[jj], lst[i] = lst[i], lst[jj]
... return lst
...
>>> import random
>>> l = [random.randint(0,100) for _ in range(10)]
>>> l
[34, 73, 54, 23, 42, 59, 32, 26, 85, 32]
>>> bubble(l)
[23, 26, 32, 32, 34, 42, 54, 59, 73, 85]
The return value looks good, but there is a problem:
>>> l
[23, 26, 32, 32, 34, 42, 54, 59, 73, 85]
The function was not supposed to change its argument.16 Here’s the
problem in a simpler context:
>>> def side_effect(a):
... a=42
...
>>> b = 0; side_effect(b); b
0
>>> #so far, so good
>>> def side_effect(a):
... a[0]=42
...
>>> b = [0]; side_effect(b); b
[42]
16When the purpose of a function or method is to have a side effect, such as changing
its arguments, it’s customary in Python for it to not return a value.

56 A. SIMON

What’s happened is not that after the call to the function a new ob-
ject was assigned to b – that can’t have happened, because there was
no global b declaration in the body of the function. It’s the old object
itself, the one that is the value of b, that has changed, as shown on the
picture. This is because for such complex values as lists (and all other

Figure 1. Memory (as shown by Pythontutor)

containers, except for strings), when they are assigned to a variable, what
the variable contains is not the object itself, but a reference to it (in all
likelihood its address in memory). And a list, being a mutable object,

Figure 2. Memory (as shown by Pythontutor)

can change without its address having changed. This is what happens

https://pythontutor.com/visualize.html
https://pythontutor.com/visualize.html

PYTHON – DRAFT VERSION 57

to the value of b in the example. The way to avoid this problem (and
this usually, though not always, is a problem) is to make a copy of the
complex object and mutate the copy:
>>> def side_effect(a):
... a = a[:] #could use a.copy() or list(a) instead
... a[0]=42
...
>>> b = [0]; side_effect(b); b
[0]
Here the variable a that is assigned to in the second line is a new local
variable. (We could have given it any other name, but it’s a good practice
to use the name of the corresponding parameter.) And what is assigned
to it is a brand new list.
But this isn’t always enough:

>>> def side_effect(a):
... a = a[:]
... a[0][0]=42
...
>>> b = [[0]]; side_effect(b); b
[[42]]
The problem is that a[:] and a.copy() creates a shallow copy of the
list. A shallow copy of a list is a new list, but if the original contained a
list, then what it really contained is a reference to it, and that reference
will be copied into the new list. So the same problem will crop up, only
at another level. What we need here is a deep copy, which, instead of
copying a reference (in any level) creates a new list (which is again a
deep copy of the list the reference referred to) and write that into the
newly created list. Something like this:
def deep_copy(l):

return [deep_copy(i) for i in l] if isinstance(l, list) else l
would solve the problem as long as the value we pass into side_effect
doesn’t contain other kinds of complex values buried deep inside.
>>> def side_effect(a):
... a = deep_copy(a)
... a[0][0]=42
...
>>> b = [[0]]; side_effect(b); b
[[0]]
But the real solution is using the deepcopy() function from the copy
module:

58 A. SIMON

>>> import copy
>>> def side_effect(a):
... a = copy.deepcopy(a)
... a[0][0]=42
...
>>> b = [[0]]; side_effect(b); b
[[0]]
This takes care not just of lists but other complex values, too. For our
bubble sort function, we don’t need a deep copy, a shallow one will do,
since the input list contains only numbers.
>>> def bubble(l):
... l = l[:]
... for i in range(len(l)):
... for j in range(len(l[i+1:])):
... jj = i+1+j
... if l[jj]<l[i]:
... l[jj], l[i] = l[i], l[jj]
... return l
...
>>> l = [random.randint(0,100) for _ in range(10)]
>>> l
[94, 14, 19, 58, 98, 33, 100, 58, 7, 18]
>>> bubble(l)
[7, 14, 18, 19, 33, 58, 58, 94, 98, 100]
>>> l
[94, 14, 19, 58, 98, 33, 100, 58, 7, 18]
A final word on the problem of deep vs. shallow copy: it can come

up in other situations, not involving function calls, too, as the following
example shows:
>>> b = [[0]] ; c = b ; c[0][0] = 42; b
[[42]]
And the solution is always the same:
>>> b = [[0]] ; c = copy.deepcopy(b) ; c[0][0] = 42; b
[[0]]

