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Summary. Let Pp be the probability measure on the configurations of 
occupied and vacant vertices of a two-dimensional graph N, under which 
all vertices are independently occupied (respectively vacant) with probabili- 
ty p (respectively l - p ) .  Let p~ be the critical probability for this system 
and W the occupied cluster of some fixed vertex w o. We show that for 
many graphs N, such as Z 2, or its covering graph (which corresponds to 
bond percolation on •2), the following two conditional probability mea- 
sures converge and have the same limit, v say: 

i) Pp~{.lw o is connected by an occupied path to the boundary of the 
square [ - n , n ]  2} as n ~  o% 
ii) Pp{-IW is infinite} as pSp~. 
On a set of v-measure one, w 0 belongs to a unique infinite occupied 

cluster, l~ say. We propose that I~ be used for the "incipient infinite 
cluster". Some properties of the density of ITv and its "backbone" are 
derived. 

1. Introduction 

The "incipient infinite cluster" or "infinite cluster at criticality" is frequently 
used in articles on percolation (e.g., in [1, 8, 14]). The concept seems to be as 
ill defined as "infinitesimals" in Leibniz' time. The difficulty arises because one 
would like for the incipient infinite cluster an infinite occupied cluster at the 
critical probability, when "infinite clusters just begin to form". Unfortunately 
with probability one no infinite occupied cluster exists at the critical probabili- 
ty (at least in the common percolation models for which this question has been 
decided); they only exist when p is strictly greater than the critical probability. 
We therefore propose to force the occurrence of an infinite cluster by taking 
limits of certain conditional probability measures. J.T. Chayes and L. Chayes 
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proposed another definition of the incipient infinite cluster (as the invaded 
region in invasion percolation, cf. "Percolation and Random Media", p. 136, 
Lecture Notes for Les Houches Summer School, 1984). It is not clear what the 
relation is between the different definitions of the incipient infinite cluster. 

Unfortunately the method below applies only to certain two-dimensional 
systems. The important special feature which makes the proof possible is that 
these systems at or above the critical probability contain infinitely many 
occupied circuits. Site percolation on •2 contains all features of interest and 
without great loss the reader may take 9 = Z  z throughout. We briefly describe 
the set-up and notation. We generally adhere to the notation of [6,1; more 
detailed definitions can be found in Chap. 2 and 3 of this reference. Let (9, 9*) 
be a matching pair of periodic graphs imbedded in the plane (in the sense of 
Sect. 2.1, 2.2) of [-6]). Throughout  A=A(9 )  is a constant > 1 such that 

length of any edge of 9 =< A 

and for any vertex v=(v(1), v(2)) of 9 and kEZ 

v can be connected to v + (0, k) (v + (k, 0)) 

by a path on 9 in the strip 

(v(1) - A, v(1) + A) x N (respectively 

x (v(2)-A,  v(2)+A)). 

By periodicity it suffices to make the last requirement only for k = l .  We 
consider site percolation on 9,  i.e., each vertex can be occupied or vacant, and 
we assume that all vertices are independent of each other. The probability of a 
vertex being occupied is taken to be the same 1 for all vertices and denoted by 
p. The corresponding probability measure on the configurations of occupied and 
vacant vertices is denoted by Pp. W(w) is the occupied cluster of w, i.e., the 
collection of vertices which are connected to w by a path on 9 all of whose 
vertices are occupied. A path all of whose vertices are occupied will henceforth 
be called an occupied path. We write v,,~ w if there exist an occupied path from 
v to w (in particular v and w have to be occupied for this to happen). Similarly 
v,,* B(A,,~ B) means that v,,*w for some weB (respectively, for some y e a  and 
weB). Occasionally, the paths have to be restricted. We shall write v,,~w in C 
if there exists an occupied path from v to w, all of whose vertices lie in C. A 
similar definition applies to v ~ B  in C and A,,~B in C. ~ W  denotes the 
number of vertices in W and the critical probability is 

p~=inf{p:  Pp{ #~ W(w)--- oo} >0} 

(see [-6-1, (3.62); PH is independent of w). To avoid double subscripts we shall 
write P~r for the probability measure Pp~, and Ecr for expectation with respect 
to P~r- 

1 The method below can also be used to treat periodic multiparameter problems (as described in 
[6], Sect. 3.2) in which the probability of being occupied has a finite number of different values. 
For simplicity we consider here only the one-parameter situation 
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(1) 

Our fundamental assumption is 

there exists a constant 3 > 0  such that for all n> 3A 

in [ - A ,  3 n + A ] x  

and 
lim Pp{E] 4~ W =  oo} 

P.~pH 

exist and are equal. I f  we denote their common value by v(E), then v extends 
uniquely to a probability measure on the configurations of occupied and vacant 
vertices, and 

v {3 exactly one infinite occupied cluster 

and W contains Wo} = 1. 

(4) Remark. v is not translation invariant. However, the squares S(n) in 
Theorem 3 may be replaced by any sequence of polygons P(n), provided 

P~r{[-A, 0] x [O,n]~[3n,  3n+A]  • [0,n] 

[0, n]}>=6 and 

P~,{[0, n ]x  [ -  A, 0] ,--~ [0, n] x [3n, 3n+A]  in 

[0, n] x [ - A ,  3n+A]}>6 .  

(2) Remark. We shall call a path on ~ which connects 

[a - A, a] x [c, d] to [ b , b + A ] x [ c , d ]  in [ a - A , b + A ] x [ c , d ]  

a horizontal crossing of [a,b] x [c,d]. Vertical crossings are defined similarly. 
Thus (1) says that at the critical probability (and afort iori  for p>pn) there is a 
probability of at least 6 that there is an occupied crossing in the long direction 
of the rectangles [0, 3 n] x [0, n] and [0, n] x [0, 3 n]. Because the vertices of 
are not necessarily located on lines of the form x=integer  or y=integer,  the 
crossing of [0,3hi x [0, n] does not necessarily start on the left edge, {0} 
x [0, n], but somewhere in the "slightly fattened up" left edge, [ - A , 0 ]  x [0,n]. 
The reader should ignore this minor technicality. The important point is that 
condition (1) is satisfied when fC=Z 2 or the covering graph of Z 2 (the latter 
corresponds to bond percolation on Z 2, see [6] Sect. 3.1) as well as for the 
triangular and honeycomb lattices. Proof of these facts can be found in [12, 10, 
11, 16]; see also [13] Sect. 3.4. More generally, it follows from [6], Theorems 
5.1, 6.1 and the methods of Chap. 3 that (1) holds when the y-axis (or x-axis) is 
an axis of symmetry for ff and if in addition f~ is invariant under a rotation 
over an angle ~bm(0, z) (compare application (v) of [6] Sect. 3.4). 

One final definition before we formulate our main result. A cylinder event is 
an event which depends on the state of finitely many vertices only. 