Keyword and optional arguments. In a call
>>> f(1,2)
x=1, y=2
to a function defined by
def f(x,y):

print(f'{x=}, {y=}')

PYTHON – DRAFT VERSION 59

Python knows 1 should be assigned to x and 2 to y because of their re-
spective positions. That’s why these are sometimes called positional pa-
rameters. But we can be more explicit about what values to assign to
which parameter with keyword arguments:
>>> f(y=2,x=1)
x=1, y=2
It is also possible to change the definition of the function so that the
caller is forced to use some arguments as keyword arguments. For ex-
ample,
>>> def f(x,*,y):
... print(f'{x=}, {y=}')
...
>>> f(1,2) #wrong
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given
>>> f(1) #wrong
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() missing 1 required keyword-only argument: 'y'
>>> f(1,y=2) #finally...
x=1, y=2
One can provide default values both for positional parameters:
>>> def f(x,y=3):
... print(f'{x=}, {y=}')
...
>>> f(1,2)
x=1, y=2
>>> f(1)
x=1, y=3
and for keyword only parameters:
>>> def f(x,*,y=3):
... print(f'{x=}, {y=}')
...
>>> f(1,y=2)
x=1, y=2
>>> f(1)
x=1, y=3
What we can’t do is put non-default positional parameters after a default
parameter:

60 A. SIMON

>>> def f(x,y=3,z): #wrong
File "<stdin>", line 1

def f(x,y=3,z): #wrong
^

SyntaxError: parameter without a default follows parameter with a default

This is only logical, for if the function definition started with
def f(x,y=3,z):

and we called f with two arguments (and we should be able to, because
one of the three parameters has a default value), how should Python
decide which parameter the second value should be assigned to? The
parameter y, which is in the corresponding position, or z, which is a
completely ad hoc choice but would result in all parameters getting a
value? If you want to mix default and non-default parameters, use key-
word arguments:
>>> def f(x,*,y=3,z):
... print(f'{x=}, {y=}, {z=}')
...
>>> f(1,z=2)
x=1, y=3, z=2

It is also possible to define functionswith variable number of arguments.
Of course it doesn’t make sense to write “variable number of parame-
ters” in the definition. So we write just one, and mark it with an as-
terisk.17 This signals to Python that this parameter should receive all
the remaining (positional) arguments as a tuple. (“Remaining”, because
somemight have been assigned to preceeding normal, positional param-
eters.) Suppose for example that we want to compute the average of an
unknown number of numbers. Here’s how we can do this:
>>> def avg(*nums):
... return(sum(nums)/len(nums))
...
>>> avg(2,3)
2.5
>>> avg(2,3,5,9,6)
5.0

It wouldn’t make sense to have two such variadic parameters (which
onewould get which argument?), but positional parameters can preceed
one. (print() is an example of a built-in function that has both variadic
and keyword arguments. It prints all its non-keyword arguments, using

17This resembles variable unpacking with “starred variables” on page 35 in §4.

PYTHON – DRAFT VERSION 61

keyword arguments to decide how.) For example, suppose that some-
times we want to compute the geometric mean (𝑛

√
𝑎1𝑎2 ⋅ ⋯ ⋅ 𝑎𝑛), not the

arithmetic one (𝑎1+𝑎2+⋯+𝑎𝑛
𝑛

). Then a first, positional argument could re-
ceive the type of mean wewant computed, and the rest of the arguments
are the numbers themselves18.

>>> from functools import reduce

>>> def prod(lst):
... return reduce(lambda x, y: x*y,lst,1)
...
>>> #or
>>> def prod(lst):
... res = 1
... for i in lst: res*=i
... return res
...
>>> def avg(typ, *nums):
... return \
... prod(nums)**(1/len(nums)) if typ == 'g' \
... else sum(nums)/len(nums)
...
>>> avg('whatever',2,3,5,9,6)
5.0
>>> avg('g',2,3,5,9,6)
4.384327654865777

The first argument went into the parameter typ, and the rest into nums.
This is fine for illustrating where arguments go if there are positional

18A note about reduce: if f is a function of two arguments, then for example

reduce(f,[a1,a2,a3,a4])

returns

f(f(f(a1,a2),a3),a4)

and if a last, optional argument is present, than that will be placed before the rest of
the list (or be returned if the list is empty), so for example

reduce(f,[a1,a2,a3,a4],a)

returns

f(f(f(f(a,a1),a2),a3),a4)