(3) Theorem. Let S(n) be the square [ - n , n ]  2 and w o a fixed vertex of fr and 
W =  W(wo). I f  (1) holds then for every cylinder event E the limits 

lira P~r {E[w0 ~ IRz\s(n)} 
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P(n)c in te r io r  of P ( n + l ) ,  n =  1,2 . . . .  , and for every fixed compact  set K, the 
boundary of P(n) lies outside K eventually. [] 

We also derive some properties of the cluster ITf,, whose existence is guaran- 
teed a.e. Iv] by (3). These properties will be used in [7] to show that a random 
walk on W has subdiffusive behavior. Set 

~(n) = ~ = P~ {Wo ~ (n , oo) x N }. 

This is the probabili ty that w o is connected to a halfspace at distance n away 
from the origin. It is known (cf. [15], Cot. 3.15 and [6] Lemma  8.5) that 

C 1 n--~ < ~  < C 2 n -rll 

for some constants Ci>O, and ~ > 0 .  In fact combining the argument of [15], 
Cor. 3.15 and [63, L e m m a  8.2 one can show that even 

(5) C 1 n-�89 <=Tz,,<= C2n-"1 

for some r/z>0. It is widely believed that the actual asymptotic behavior of ~, 
is like n -"~ L(n) for some 0 <  t/3 < 1/2 and a slowly varying function L (which 
may be a constant). As an indication that ft, is fairly smooth as a function of n 
we shall show in Sect. 3 that 

(6) 

and 

(7) 

re, is decreasing, but re2,> C a ~,, 

n 

r e . <  n k~= l rc ~ < C 4 ~ . , 

for suitable constants 0 < C i < oo. 
Some more notation: S(n) = [ -  n, n] 2, SO(n) = ~ 2 \ S ( r t ) .  E, denotes the expec- 

tation with respect to v. ~=D denotes the number  of vertices in D. Ci will 
always be a strictly positive and finite constant whose specific value is without 
importance for our purposes, and which may change from one appearance to 
another. Finally, for positive sequences {f(n)} and {g(n)}, f(n)U-, g(n) means 
that f (n) /g(n)  is bounded away from 0 and oo as n-+ oo. 

(8) Theorem. Assume that (1) holds. Then for  any t > 1 

Moreover  

as e-* O, uniformly in n. 

E~ {[ #(fvc~ S(n))]q • In ~ ~J .  

e_<_ @ (ITf~ S(n))< e-  i~ ~ 1 
n2 ~n ~ J 

(9) Remark.  Note  that if indeed rc ,~n -~3 L(n), then (8) shows that #(17fc~S(n)) 
behaves like n 2-n~ L(n). M. Aizenman (private communication) pointed out to 
us that in any case the proof  of this theorem implies that for suitable e o > 0  
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and large n 

Pcr{ ~ W>~o n2 ~.} 

>=rc, P~r{ ~ W>=eonZrc, lwo ~SC(n)} >=eoZC,. 

Together with re,> C a n -~ this shows that 

G(eW>k}>=Gk-�89 

which by a simple Abelian argument shows that 

lim h-  ~ ~Pc~{ ~ W = k }  (1 --e-kh)> C 6 >0  
h $ O  k 

Thus, if we set 

then 

(lO) 

re(h): = ~ P~r { =~ W = k }  (1 - e-kh), 
k 

1 =l imsup logm(h)<�89 or 6 >3 .  
8 hSo logh = 

The so called "mean field value" for 6 is 2. Therefore, in dimension 2, g) does 
not take its mean field value. We shall return to this in a forthcoming article 
"Scaling relations for 2D-percolation." [] 

For  calculations of electrical resistances and the displacement of a random 
walk on 1~r it is important to consider the "backbone"  of 1~. We define this as 
follows: 

(11) /~,:={v:3 two occupied paths r a and r 2 on f# in S(n) connecting v to w o 
and to SO(n), respectively, and such that r a and r 2 have no other 
vertex but v in common}. 

(by definition Wo~/~); 

/ ~ = l i m i n f / ~ =  0 (~ /~" 
m ~ l  n ~ m  

Roughly speaking /~ consists of all vertices which have disjoint occupied 
connections to w o and oe. In any case 

/~,cI~v " and /~cl~,, 

since all vertices in /~n are connected to w o by occupied paths. We shall also 
need the following probability 

(12) p,.'=P~r{wo is connected to SC(n) by two occupied paths 

which have no other vertex than w o in common}. 

It follows easily from [-15] that 

2 (13) p , <  C a ~z,. 
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Moreover (6) and (7) remain valid when n is replaced by p everywhere (see 
Remark 37). 

(14) Theorem. For any t > l 

(14), (13), (8) and the second inequality of (5) show that in some sense 

:~ Bn ~ n2 Pn <= C1 nz ~n' 7"on =< C2 n-n1 E~ { # ( 1 ~  S(n))}. 

Thus, the backbone of I?V is much thinner than l?V itself. This is the principal 
reason why the typical displacement in t steps of a random walk on 17V (the so 
called ant in the labyrinth) is < t  l / z - "  for some t/>0. We discuss this in detail 
in [7]. 

2. Proof of Theorem 3 

To avoid minor technical complications we shall henceforth assume that ~ is 
planar, i.e., that two edges can intersect only in a vertex of ft. (This covers for 
instance the cases fq = Z 2, the triangular or the honeycomb lattice). If fr is not 
planar one has to go over to a planar modification, as explained in [6], Sect. 
2.3. 

By a circuit (on fr we mean a path on fr which has no self intersections 
when viewed as a curve in IR 2, except that its initial point coincides with its 
endpoint. (Recall that N is imbedded in IR2). When cg is a circuit we shall use 
the following notation: 

= interior of cg, cge = exterior of cg 

(when cg is viewed as a Jordan curve in Na), 

~=cgwc~, @=CgwCge. 

We say that cg surrounds D if D c @. In analogy with this notation we write S(n) 
for the interior of S(n), i.e., for the open square ( - n ,  n) 2. As is well known (cf. 
[12] Lemma 5.4, [13] Sect. 3.4; for the Harr i s -FKG inequality see [2], [6] Sect. 
4.1) (1) and the Harr i s -FKG inequality imply that 

P~r{3 occupied circuit surrounding S(3 k) 

in the annulus S(3 k+ 1)\S(3k)} > 64. 

Since circuits in disjoint annuli are independent we can find 3 A < k  1 < k 2 <  ... 
such that 

c~i:= P~r{~ occupied circuit surrounding S(3 k') 

in the annulus S(3 k'* 1)\S(3k')} --+ 1, i ~ oe. 
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We fix such kl for the remainder  of  this section and  write 

A(i) = A~ = S ( 3  ki + t)\s(3k'). 