62 A. SIMON

parameters preceeding a variadic one, but it’s not a very æstetic user in-
terface. Since there is a sensible default here (we’d probably want arith-
metic meanmost of the time), typ should be made into a default param-
eter. But we can’t put the variadic parameter after a default one, so let’s
do it the other way round!
>>> def avg(*nums, typ='a'):
... return sum(nums)/len(nums) if typ == 'a' \
... else prod(nums)**(1/len(nums))
...
>>> avg(2,3,5,9,6)
5.0
>>> avg(2,3,5,9,6,typ='g')
4.384327654865777
In this case Python knows where it should stop collecting arguments
in nums, because it recognizes the keyword argument from the equality
symbol. And it is a “mandatory” keyword argument, because it is after a
variadic one. (The * above, which was used to force the subsequent pa-
rameters to be keyword parameters, can be thought of as a “dummy vari-
adic parameter” accepting exactly zero arguments, whose only reason to
exists is to force the subsequent parameters to be keyword parameters.)
There’s a kind of inverse to variadic arguments: if a is a list or a tuple,

f(*a) calls f with its members as arguments.19 For example,
>>> (lambda x,y: x+y)(*[1,2])
3
and instead of
>>> avg(2,3,5,9,6)
5.0
we can call our avg() function like this:
>>> avg(*[2,3,5,9,6])
5.0

Example 5.1. This is an example that uses both variadic arguments and
this “inverse”. (It’s a simplified version of Python’s map() function.) Its
first argument is a function of any number of arguments, and the rest of
its arguments are that many lists. The result is the list of the result of
applying the function to successive elements of the lists. For example,
>>> mymap(lambda x,y,z: (y,z,x), [1,2,3],[4,5,6],['a','b','c'])
[(4, 'a', 1), (5, 'b', 2), (6, 'c', 3)]
Here’s the definition:
19This works for strings, too, but that seems utterly useless.

PYTHON – DRAFT VERSION 63

def mymap(fn, *lists):
return [fn(*i) for i in zip(*lists)]

We need *lists in the header, because we don’t know in advance the
arity of fn and hence the number of lists mymap()will be called with. In
the body of the function lists’s value is a tuple of lists. We feed these
lists as separate arguments (that’s what the * does in zip(*lists)) to
zip() (which, fortunately, is also a function that accepts any number of
arguments), which returns a list (actually, an iterable, but that doesn’t
matter and shouldn’t concern us now) of tuples: the first (which will
be the value of i in the first iteration) contains the first members of all
the lists that were the arguments of mymap(), the second tuple contains
their second members, etc. And, in each iteration, fnwill be called with
the members of the value of i (and not the value itself), because of the
asterisk in fn(*i), so on the first iteration, the first members of the lists,
on the second the second members of the lists, etc. And the result is the
list of the results fn returns.
Anonymous functions. We’ve seen and used lambdas before, but a short
overview of what they are and why they are useful doesn’t hurt.
First of all, lambdas are not indispensable. (Very few constructs are.)

They construct functions whose bodies consist of one expression only,
whichwill be the return value of the constructed function. So, wherever
lambda v1,...,vn: expr
appears in our program, we can always write f instead, supposing we
have also written
def f(v1,...,vn):

return expr
before, and that f is not used otherwise as the name of a function.
And this shows two reasons why lambdas are useful. First, when we

need a function only once, it’s not just an overkill to give it a name, but
potentially dangerous, too: we need to make sure that there is no func-
tion of the same name elsewhere in the program. The other reason is
that we see immediately what our lambda does, there’s no need to look
up the definition of a function defined elsewhere. And the definition
must often be elsewhere, because, unlike a lambda, a def is a statement,
not an expression, so cannot be written where an expression is expected,
such as in a list.
Exercise 5.1. Write a function computing the factorial of positive inte-
gers using reduce() from functools.
Higher order functions. Functions that take functions as arguments or
return functions are called higher order functions.