By the me thod  of [2] or [5], L e m m a  1, it is not  hard  to show that  a m o n g  
all occupied circuits which sur round  S(n) in an annulus  S ( n ) \ S ( m )  (m ~ < n) there 
is a unique innermos t  one, i.e., a circuit cg with min imal  interior  c~. If CgcA~ 
and cg sur rounds  S(3 k') then we shall use the abbrev ia t ion  F,.(c~) for the 
following event 

Also we write 

F~(Cs = {c~ is the innermos t  occupied circuit 

in A i which sur rounds  S(3k')}. 

6 = U ~6r 

where the union is over  all circuits (g in A i sur rounding  S(3k'). No te  that  this is 
a disjoint union and hence 2 

(15) ~ = ~ , { ~ } =  y~ P.{~(~r 
qg c A i  

As observed  a l ready by Harr i s  [2], the event Fi(Cg) depends only on the 
occupancy  of vertices on cg or in @c~Ai, but  not  on vertices outside A i or in 
cg~. Thus  events depending only on the occupancy  of vertices in cg~w( lR2 \A i )  
are independent  of F/(Cg). Fo r  the vertices on cg, the occurrence  of Fi(Cg) of 
course  implies that  all of them are occupied. N o w  let E be any  cylinder event 
depending only on the occupancy  of vertices in S(1) and let / < 3 k ' < 3  k~§ 
Wo~S(3kg. Then  3 

e c~ {Wo ~ SO(n)} = E c~ F~ c n {Wo"~ Sc(n)} 

u [  U (Er~Fi(Cg)~{Wo'~S~(n)})]  �9 

Fur the rmore ,  since any circuit cg in A i surrounds  w 0 but  is conta ined  in S(n), 
we see that  any  pa th  f rom w 0 to SC(n) must  intersect cg. Thus,  if cg is occupied, 
then Wo,.~SC(n) occurs if and  only if Wo,,Ocg in c~ and cg~Se(n)  in @. Given  
that  cg is occupied, the lat ter  two events are condi t ional ly  independent .  Thus  

(16) P~ {E a F~(~f) ~ {Wo ~ SO(n)} 

=Pp{EcaFi(Cg)r~{Wo,-~ in ~} 

�9 Pp{Cg,',*SC(n) in @leg is occupied}. 

2 The sum in (15), and later similar sums or unions are over circuits cg in A~ which surround 
s(3k'). The latter restriction shall usually not be indicated in the formulae 
3 For an event G, G c will denote its complement 
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Finally then, for p > pn, 

(17) [Pp{E, wo,,aS~(n)} - ~ Pp(Ec~Fi(Cg) 
~g c Ai 

c~{Wo"acg in c~}}Pp{Cg,',~Sr in @leg is occupied}l 

-<- Pv {Fie ~ (Wo ~ s ~(~))} -<_ P~ {F~ ~} e~ {Wo --~ S ~ (.)} 

(by Harr i s -FKG inequality) < (1 - c~i)P p {w o ,-* S c(n)} 

(see (15)). In essentially the same way we obtain for CgcA~ and 

3 k~+ ~ < 3 kj < 3 k j+ ~ < n, 

(18) [Pv{Cg-,-~SC(n) in @leg is occupied} 

- ~ Po{Fj(~), c g ~  in @c~YlCg is occupied} 
~ c A j  

- P,{@,--~SC(n) in ~ l ~  is occupied}l 

<(1-c~j)P,{~,-~S~(n) in @[cs is occupied}. 

We shall write 

and 

M(C6, ~ , j )  = M(~, ~ , j ,  p) 

=pv{Fj(@) ' c g ~ N  in @ c ~ l c g  is occupied) 

7(N,n)=7(N,n,p)=Pp{~,.~SC(n) in ~ [ N  is occupied}. 

In this notation (18) says 

(19) [y(c~, n) -- ~ M(C~, ~ , j )  y(9,  n)l ~ (1 - c~j) y(c~, n). 
N c A 3  

To prove that 
lim P~r {Elw o ,-, SO(n)} 

n---~ oo 

exists it suffices to show that 

(20) lim P~r {E]wo '~ SO(n)} 
. ~  ~r(E'lwo~.,SC(.)} 

= lira Pcr{E'w~ 
. -  ~ Pc, {E', w0 --~ SO(n)} 

exists for any cylinder event E' (in fact it suffices to show this with E ' =  E c or E' 
= the  certain event). Since the sum over r163 in (17) is a finite sum with range 
independent of n, and since 1 - ~  can be made arbitrarily small by choosing i 
large, (20) will follow once one shows 

(21) lim 7(c~"n'PH) 
. ~  ~(cg",n, pH ) 
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exists for any circuits cg,, cg,,cAi. By (19) we can for fixed i and e>0  find a j  
such that 

e-~y(Cg, n) < ~ M(~,@,J)7(@,n)<e~Y(c~, n) 
~ A j  

uniformly in CgcA i and P>PH" By iteration (with ~ replaced successively by 
e/2, ~/4, ...,) we can for fixed i,~>0, find 3A<=jl<J2< ... <Js with Jz>Jl-1 +6, l 
= 2,. . . ,  s (depending on i and e only) such that 

(22) e- 2~ y (cg, n) 

<= ~ ... ~ M ( ~ , ~ I , j ~ ) . . . M ( ~ _  1,gs,Js) 7(~s,n) 
~1 cA(jl) ~s=A( js )  

< e 2~ 7(cg, n) 

for all P>Pu and n > 3  k~+l. We shall think of M ( ~ , _ I , ~ )  as a positive matrix 
with entries indexed by the Ys. 

Towards the end of this section we shall prove the following lemma. 

(23) Lemma. There exists a constant 1 <to< ~ (independent of ~ and s and the 
j~ provided Jt =>Jz- 1 -~- 6) such that for all p >_ p~, 9',  9 "  ~ A~_ z, f ' ,  g'' ~ Az 

M(~',  g', Jz) m(~" ,  g", Jz) < ~2. 
M(Y, E", j~) M(~",  g',Jt) - 

Before proving the lemma we show how it, together with (22) and standard 
contraction properties of multiplication by positive matrices implies Theorem 3. 
For any two row vectors u'=(u'(1) . . . .  ,u'(2)) and u" with strictly positive com- 
ponents and the same dimension set 

osc u,u  --max 
i,j u (i) u (j) 

Hopf, [3] Theorem 1, showed that if M=(m~,j)l<=~<=~,~=j<=p is a 2•  
with strictly positive entries which satisfy 

m(il ,Jl) m(i2,j2) < tc2 
(24) max ~ . . . .  

il, i2, j l ,J2 m(tl,J2)m(12,J1) 
then 

(25) osc(u'M,u"M)<__ osc(u', u"). 
~r 

We apply this with u'(u") equal to the row vector M(Cg ' ,- , j l)  (respectively 
M( c~'', ",Jl) for some fixed cg,, cg,, cAi .  Then 

�9 .. ~ M( c~', 91 ,Jl)... M(~s -1 ,  ~ ,Js )  
~l  cA(jl) ~ s - l C A ( j s - l )  

is the 2s component of u' M 2 ... M s, where M l ( ' , ' ) = M ( . , . , j l )  satisfies (24). 
Similarly when u' and c6' are replaced by u" and cg,,. Thus by (25) and 
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induction on s 

max [u M2...  ~ u ~ . ~ . ~ l  < ~, ~'  ~A(j~) \tO + 1 ] 

In other words, there exists a number ~ = ~((g', cg,,,p, s) such that 

I~'~u'M2""M~(~) ~ <= \~c + 1 / (~c- 1 ]~- 1 for all ~scA(j~). 