64 A. SIMON

One use of higher order functions is avoiding code duplication. For
example, suppose we need to do various operations on lists of numbers.
We could write functions for each of these:
>>> def inc_list(l):
... return [x+1 for x in l]
...
>>> def double_list(l):
... return [2*x for x in l]
...
>>> inc_list(list(range(10)))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> double_list(list(range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
but these two functions are practically the same; the only difference is
what they are doing with the members of the list. So it makes sense to
turn that into an extra parameter:
>>> def process_list(fun,l):
... return [fun(x) for x in l]
...
>>> process_list(lambda x: x+1, list(range(10)))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> process_list(lambda x: 2*x, list(range(10)))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Actually, process_list() is a simplified version of mymap() defined in
Example 5.1 on page 62, which in turn is a simplified version of Python’s
map() function. map() returns an iterable20, not a list, but that can be
converted to a list if that’s what we want:
>>> list(map(lambda x: x**2,range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Here’s an example of a function that, besides having a function as an
argument, returns a function:
>>> def compose(f1,f2):
... return lambda x: (f1(f2(x)))
...
>>> compose(lambda x: x+1,lambda x: 2*x)(4)
9

>>> compose(lambda x: 2*x, lambda x: x+1)(4)
10
20a map, to be precise

PYTHON – DRAFT VERSION 65

>>> from math import sqrt

>>> compose(sqrt, lambda x: x+1)(1)
1.4142135623730951

Documentation. Since the body of a function is a series of statements and
expressions which get evaluated in the order they are written, it doesn’t
make a difference in the behaviour of a function if a literal object (such
as 42 or "nice wheather, eh?") is included in this series. Now if that
literal object happens to be a string, and it’s inserted as the very first
statement, then it’s called a documentation string, and is stored in the
__doc__ attribute of the function.
>>> def fun():
... """
... This function does nothing, but does it well.
... Usage: fun()
... """
... pass
...
>>> print(fun.__doc__)

This function does nothing, but does it well.
Usage: fun()

The docstring is retrievable by the various IDEs. For example, by fun?
or help(fun) in IPython. But under the hood, it almost surely uses the
__doc__ attribute.
Documenting the functions we write this way is very good practice.

6. Modules

Some less used parts of Python, and all “third party” provided func-
tionalities are not loaded by default. They are collected in modules that
can be imported in different ways.

(1) import math This imports everything in the module math; you
can access them by prefixing their name by math. For example,
math.sqrt().

(2) import math as mtThe same as before, but using mt as an alias.
This just means that the function sqrt() of the module math is
now accessible as mt.sqrt().

66 A. SIMON

(3) from math import sqrtThiswill not import thewhole of math,
just sqrt, but make it accessible without qualification, that is,
by simply writing sqrt. You can import a list of functions (and
classes, etc.) by listing them separated by commas. For example,
from math import sqrt, isqrt

To learn the details of amodule (what it’s good for, what functions, classes,
variables, etc. it provides), enter
>>> help("math")
at the command prompt (or math? in IPython). And if you’re only inter-
ested in one function, say, isqrt(), of the module, enter
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> help("math.isqrt")
Help on built-in function isqrt in math:

math.isqrt = isqrt(n, /)
Return the integer part of the square root of the input.

(Or math.isqrt? in IPython.)
Of course, we can write and use our own modules, too. To create a

module named foo, we need to create a file named foo.py andwrite the
definitions of the functions, classes andwhatever else wewant to have in
themodule. If there’s a problem importing it, check and perhaps change
the list contained in the variable path in the sysmodule.

7. Debugging

Programming is debugging. It doesn’t happen very often that a func-
tion ormethod, not tomention awhole programdoeswhat it needs to do
the first time it’s run. There are two cases: either it throws an exception
and we end up with amore or less unintelligible stack trace (often this is
the better outcome), or it runswith no errors and produces thewrong re-
sult (in this case we’re lucky if we realize that the result is wrong). The
first kind of problem is better because at least we know where to start
looking for the error.
In either case, we have a few options for investigating.
(1) Judicious use of print() calls. For example, to “trace” what is

going on when we call the function factorial():
Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> def factorial(n): return n if n <= 1 else n * factorial(n-1)
...

PYTHON – DRAFT VERSION 67

wemaywant to put in an extra print() to showwhat arguments
it is called with:
>>> def factorial(n):
... print('n:',n)
... return n if n <= 1 else n * factorial(n-1)
...
>>> factorial(4)
n: 4
n: 3
n: 2
n: 1
24
Depending on what we want to understand about our function,
this may or may not help. If it doesn’t, we can try to get a more
complete picture:
>>> def factorial(n):
... res = n if n <= 1 else n * factorial(n-1)
... print('in: ',n,'out: ',res)
... return res
...
>>> factorial(4)
in: 1 out: 1
in: 2 out: 2
in: 3 out: 6
in: 4 out: 24
24
The good thing about thismethod is that it doesn’t need any extra
tools, and is very easy to use. The bad is that we have to remove
all those print()s afterwards, and that there is no interactivity:
if, by looking at the value of one variable, we find we also need
to know about another, we have to change the function and start
all over again. Nevertheless, there is anecdotal evidence showing
that this is the most popular debugging method used by Python
programmers.