Together with (22) this implies 

e -4~@_(~c- -1 ] s - l~<7(~ ' , n )  <e4~{~+( t r  S-l} 

for all sufficiently large n. Since e and s are arbitrary, and x is independent of e 
and s it follows that 

lim 7 (oK,, n, p) 
,,--,oo y(cg",n,p) 

exists, uniformly in p > pn. 

In particular (21) holds and the first limit in (3) exists. In fact the same 
argument shows that 

lim Pv {Elwo ~ SO(n)} 
n--~ oo 

exists, uniformly in p >Pu 

for any cylinder event E. However, for p >p~ this last limit equals Pv{EI =~ W 
= m}, and for each fixed n Pp{E[wo~SC(n)} is a continuous function of p. Thus 
also p~Pv{E[#W=oo} is continuous on [Pr~,l] and the second limit in (3) 
exists and is the same as the first limit in (3). 

Once we know that the common limit in (3), v(E) say, exists, it is immediate 
from Kolmogorov's extension theorem [91, Sect. III.3, especially Cor. on p. 83, 
that v extends to a probability measure on the occupancy configurations. 
Trivially V{Wo,.~SC(k)}=l for each k so that v{ITV=W(wo) is infinite} = 1. Also, 
by the Harris-FKG inequality, 

v{~ occupied circuit in A} >P~r{3 occupied circuit in A} 

for any annulus. Therefore, as in [13], Lemma 3.6 and Theorem 3.14 or [6], 
pp. 178 and 194 there exist infinitely many occupied circuits a.e. [-v], and IV is 
unique. Thus also the last part of Theorem 3 will follow and it remains to 
prove (23). 

(23) will be a consequence of a general connectivity argument. Several 
variants of this argument will be needed. We formulate the most important one 
as a separate lemma. We remind the reader that an event G is called increasing 
if its indicator function can only increase when any vertex is changed from 
vacant to occupied (cf. [6], Def. 4.1). 
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Lemma. For each k > 1 there exists a 6 k > 0 such that for all p > PH, n > 3 A 

(26) Pv{S occupied horizontal crossing of [0,kn] x [0,n]} >6k, 

(27) Pv {~ occupied vertical crossing of [0, n] x [0, k n]} _> 6k, 

k - 1  
and for k(3A+ 1 ) < r n < T n  

(28) Pp{3 occupied circuit surrounding S(rn) in the annulus S(n)\S(m)} > 6~k. 

There also exists a ~k>0 with the following property: I f  A* is an annulus 
k - 1  

S(ni)\S(mi), with m i < = T n  i, i=1,2 ,  and k (3A+l )<mt<nl<rn2<n:  with 

m: <knl ,  then for any increasing event G and p>p~ 

(29) Pp {G, 3 occupied circuits ~ / in  A* surrounding 

S(mi) for i=1,2 ,  with c~l,-*c~ 2 

in S(n2)\S(ml) } > ~k Pp {G}. 

Proof. (26) follows easily from (1) by combining horizontal crossings of [jn,(j 
+3)n]  x [0,nJ, O<j<__k-3 with a number of vertical crossings of [jn,(j+l)n] 
x [0, n] (cf. [10] Lemma 4, [12] Lemma 5.3, or [13] Lemma 3.4). Similarly for 

(27). (28) follows from (26) and (27) by combining two vertical crossings, one 
each of [ - n, - m) x [ - n, n] and (m, n] x [ - n, n], with two horizontal crossings, 
one each of [ - n , n  I x [ - n , - m )  and [ -n ,n]  x(m,n] (see Fig. 1 and [12] Lem- 
ma 5.4 or [13] Lemma 3.5). 

A similar argument works for (29). Let Hi be the event that there exists an 
occupied circuit surrounding S(mi) in/]i ,  i--1, 2, where 

I I 

1 

s(n) 

Fig. 1. A circuit can be formed from two vertical and two horizontal crossings 
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~2 

, - . . . . . .  ~ . ~  

l A I  r 

i 

\ n i l  
r , l  

Fig. 2. The solid squares are (starting from the inside) S(ml), S(nl), S(m2) and S(n2). The two dashed 
squares are S(N1) (the smaller one) and S(~2) (the larger one). The annuli A1 and Az are hatched. 
The path r connects S(r~l) and SO(g2) 

(see Fig. 2). 41 c AT because m~ < rhl." = ( k -  1) nl/k and 4 2 c A* because n 2 > fi2 
: = k m2/(k - 1). 

Also denote by K the event {S(r~l),-~SC(fi2)}. Then by the Harr is -FKG 
inequality and (28) the left hand side of (29) is at least 

g {c ~H~ nH~ n K} >g{G} ~ {/~1} g{H2} ~{K} 
> (6 2k) s Pp {G} Pp {K}. 

Moreover (see Fig. 2) 

Pp {K} >__ Pp {3 occupied horizontal crossing of [rnl, h2] x [ -  rht, ffq]} >= 6 l 

for any t>=�89 - 1) -2, The last inequality follows from 

k k 2 k 3 
~ 2 = ~ m z < ~ n l < ( k ~ - r h  1 and(26). [] 

(30) Remark. We shall want to apply (29) in a case where the occurrence of G 
forces the existence of occupied paths r i connecting Rz\S(ni) to S(ml) in A*, i 
=1,2.  The circuits cg~ plus a path from cg~ to cg 2 in S(n2)\S(ma) then connect 
q to r 2 in S(n2)\S(m 0 (see Fig. 3). []  

Proof of Lemma 23. We shall prove that there exists a ~ > 1 such that for 
~cA( j l_ l ) ,  g~A(jz  ) one has with 

s=kj~_~+3, t = Y ,  

(31) ~c-t ? (~, t, p) Pp {F~, (~), S(t + 3 A) ..~ ~} 

5 M(~,  d~,j,) 

<y(~,t,p)Pp{Fj,(g), S(t + 3A),-*g}. 
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Fig. 3. The dashed path r connects cg~ with ~2. The paths ~ which connect the outer and inner 
boundary of A~ intersect c~, i=  1,2 

This shows, that within a factor ~c, M(N, g,j)  is a product  of two factors, one 
depending on ~ only and another on g only. (23) will be immediate from this. 
The second inequality in (31) is proved in the same way as (16): any occupied 
path r from N to ~ must cross the boundaries of S(t) and S ( t + 3 A ) ,  since 

~ A(J t -  1) c ;~(t) ~ S(t  + 3 A) c S(3 ~+ 1) c #. 