(2) Tracing your function. If you enter this:
def trace(f):

depth = 0
def wrapper(*args,**kwargs):

nonlocal depth
depth += 1
print(f'{depth:>{2*depth}}: {f.__name__}:', *args, kwargs or '')
res = f(*args,**kwargs)

68 A. SIMON

print(f'{depth:>{2*depth}}: {f.__name__} returned: {res}')
depth -= 1
return res

return wrapper
(the details are not important), or save it in afile named trace.py
in your working directory and import it with
from trace import trace
then any function, whose definition is preceeded by @trace will
be traced, as in the following example:
>>> @trace
... def fact(n):
... return 1 if n<=1 else n*fact(n-1)
...
>>> fact(5)
1: fact: 5

2: fact: 4
3: fact: 3

4: fact: 2
5: fact: 1
5: fact returned: 1

4: fact returned: 2
3: fact returned: 6

2: fact returned: 24
1: fact returned: 120

120
For untracing, just redefine the function without the preceeding
@trace:
>>> def fact(n):
... return 1 if n<=1 else n*fact(n-1)
...
>>> fact(5)
120
The good thing about tracing is that there’s no need to change
the program. On the other hand, it only shows how functions
are called and what they return.

(3) Using a debugger. This is the most versatile method, but you
need to learn to use a separate software. Or more, because there
are many. The standard one, pdb (python debugger) is always
present, but it’s not very user friendly. You can try it like this:
>>> def fact(n):
... breakpoint()
... return 1 if n<=1 else n*fact(n-1)

PYTHON – DRAFT VERSION 69

...
>>> fact(4)
> <stdin>(3)fact()
(Pdb)
This is pdb’s prompt; you can ask for help, or type q to quit.
IPython has a version of pdb that has the same commands, but

is more user friendly. For example, it is easier to enter (there’s no
need to change the function)21:
Python 3.9.10 (main, Jan 17 2022, 00:00:00)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.20.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: def fact(n):
...: if n<=1:
...: return 1
...: else:
...: return n*fact(n-1)
...:

In [2]: %debug fact(5)
NOTE: Enter 'c' at the ipdb> prompt to continue execution.
> <string>(1)<module>()

ipdb> s
--Call--
Wedon’twant to continue execution, because thatwould just run
the function to completion, but want to “step in” the function,
and that’s what the s command does.
> <ipython-input-1-2334ab7e9b53>(1)fact()
----> 1 def fact(n):

2 if n<=1:
3 return 1
4 else:
5 return n*fact(n-1)

Herewe can see another aspect of IPythonbeingmore user friendly
than pdb: it shows a bit of context. (This is why I use a more ver-
bose version of fact().)
Now I use n, which means “execute the next statement”. In

this context, s would do the same.

21It is also possible to enter the debugger when our program throws an exception, by
entering %debug.

70 A. SIMON

ipdb> n
> <ipython-input-1-2334ab7e9b53>(2)fact()

1 def fact(n):
----> 2 if n<=1:

3 return 1
4 else:
5 return n*fact(n-1)

ipdb> n
> <ipython-input-1-2334ab7e9b53>(5)fact()

2 if n<=1:
3 return 1
4 else:

----> 5 return n*fact(n-1)
6

At this point, s is the good choice, because n would just execute
line 5 and then return immediately. (Which is what we want
when our code calls another function that we don’t want to de-
bug.)
ipdb> s
--Call--
> <ipython-input-1-2334ab7e9b53>(1)fact()
----> 1 def fact(n):

2 if n<=1:
3 return 1
4 else:
5 return n*fact(n-1)

ipdb> n
> <ipython-input-1-2334ab7e9b53>(2)fact()

1 def fact(n):
----> 2 if n<=1:

3 return 1
4 else:
5 return n*fact(n-1)

ipdb> !n
4
!n shows the value of the variable n. (The value of more than
one variable can be queried by writing their names after the !
separated by commas. See also the display command!) Sowe’re

PYTHON – DRAFT VERSION 71

in the second call into fact(). Arguments of the function can
also be queried by the command args.
ipdb> help

Documented commands (type help <topic>):
==
EOF cl disable interact next psource rv undisplay
a clear display j p q s unt
alias commands down jump pdef quit skip_hidden until
args condition enable l pdoc r source up
b cont exit list pfile restart step w
break continue h ll pinfo return tbreak whatis
bt d help longlist pinfo2 retval u where
c debug ignore n pp run unalias

ipdb> c

In [3]:
Pythontutor is also a kind of debugger; its strong point is that it
showswhat’s happeningwith our variables, in a beautiful, graph-
ical way.