Therefore r must contain a piece r 1 connecting ~ to SC(t) and a piece r z 
connecting S ( t + 3 A )  to g. The existence of r 1 and {Fj,(E)c~(r 2 exists)} are 
independent events. Indeed the existence of an occupied connection from ~ to 
SO(t) depends only on vertices in S ( t + A ) .  Similarly Fj~(#) and the existence of 
an occupied connection from S(t  + 3A)  to g depend only on vertices outside S(t 
+2A).  Therefore, the probabili ty of Fj,(g) and the existence of r I and r 2 is 
given by the last member  of (31). 

For  the first inequality in (31) we shall condition on the occupancy con- 
figuration, ~ say, in A(jl) and on ~ being occupied. Fix such a configuration 
in A(jl)  for which Fj,(#) occurs. Note  that this last event depends on the 
configuration in A(j t)  only. Set 

m l  = 3kJl- 1+2, n l = 3 k J t - l + 3 = t ,  m z = t + 3 A  

n 2 = 3 m 2, A*  = S(n l ) \S (ml)  , i = 1, 2. 

Define the increasing event G as 

{ ~ S C ( t )  in ~e  and S ( t + 3 A ) . . * g } .  

Since we already fixed all vertices on ~ as occupied, as well as the con- 
figuration in A(jl),  we can view G as depending only on the vertices in 
S ( 3 J ' ) c ~  e. These sites are independent of those in ~ u A ( j l )  and we can 
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therefore still apply (29). Note that as in Remark (30), if the event in (29) 
occurs for the present G, then the occupied paths from N~S~(t) and from S(t 
+ 3A) to 5 ~ (which exist when G occurs) are connected by the occupied circuits 
~r and cd 2 and an occupied path between cg 1 and cgz. Consequently in this 
case ~ is actually connected to ~ by all these pieces. Thus, conditionally on 
being occupied and on the configuration in A(j~), the probability of N,-~ ~ in 
~ c ~  g is at least (by (29)) 

S2Pe{GI~ occupied, ,7 in A(jl) } 

=SzPp{~S~(t) in ~e[~ occupied} 

�9 Pp(S(t+3A)~glZ in A(j~)} 

= 3 z y ( ~ , t , p  ) Pv{S(t + 3A),.~,#]~ in A(jl) }. 

Averaging with respect to all ~ in A(jl) for which Fi,(g) occurs we obtain the 
first inequality of (3l) with tc--(~z)-1. 

3. Proofs of  Theorems 8 and 14 

We begin with the Proof of (6) and (7). It is obvious from the definition that n~ 
is decreasing. Also, any path from w o to (n, oo) x ~. must leave S(n) so that 

(32) ~.<-e.{Wo ~sc(~)} 
=<4P~r{w0~(n ) in S(n+A)}~Ctn,,, 

for a(n) one of the four rectangles which make up S(n+A)\S(n). For the sake 
of argument assume that 

P~r{wo',*SC(n)}_<_4P~r {Wo,'O [n,n+ A] x [-n,n] in S(n+ A)}. 

Take for G the increasing event 

{Wo~a(n ) in S(n+A) and a(n)~SC(2n)}. 

Now apply (29) for this G and A*=S(n)\S(n/2), A~=S(2n)\S(n+A). Just as in 
Remark (30), if the event in (29) occurs then there exists an occupied path from 
w o to a(n) and another occupied path from a(n) to SC(2n), and these two paths 
are connected by pieces of two occupied circuits cd 1 and cd z and an occupied 
path between the circuits. Thus wo,,*SC(2n) in this situation. Consequently by 
(32) and (29) and the Harris-FKG inequality 

n2.> C2P~r{Wo"*Sr 

C 2 8 3 P~, {G} > C 3 5 3 n.P~{a(n)"-~Sc(Zn)}. 

The last probability is - by virtue of (1) - for n>=3A at least 

P~{[n,n+ A] x [-n ,n]~(2n,2n+ A] x [-n,n]} > fi, 

so that (6) follows. 
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The first inequality in (7) is immediate from the fact that ~, is decreasing. 
For the second inequality we consider 

V,:= {number of vertices of the form w o + (0, k) 

with 0 < k < 2 n which are connected 

by an occupied path to the half space (n, oe) x IR}. 

Clearly, by periodicity 
2n 

(33) Ec, V,= ~ ~,=(2n+1)7~, .  
k = O  

Next we find a lower bound for V, by considering the "lowest occupied 
crossing" of a figure which is very close to the rectangle [ -n ,n]  x [0, n]. 
Because we want the crossing to begin and end on the boundary of our figure, 
we choose four selfavoiding paths J 1 -  J4 on (4 such that their concatenation is 
a Jordan curve and such that 

J l c [ - n - 3 A , - n )  x [ - 3 A ,  n+3A], 

J2 c [ - n -  3A,n+ 3A] x(n,n+ 3A], 

J3c(n,n+ 3A] x [ - 3 A ,  n+ 3A], 

J 4 c [ - n - 3 A ,  n+3A] x [ -  3A,0) 

(see Fig. 4). 
Once again the reader is advised to think of the case (4=2~ 2 in which case 

we can take for J1 - J 4  simply the four sides of the rectangle [ - n ,  n] x [0, n]. 
Write J for the interior of the Jordan curve made up of J 1 - J 4 .  If r is a self- 
avoiding path on f4 which has its initial point (endpoint) on J1 (respectively on 
J3) and lies otherwise in J, then denote by J-(r)(J+(r)) the component of J \ r  
with J4 (respectively J2) in its boundary (see Fig. 4). The lowest occupied 
(horizontal) crossing of J is now defined as that occupied path R on (4, 
connecting J1 to J3 and lying in J (except for its endpoints) for which J - (R)  is 
minimal. As in [5], Lemma 1 or [6], Prop. 2.3 one sees that there exists a 

J 2 j  
\ 

j+ 

�9 r 

J 
/ 

( 
j- !3 

Fig. 4. The inner rectangle is [-  n, n] x [0, n] and the outer rectangle is [- n- 3 A, n + 3 A] x [- 3 A, n 
+3A] 
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unique lowest occupied crossing R whenever J1 ~ J 3  in J wJ 1 w J a. It follows 
that R exists under P~r with probability at least 

P~ { 3 occupied horizontal crossing of [ - n -  4 A, n + 4 A] + [0, n] } > ~ 3 

by (26). Moreover, if r 0 is any fixed self avoiding crossing of J from J1 to J3 as 
above, then the event {R=r0} is independent of the vertices in J+(ro) (cf. [5], 
Lemma 1 or [6], Prop. 2.3 and Fig. 4). 