8. The 45 minutes introduction to object oriented
programming

Suppose we want a datatype for computing with matrices. We could
easily represent matrices by nested lists: for example, by the list of rows,
where a row is represented by the list of itsmembers. So [[1,0,0],[0,1,0],[0,0,1]]
would represent the 3×3 identity matrix. If m is such a matrix, we could
get or set the 𝑗th member of its 𝑖th row by m[i][j] and m[i][j] = v.
This works, but the lack of abstraction (we need to deal with nested

lists instead of matrices) leads to all kinds of difficulties, themost impor-
tant being that if we ever come up with a better representation, we need
to change all our code that deals with matrices. For example, we may
find out later that we need to deal with sparse matrices (matrices where
almost all elements are the same): representing them by nested lists is a
waste of space.
One solution to this problem (and some others besides) is to define a

matrix class.
class Mtx():

def __init__(self, list):

https://pythontutor.com/visualize.html

72 A. SIMON

nc = len(list[0])
#rows must be of equal length
assert all([len(l) == nc for l in list[1:]]), 'dimension mismatch'
self._list = list
self._no_of_rows = len(list)
self._no_of_columns = nc

def no_of_rows(self):
return self._no_of_rows

def no_of_cols(self):
return self._no_of_columns

def get_row(self,rn):
return self._list[rn]

def get_col(self,cn):
return [l[cn] for l in self._list]

def get(self,r,c):
return self._list[r][c]

def set(self,r,c,value):
self._list[r][c] = value

def __repr__(self):
return f'{self._no_of_rows} times {self._no_of_columns} \
Mtx: {self._list}'

def __str__(self):
s = ""
for i in self._list:

s += str(i)+'\n'
return s

(1) The definition of a class resembles the definition of a function:
it’s a block, the first line of which begins with a keyword (class
in this case) that is followed by the name of the class and then
a colon. Between the name of the class and the colon there may
be a comma separated list of the names of other classes between
parentheses. We will see examples of this later.

PYTHON – DRAFT VERSION 73

(2) In the body, the defs look exactly like function definitions, but
these definemethods, not functions.

(3) The first argument (its name doesn’t matter, but it’s customary to
call it self) of amethodwill be bound to the instance of the class
on which the method is invoked. That is, if m is an instance of
Mtx, m.get_row() calls .get_row() with self bound to m. (The
role of . in the call m.get_row() is the same as in for example
l.append(42).)

(4) The “magic” .__init__() method is run when an instance of
Mtx (from now on: an Mtx) is created by calling Mtx(). (That’s
why it’s magic: Python knows when to call it, we don’t have to.)
The newly created instance will be bound to the first argument
of .__init__() and the arguments to Mtx (in this case, just one)
to the rest.
In our case, with the call

Python 3.12.9 (main, Feb 4 2025, 00:00:00) [GCC 14.2.1 20240912 (Red Hat 14.2.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> m = Mtx([[1,2],[3,4]])
the second argument to .__init__() will be [[1,2],[3,4]],
while the first is the new instance, which in this case is also as-
signed to the variable m.
We can check that the value of m is really an Mtx:

>>> isinstance(m, Mtx)
True

(5) The assert statement in .__init__() stops the user making
one possible error, with an informative error message:
>>> m = Mtx([[1,2,3],[4,5,6],[7,8]]) #should fail
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in __init__

AssertionError: dimension mismatch
(6) _list, _no_of_rows and _no_of_columns are attributes of the

class. They hold instance-specific data (unlike methods, which
belong to the class itself). Theunderscore signals that even though
they can, they shouldn’t be accessed (read or set) directly, that is,
by anything other than methods of the class (or its subclasses, to
be introduced later). So this:
>>> m._no_of_columns
2
is an example of what one should never do outside of the defini-
tion of a class. Invoking the accessor method:

74 A. SIMON

>>> m.no_of_cols()
2
is the right way to get the number of columns.

(7) The two other magic methods, .__str__() and .__repr__()
define how instances of the class will be printed and represented
(for example, in the debugger). Here they (and .set()) are at
work:
>>> m
2 times 2 Mtx: [[1, 2], [3, 4]]
>>> print(m)
[1, 2]
[3, 4]

>>> m.set(1,1,-5); print(m)
[1, 2]
[3, -5]

(8) Throughout, we use assert for checking that certain conditions
hold. This, as have been mentioned earlier, is not such a good
idea; but we don’t know how to define exceptions in Python (ac-
tually, we’re in the process of learning it, since exceptions are
classes derived from the Exception class), so it’s the best we can
do.

To make our definition of Mtx useful, we should at least define meth-
ods .add() and .prod() for adding and multiplying them.

def add(self, other):
assert isinstance(other,Mtx), 'only an Mtx can be added to an Mtx'
assert (self.no_of_cols() == other.no_of_cols()

and self.no_of_rows() == other.no_of_rows()),\
'dimension mismatch'

nr = self.no_of_rows()
nc = self.no_of_cols()
m = Mtx([nc * [0] for _ in range(nr)])
for i in range(nr):

for j in range(nc):
m.set(i,j,self.get(i,j)+other.get(i,j))

return m

def prod(self, other):
assert isinstance(other,Mtx), 'an Mtx can only be multiplied by an Mtx'
assert self.no_of_cols() == other.no_of_rows(),\
f'''The number of columns ({self.no_of_cols()}) of {self}

PYTHON – DRAFT VERSION 75

is not the same as the number of rows \
({other.no_of_rows()}) of {other}.'''

nr = self.no_of_rows()
nc = other.no_of_cols()
onr = other.no_of_rows()
m = Mtx([nc * [0] for _ in range(nr)])
for i in range(nr):

for j in range(nc):
m.set(i,j,sum(
[self.get(i,k)*other.get(k,j) for k in range(onr)]))

return m

This should be part of the class definition, otherwise Python wouldn’t
know which class they are supposed to be the methods of.
>>> m1 = Mtx([[1,2,3]]); m2 = Mtx([[1,2],[3,3],[2,1]])
>>> m1.add(42) #should fail
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 37, in add

AssertionError: only an Mtx can be added to an Mtx
>>> print(m1.add(m1))
[2, 4, 6]

>>> print(m2.prod(m1)) #should fail
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 49, in prod

AssertionError: The number of columns (2) of
[1, 2]
[3, 3]
[2, 1]
is not the same as the number of rows (1) of

[1, 2, 3]
.
>>> print(m1.prod(m2))
[13, 11]

What else do we do with Mtxs beside adding and multiplying them?
We could for example define a method that does scalar multiplication.
(Do it!) We’d also want determinant, but there is a problem there: that
makes sense only for square matrices. The same holds for powers. We
could of coursemake .power() or .determinant()methods of Mtx and
start their definition by checking that _no_of_columns == _no_of_rows;

76 A. SIMON

but it’s much better to create a specialized version, say SqMtx of Mtx, and
define .power() and .determinant() as methods of SqMtx. SqMtx is
called a subclass or derived class of Mtx, and Mtx is a superclass or base
class of SqMtx.
A subclass, such as SqMtx, inherits everything (attributes, methods)

from its superclass, except what is overridden in its definition, which, in
SqMtx’s case, are the .__init__() and the __repr__()methods.
Here is how to do that (I leave .determinant() as a (nontrivial) exer-

cise):
class SqMtx(Mtx):

def __init__(self, list):
super().__init__(list)
assert self._no_of_columns == self._no_of_rows, \
f'''The number of columns ({self._no_of_columns}) should be the same
as the number of rows ({self._no_of_rows}).'''
self._dim = self._no_of_rows

def power(self,n):
assert isinstance(n,int), 'The exponent should be an integer'
res = self
while n>1:

res = res.prod(self)
n -= 1

return res

def __repr__(self):
return f'SqMtx of dimension {self._dim}: {self._list}'

>>> sm = SqMtx([[1,2],[3,4]])
>>> isinstance(sm, Mtx) #an SqMtx is an Mtx
True
>>> sm.add(sm) #that's why this works
2 times 2 Mtx: [[2, 4], [6, 8]]
>>> print(sm.power(1)); print(sm.power(3))
[1, 2]
[3, 4]

[37, 54]
[81, 118]

The first line of the definition declares the base class or classes of the new
class. (If there are more, they are separated by commas.) The definition

PYTHON – DRAFT VERSION 77

of the __repr__()method completely overrides the definition given in
the base class. With .__init__(), the situation is similar, in that it over-
rides Mtx’s .__init__(). The difference is that it uses it, too. And the
key to achieve this is the call to super(), which returns a reference to
the superclass part of the object; so
super().__init__(list)
initializes an Mtx. Once that is done, we do the rest, the SqMtx-specific
part of the work.