Now we give a lower bound for 

(34) P~, {(w0(1), Wo(2)+k),..*(n , or) x NIR = to}. 

Denote the highest intersection of r o with the line X=Wo(1 ) by u. Since 
ror ~)J3 we have u(2)<=n+3A. We restrict ourselves to k with 

(35) u(2) + 24 A +8  IWo(t)[ <wo(2)+k<2n. 

For such k, Wo+(O,k ) lies "above to", i.e., it lies in J+ or in (IR2\j). On the 
event {R=ro} , r o itself is occupied and has its endpoint in (n, oo)x IR, so that 
w0+(0 ,k )~ (n  , o o ) x N  will occur whenever Wo+(O,k ) is connected to r 0 by an 
occupied path in ( - n , n ) x  IR. The piece of such a path from w 0 +(0,k) to its 
first intersection with r o lies outside J - ~ r  o and therefore (just as in I-5], step (i) 
of Prop. 1 or [6], Lemma 8.2) (34) is at least as large as 

(36) Pcr{Wo+(O,k),'.~r o in (-n,n)  x~ lR=ro}  
> Pcr {3 occupied circuit surrounding u in the 

annulus A and w o +(0, k ) ~  re}, 

where l = Wo(2 ) + k -  u(2) and 

["] A= - ~ , ~  +[u(2)-31,u(2)+ 31]\ 

["] r is the rectangle - ~ ,  ~ x [u (2 ) -  3 l, u(2) + 3l] 

and T c its complement (see Fig. 5). Note that A c T and that w 0 +(0,k) lies 
inside the inner rectangular boundary of A, so that a circuit in A surrounding 
u, also surrounds w o+(0,k). We leave it to the reader to show that the last 
probability in (36) is > C 1 zcg (use (26), (27) and the fact that the dimensions of 
T and the inner and outer boundary of A are all of order l). 

The above estimate for (36) is independent of r o and holds for all k which 
satisfy (35) and a fortiori for 2 4 A + 8  Iwo(1)[ < l < n - 3 A  

~cr {V.IR =to} ->_ c~ ~ ~, 
2 4 A  < + 8 IVeo(1) l  < 1 < n - -  3 A  
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Fig. 5. A is the hatched region, w o + (0, k) is connected to r o by pieces of the dashed path and circuit 

and 
Ec~ { V~} > C t ~ ~l P~ {R exists} 

1=1 

Combined with (33) this yields (7). []  

(37) Remark .  The proof  of (6) and (7) with ~ replaced by p everywhere is 
similar. The details are only slightly more complicated and will not be given 
here. 

P r o o f  o f  Theorem 8. We begin with a lower bound for E v {Z(n)}, where 

z(n) = # (fvc~ S(n)). 

This is very similar to the proof  of the second inequality in (7). Let v = w  o 

+ (k, l) with 0_< l_< k < n for the sake of argument, and let r be a path from w o 
to SO(m), m > 3 n. Then v will be connected to r (and hence will belong to W if r 
is occupied) if there exists an occupied circuit in the annulus A :=S(3k ) \S (2k )  
and if v ~ S C ( 3 k )  (note that v, as well as Wo, lies in S(2k) if k is large enough). 
Thus, again by the H a r r i s - F K G  inequality and (28) we have for large enough 
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k, say k >= k o, 
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(39) 

Assume further that 

(40) Woe Q) S(vl,2ni). 
i = 1  

Pc,{Wo'..~ SC(m) and v,.*Wo} 

>-- PC, {Wo "~ SC(m)} Pcr {3 occupied circuit in A} 

�9 Pcr{v,.,SC(3k)} 
c > Cl ~3kpcr{wo~S (m)}. 

If we divide both sides by Pcr{wo"-~SC(m)} and let m ~  oo we obtain 

v{veW}>Cjrcsk>C2n k (by (6)). 

Since there are (k+ 1) choices for l with O<l<_k we find 

E~{Z(n)} __> Z c2 ~ 
k = k  o / = 0  

>C27r, ~ (k+l)>C3nZn,.  
k = k  o 

For any positive random variable X, Jensen's inequality gives 

E{Xt}>[E{X)] t, t> l ,  

so that the above proves 

Ev{Zt(n)}>=C(t)[n2~.L t>_l. 

For an upper bound we begin with some remarks. Firstly, for any vertex 
ve[0, 112 we have by the Harr i s -FKG inequality for any set T 

PC, {v '-* T} > Pc, {v ~ Wo} Pc~ {w o --~ T} 

and 

Pc, {Wo ,-o T} >Pcr {w 0 ,-~ v} Pc~ {v ,-~ T}. 

In particular, if S(n, v) denotes the square I v ( l ) -  n, v(1) + n] x [v (2) -  n, v(2) + n], 
and SC(v, n) its complement, then we obtain uniformly in v 

(38) c~ 7c,<=Pc,{v~s~(v, n)} _<_ c2 ~,. 

(Use (32) if vs[0, 112; the general v reduces to the case re[0 ,  112 by periodici- 
ty). Secondly we need a somewhat less trivial inequality. Let S~ . . . . .  S t be t 
squares of the form Si=S(vi,ni), ni>9A , and let m>n be so large that 

U S(vi, 2 ni) c S(m). 
i = 1  
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We claim that if G is any increasing cylinder event depending only on the 
occupancies of vertices in USr where Sr = S(v~, n i + A), then 

(41) P~r {G, w o "* S~(m)} < C1 P~r {G} P~ {w o ~ S~(m)} 

for some constant C~ < oo independent of the S~, G and m (but dependent on t), 
as long as (39) and (40) hold. To prove (41), let T = U S i .  Then G and {w o 
-,* S~(rn) in S(m) \T}  are independent events since they depend on different sets 
of vertices. Thus 

(42) P~r{G and Wo--*SC(m) in S(m)\T}  

--< Per {Wo SC(m)}. 

One therefore merely has to show that the left hand side of (42) is at least C T 1 
times the left hand side of (41). However, if w o is connected by an occupied 
path r to S~(m) and if there exists an occupied circuit ~r in S(vl ,2nl)\g i for 
1GiGt ,  then we can replace r by an occupied path f from w o to SO(m) which 
does not enter U@i ~ T. Indeed r starts and ends outside ~i by (39) and (40). If r 
enters @i, replace the piece of r between its first and last intersection with ~ by 
an arc o f ~ / ( s e e  Fig. 6). If  the S(vi,2ni), l<=iGt, are disjoint, then we can do 
this successively for i =  1, . . . , t  to obtain the desired path f. If the S(v~, 2ni) are 
not disjoint then we can find a number  of disjoint curves cg~, each G~ made up 
of pieces of the ~i, such that each S t belongs to the interior of some ~j, ~ and 
~ds lie in each other's exterior for j :t: k, and such that 

Thus the ~g) curves surround all the S~ and lie in U s(v~,2n~). We can then use 
the preceding construction of ~ with the cg} replacing the ~j. We skip the details 
since in our application the S(vi,2ni) will be disjoint. 

The existence of f shows that the left hand side of (42) is at least as large as 

F 

j s  

/ 

I 
I 

S ( v i , 2 n  i ) 

Fig. 6. r is the dashed path. To obtain P replace the piece of r from a to b by the boldly drawn arc 
of Cg~ 
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P~r{G and worSe(m) and 3 occupied circuit 

in S(vi,2ni)\S i, l <i<t} 

>P~r{G and wo~SC(m)} 
t 

[ I  P~r{ 3 occupied circuit c~ i in S(vi,2nl)\Si} 
i = 1  

(by the Harris-FKG inequality) 

>C2P~{G and wo~SC(m)} (by (28)). 

This proves (41). 
We turn to the upper bound for E~{W(n)}. Again by Jensen's inequality we 

may restrict ourselves to integer t >__ 1. Then 

(43) Ev{Z~(n)}= lim [Pc~{Wo,,~S~(m)}] -1 
r n ~ o o  

P~{wo~SC(m) and vi,,~Wo, l<__i<t}. 
v 1 . . . . .  v t e  S ( n )  

Next we choose n i. Take v0=w o and define for g=(v 1, ..., vt) 4 

lul~=max(lu(1)l,[u(2)l) (for u=(u(1),u(2))~FJ), 

( 4 4 )  ni=ni(v-)=[�88 j~i ,O<j<t}] ,  

S i = S(v> ni) and Si = S(vi, ni + A) as before, 

G,=G~(v-)={v~S~ in S ,} ,  G=G@-)= ~ G(v~). 
i=1 

First we estimate the contribution to (43) for a g for which n~>9A, l<i<t .  
For such a ~-, 

max(lvi(1)-w0(1)l, lvi(2)-w0(2)l)>=4ni>0, l< i<t ,  

and hence wo~S(v~,2ni). Thus (40) holds, and so does (39) as soon as m>3n. 
Moreover, by definition of the n~ 

Sic~Sj=O for i=t=j. 

Finally, under (40), if v i.,* w o, then there must exist an occupied path from v~ to 
w 0 and a fortiori G, must occur. Thus, for a g with n~>9A, l< i<t ,  the 
contribution to (43) is at most 

(45) [p~ {w ~ ~ S~ (rn)}] -1 p~r { G, w o ~ SC(m)} 

<C1P~{G } (by (41))=C 1 1!I P~r{G~} (the G~ are 
i = t  

independent when the ;~i are disjoint) 

< C2 ~I n(n~) (by (38)). 
i = 1  

4 [a] is the largest integer _<a 



The Incipient Cluster 389 

We claim that  the inequali ty between the first and last members  of  (45) 
remains valid even without  the condi t ion n~>9A, l<_i<_t. This is seen by 
simply replacing G by the intersection of only those G~ for which n i>9A. The 
extra factors ~z(ni) with n i < 9 A  in the right hand  side are harmless. They can be 
incorpora ted  in C 2 since for n < 9 A  Tgn~7~9A>O. 

The above shows that  (43) is bounded  by 

(46) C2 ~ ( I  ~(ni), 
v l , . . . ,  v t ~S (n )  i ~  1 

and it remains to show that  this expression is at most  

(47) C 3 k~z k < C  3 n ~k 
k= k = l  

< C 4 In 2 ~zn] t __< C s (by (6) and (7)). 
k =  

For  clarity we treat the simplest case, namely  t =  1, separately. For  t =  1 

nl=[�88 Iv1(2)-  Wo(2))J, 

and the number  of  vertices v with n l = k  is at mos t  Csk. Since nl can be at 
mos t  n for v in S(n), (47) clearly is an upper  bound  for (46) when t = 1. 

For  general tSwe have to divide the v i into groups, and apply more  or less 
the same argument  as just  given to each group separately. For  the momen t  fix 
g and let i 0 be an index for which n~ is minimal, i.e., 

(48) nlo = min {n j: 0 < j  < t}. 

Set 10 = {io}. Define successively 

I t = {j: 3 ieI  z_ 1 such that  nj = k�88 vill i}.  

Finally set 
J1 "=t~>=oll �9 

Note  that  there must  exist an index Jo such that  

n,o = L�88 I~,o-  ~joloo/ 

and that this implies njo<n~o, hence njo=n~o (since nio is minimal) and jo~I~. 
Note  also that  if we order  J1 in such a way that  all indices in I~ precede all 
indices in I k if l<k  (but the order  within one Iz arbitrary) then for any 
i6Jl\{io} 

(49) ni=min{L�88 j precedes / i n  J1}. 

5 Dr. Bao G. Nguyen has shown me that the upper bound for E~{Zt(n)} for t> l  can be 
obtained much simpler by induction on t 
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Thus, the minimum in (44) is taken on for some j in J~ and even an earlier j. 
Of course (48) also holds. In addition for l(~Jt, n~(g)=n~(v~: il~J1), i.e., 

(50) n z (g) = rain { L�88 vjlooA :J =t: 1,j ~ {0, ..., t} \J1 }- 

Indeed for lr the minimum in (44) cannot be taken on at some j~J~ or l 
itself would also belong to J~. We may thus replace {0,.. . , t} by {0 . . . . .  t}\J~ 
and (if this set is not empty) find an ordered set J2 of indices in {0 . . . .  , t } \ J  1 
with a first index k o such that 

nko = rain {nj: n(~J1} 

(this is the analogue of (48)) and such that for ieJ2\{ko} (49) holds with J1 
replaced by J2, and for l(~J~ w J  2 (50) holds when J1 is replaced by J1 w J2. If 
{0 . . . . .  t } \ J l w J  2 is still not empty we proceed in the same manner, until 
{0 . . . .  ,t} has been partitioned into a number of ordered sets Ja, ...,J~ with the 
above properties. Note that (50) and its analogues imply that each J~ has at 
least two elements. To each g there corresponds such a selection of Ja . . . . .  Jx 
(with varying )~) and (46) may be bounded by 

(51) Z (Z (Z 
J1, ..., JA l~ i l  l~J.a. 

Here the outer sum stands for the sum over all choices of the J's and if J~ 
= {/o . . . . .  lr-1} with r =  IJ~], the cardinality of J~, then ~J~, r [*  and m 7 stand for 
the following: 

rn~ = min {1_�88 v l - v j ]  ~oJ :J 4 l,jeJ~}, 

~s~ is the sum over all rio . . . . .  vz~ - eS(n)  for which 

m~o=min {m~: lEJ}, and for leJ~\{io} 

m~=min{L�88 j precedes / i n  J~}; 

finally [ I*  stands for the product over all /eJ~\{0} (the factor n(m~) is ex- 
cluded because (46) does not contain a factor ~Z(no) ). As above we must have 
l?,t ~ - -  m e 

11 - -  lo"  

We now change our point of view. Instead of fixing g and finding the J's we 
now estimate (51) by fixing the J's and carrying out the sums over the ~'s 
which yield these J's. We shall prove 

(52) ~s  ~ ,  re(m,)< Cl(n z ~z,) IJ\~~ 

Since there are only C2(t ) ways of choosing the J's, substitution of (52) into 
(51) will yield the bound (47) for (46). 