Appendix A. Standalone programs

Suppose someone finds one of our programs in Section 3.2 so useful
that she wants to use it, too. What can we do to make it usable for her?
The first thing of course is that we need to define a function andmake

the filename an argument of it.
def cat(fn):

with open(fn) as file:
for line in file:

print(line.rstrip())
In theory, we can send the user the file that contains this function defi-
nition. But in practice, we can’t expect the users of our program to start
a Python interpreter, load our program and invoke the function (cat in
this case) that is its main entry point. We need to be able to deliver an
executable file, or at least one that can be started with
python mycat
or perhaps
python mycat data.txt
from a terminal. (If we can deliver an executable, then the user can omit
python from the above commands. But the way to do this delivery de-
pends on the operating system.)
If mycat.py contains this:

1 import sys
2

3 def cat(fn):
4 with open(fn) as file:
5 for line in file:
6 print(line.rstrip())
7

8 def main():
9 if len(sys.argv) == 2:
10 cat(sys.argv[1])

78 A. SIMON

11 else:
12 raise SystemExit('Usage: '+ sys.argv[0] + ' [filename]')
13

14 if __name__ == '__main__':
15 main()

then
[simon@localhost tmp]$ python mycat.py data.txt
one
two
three
very long
four
five
[simon@localhost tmp]$ python mycat.py
Usage: mycat.py [filename]
[simon@localhost tmp]$
and if we include #!/usr/bin/python as the first line of mycat.py, then
it can be invoked as ./mycat data.txt on Linux. (./ is not needed
if mycat.py is in a directory that is a member of $PATH environment
variable — but this has nothing to do with Python.)
The details:

∙ The role of the last two lines is to arrange that the main() func-
tion will be called if the program is run in one of the two ways
above. The reason is that in this case the built-in variable __name__
has the value '__main__'. (If it’s imported22 in an other filewith
import mycat, its value is mycat.)

∙ sys.argv in lines 9, 10 and 12 is a list that contains the words of
the invocation (except for python): so with
[simon@localhost tmp]$ python mycat.py data.txt
we get sys.argv[0]==mycat.py and sys.argv[1]==data.txt.
That’s how we can access the command line arguments.

∙ Line 12 raises an exception (signals that “something is wrong”)
and prints our message explaining the cause:
[simon@localhost tmp]$ python mycat.py
Usage: mycat.py [filename]
[simon@localhost tmp]$ echo $?
1
In this case it looks as if we could have just printed the message
with print(). But the fact that the result of echo $? is not 0

22See Section 6

PYTHON – DRAFT VERSION 79

shows that our program told the shell that it couldn’t successfully
terminate, which is potentially very useful 23 We’ll learn a little
more about exceptions in Section 4.2.1.

Exercise A.1. If you haven’t done it yet, write a function is_prime()
that returns True if its only argument is a prime, and False otherwise.
Turn this into a standalone program is_prime.py! For example
[simon@localhost tmp]$ python is_prime.py 13
should print True, and if called by the wrong number of arguments, it
should print a message explaining the correct invocation.
As at the beginning of this section, youwill probably need the function

int(), because the members of sys.argv are strings.

23$ python backup.py && rm -r . runs python backup.py and then, if it termi-
nated normally, rm -r .. So it’s very important that our programs signal to the shell
their exit status. Here’s a less dangerous example involving our mycat.py:
[simon@localhost tmp]$ python mycat.py data.txt && echo "mycat terminated successfully"
one
two
three
very long
four
five
mycat terminated successfully
[simon@localhost tmp]$ python mycat.py && echo "mycat terminated successfully"
Usage: mycat.py [filename]
[simon@localhost tmp]$

	1. Python from scratch
	1.1. Python as a calculator
	1.2. Python as a programming language
	1.3. Miscellaneous basics
	1.4. Some examples

	2. Some useful details
	3. I/O
	3.1. User input and simple output
	3.2. Reading and writing files

	4. Containers
	4.1. lists, tuples and strings
	4.2. dicts
	4.3. sets
	4.4. More on list comprehension

	5. Functions
	6. Modules
	7. Debugging
	8. The 45 minutes introduction to object oriented programming
	Appendix A. Standalone programs