To prove (52) fix J={ lo , l  1 . . . . .  lr_l} and for the moment also fix 
m(lo),...,m(lr-1). We wish to estimate the number of choices for rio .. . .  ,vl~_~ 
which are consistent with these data. First we consider the case where 0~J. V~o 
can be chosen as any vertex in S(n), i.e., in at most C 3 n 2 ways. Then, for any 
lk~J\{O } there must be a j preceding I k for which rn~=k~lvl-vjloo ]. If 
v~o, ...,v~_~ have been picked already then there are at most k < t + l  choices 
for this j, and if v; is fixed, and vl~ has to satisfy [�88 j =m,~, then there 
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are at  mos t  C 4 rn~k choices for yr,. In total  we have  at mos t  

C5// /2  I ~  ml 
IEJ\{lo} 

choices for the v's cor responding  to J. Next  recall that  we also have the 
restr ict ion mzo=m h. If  we now carry  out  the sum over  the m z with this 
restr ict ion then we see that  the left hand  side of  (52) is at mos t  

(53) C 5 n z 

Note  that  by (7) 

so that  

~" m~l 7t2(mll) ml2 rc(mt~)... 7% ~ rn(l~_ 1). 
0 <m(/a) ..... m(l~ 1)<n 

k 

kirk< y' rcj< ~ rcj<C4nrc,, k<n, 
j = l  j = l  

m rc2(m)<= Cr nG ~ rc(m)< CZ(nTz,) 2. 
O<-m<--n m=O 

Thus  (53) is at mos t  
C6(n 2 7Cn) r, 

which establishes (52) if {0}r A similar a rgumen t  applies if 0~J .  Of  course v o 
= w o is fixed, so that  if 0 = Ik, then we don ' t  get a factor  m(lk) for the n u m b e r  of 
choices of  v o (or i f / o = 0 ,  then we don ' t  get the initial factor  n2). However ,  we 
don ' t  get a factor  ~(mtk ) either in [ I* .  It  is now easy to verify that  (52) again  
holds in this case. This completes  the p roof  of (52) and of (47) as an upper  
bound  for (46). The  stated behav ior  for the m o m e n t s  of  Z(n) has therefore been 
proved.  

We turn to the final s ta tement  of  T h e o r e m  8 abou t  the dis t r ibut ion of Z(n). 
By Markov ' s  inequali ty 

v {Z(n) > e -  1 rt2 rCn} < ~ Ev{Z~} 
~ g/2 7.On ' 

so that  we only have to es t imate  (for suitable C 1 > 0 )  

(54) v{Z(n)<e C 1 n 2 G}. 

To do this consider  a triple of annuli  B ' (m) :=S(3m) \S (m) ,  B(m) 
-" = S(9 m) \S(3  m), and B"(m) = S(27 m) \S(9  m). Assume that  there exist occupied 
circuits (g' in B'(m) and cg,, in B"(m). A.e. [v] (g' and (g" belong to I~ (see 
Fig. 7). If  v~B(m) and v,,*S(m)~SC(27m) then some occupied pa th  f rom v to 
S(m) or SC(27m) intersects cg, or (g", and  therefore belongs to W. Thus,  if we 
define 

/~(m) = S(27 m + A) \S(m - A) 
and 

Y(m)= #e {vsB(m): v ~ S(m)wSC(27m) in/~(m)}, 
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"N.__f 
w 0 t o  

Fig. 7. The four squares are (starting from the inside) S(m), S(3m), S(9m) and S(27m) 

then a.e. I-v] on the event 

F(m):= {3 occupied circuits cg' and cg" in B'(m) 

and B'(m)  respectively} 

we have Z(n )>  Y(m) for n > 2 7 m .  It is also easy to see (use (6)) that 

(55) Ecr { Y(m)} > C 1 m E re,,. 

Thus if 

(56) 3 k < n < 3  k+l and e~�89 -8j-2, 

then for 3k-4J<_m<_3 k-3 

�89 Ecr{Y(m)} >�89 C 1 32k -S j~  m 

~�89 C1 n 2 / ~ n 3 - s j - 2 ~  C 1 n 27c n. 

In particular for these choices of k,j, e we see that 

y(3k-4l~> 1E r (57) v{Z(n)>=eCln2rcn}>=v{ t , = ~  ~,t , J 

and F(3 k-4l) occurs for some 1 < l < j } .  

Moreover, the event in the right hand side of (57) is increasing, so that an 
application of the Harr i s -FKG inequality shows that the right hand side of (57) 
is at least equal to 

k - -41  1 k - - 4 l  P~r{Y(3 )>~Ec,{Y(3 )} and F(3 k-4~) 

occurs for some 1 < l<j}.  
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The event 

{Y(3k-4*)>�89 and F(3k-4*)} 

depends only on vertices in S(3k-4~+3+A)\S(3k-4Z-A), and therefore these 
events for different l are independent (when k - l  is large). Also 

{Y(3k-~)>�89 and F(3 k-4~) 

are both increasing events. These observations and another application of the 
Harris-FKG inequality show that the expression in (54) is at most 

J 
Y(3 )=>~Ecr{Y(3 )}} P~,{F 3 )}]. 

i=1 

Finally, by (28) 
P~r {f(3k-4')} > C2 > 0, 

and for small e we can take j large (see (56)). Therefore, it will follow that (54) 
is small, uniformly in n, when e is small, as soon as we show 

( 5 8 )  P~r{Y(m)>�89 for all rn. 

The one-sided analogue of Chebyshev's inequality ([4], p. 476) shows that the 
left hand side of (58) is at least 

�88 2 
�88 [E~r { Y(m)}] 2 + varc ~ { Y(m)} ' 

where var~r{Y} is the variance of Y under P~r. The proof of (54) has therefore 
been reduced to the estimate 

(59) Ec,{ y2(m)} < C4(m 2 re,,,) 2 

(see (55)). We do not prove (59) except to remark that the same argument as 
used to go from (43) to (46) shows that 6 

Ecr{Y2(m)} <-- ~ {rc([_�88 2, 
v, wEB(m) 

and the last sum is indeed O(m 2 re,,) 2 by (52) applied to a d consisting of two 
indices only. [] 

The proof of Theorem 14 will not be spelled out. It is essentially the same 
as that of the first part of Theorem 8. We merely have to replace at various 
places the events {v,..~S~(v,n)} by {v is connected to SC(v,n) by two occupied 
paths, which only have the vertex v in common}, and correspondingly ~, by p,. 
(See also Remark (37).) 

6 aAb=min(a,b) 
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