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COINCIDENCE OF CRITICAL POINTS
IN PERCOLATION PROBLEMS
UDC 519.217

M. V. MEN'SHIKOV

In this note we consider directed infinite connected graphs without loops and with a
countable set of vertices V = {v} and arcs £ = {¢}. We shall assume that the graph G
satisfies Conditions 1 and 2, and in Theorems 2 and 3 also Condition 3.

CONDITION 1. The graph G is vertex-symmetric. This means that it has k types of
symmetric vertices; that is, V = Vi U--- U Vg, Vi NV; = O for ¢ # j, and for every pair
of vertices v, v/ there is an automorphism that takes v to v’ and preserves the subsets
Vl, e ,Vk.

CONDITION 2. The degree of every vertex of the graph G is finite.

In G we fix a vertex v. We denote by Yy,,(v) the set of vertices attainable from v in at
most m steps; we also put Sy (v) = Yr(v) \ Yiu-1(v), m = 2,3,. .., and S;(v) = Y1 (v).

CONDITION 3. There are numbers ¢j,¢; > 0 and 0 < v; < 1 such that |[Ya(v)| <
ciexp{ain™} forallveVandn=12,...

REMARK. The lattices in R® considered in {1] satisfy all these conditions.

We shall be concerned with the so-called problem of vertices. Every vertex of a graph G
independently of the others is occupied with probability p and the value +1 is assigned to
it, or is free with probability ¢ = 1—p and the value —1 is assigned to it. Thus, on the set
V of vertices there is defined an independent random field. For an occupied vertexv eV
we define the cluster W (v) as the set of occupicd vertices v’ € V attainable from v through
chains of occupied vertices vy,...,v;, where {v,vl},{vl,vg},...,{v;_l,vz},{v;,v’} are
arcs of G. We denote by {W(v)| the number of vertices in this cluster (it is possible that
|W (v)| = 00). We put

(1) 0, (p) = Pp{{W(v)| = oo};

that is, 6, (p) is the probability that the veriex v belongs to an infinite cluster. Kesten
[1], using the FKG-inequality and the fact that G is connected, proved that from the
fact that 8,, (p) is positive for some vertex v, it follows that 6, (p) > O for any vertex v.
A similar assertion is also true for E,{|W (v)|}. Therefore, the critical percolation points
pn and pr are well defined as follows:

(2) PH = pH(G) =supi{r.p€ [0) 1]a 0(p) = 0})
(3) pr = pr(G) = sup{p: p € {0, 1}, Ex{|W(v)[} < oo},
where E,(-) is the expectation.
Let D,,(v) = D, be the event consisting in the existence of a path of occupied vertices
that joins v to one of the vertices belonging to S,, (we shall say that the flow has reached

the sphere Sp).
Our main results are the following.

THEOREM 1. Suppose that the graph G satisfies Conditions 1 and 2. Then for any
p < pg and v (0 <y < 1) we can find a 2sumber Ny such that for alln > Ny andv eV

(4) P,{D,(v)} < exp{—n"}.
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THEOREM 2. Suppose that the graph G satisfies Conditions 1-3. Then for any p <
pH there are numbers cy,a2 > 0 and Ny such that for alln > N, andv eV

(5) P,{Dn(v)} < czexp{—azn}.

THEOREM 3. For a graph G satisfying Conditions 1-3 the critical percolation points
coincide: py = pr.

The proof of the main Theorem 1 will be developed in a number of lemmas. A vertex
vy of a graph G is said to be essential for the event D, (v) and a given configuration w
if w(v1) = +1, the event Dy, (v) has happened, but when w(v;) = ~1, the event D, (v)
does not happen. The set of essential points (vertices) of a given configuration and event
Dy, (v) will be denoted by N(D,(v)) = N(D,).

It is easy to verify that the event Dy(v) is increasing (see [1]); that is, if for some
configuration w the event D,(v) has happened, then it will also happen if any —1 is
replaced by +1. If the event D, (v) has not happened, then it will not happen if +1 is
replaced by —1. Consequently, Russo’s theorem is true for the family of events D, (v)
(see [1] and [2]).

We take arbitrary py and py, 0 < p; < B, < 1, and put

p)=tpo+(1-t)p;, 0<t<1, p0)=p, p(l)=p,

Then the probability P,(D,(v)) of the event D,,(v) for fixed n and vertex v is a function
of t, 0 < ¢t < 1, and this probability satisfies the following inequalities.

THEOREM (RUSSO).

© FPr(Da(0)) 2 aBp (N (D), te 0,1
" GP#(Dn(0)) 2 Gy {N (D (u))|Da(w)} - Po(Da(o))

1
(®) Pﬁl(Dn(v))SPﬁ.,(Dn(v))exp{—a /0 Ep<t){N(Dn(v))|D,.(v)}dt},

where o > 0 43 a constant depending on the points Po and P;.

Inequality (8) is obtained from (7) by integration. The main difficulties in the proof
of Theorem 1 consist in estimating E,{N(Dj(v))|Dp(v)}.

LEMMA 1. For any p < py and v € V, limuoo Pp(Dn(v)) = 0 and there is a
constant ay > 0 depending on p such that Pp(Dy(v;)) < a1Pp(Dy(v;)), where v; and v;
are any vertices of V.

The proof follows from the FKG-inequality, the fact that the number of types of
vertices is finite, and the fact that G is connected.

Suppose that for some configuration the event D, (v) has happened, and that ay, ...,
am are all the essential points of this configuration. The next lemma gives the geometrical
picture of this situation.

LEMMA 2. The essential points can be indezed so that all paths of occupied vertices
from v to S,(v) intersect these points in the order of indezing (once each) and for two
points with adjacent numbers there are at least two paths disjoint on the interval between
them.

LEMMA 3. Foranyk,1<k<n,and0<p<py
Pp{N(Dn) 2 k|Dn} 2 (1 - alpp(D[n/k]))k'
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PLAN OF THE PROOF. Suppose that a; € S, (v),...,am € Si,.(v). We put & =11,
¢, = max{iz — 41,0},. .., &m = max{iy, — tm—10}, and

k
9) Pu{N(Dn) 2 klDn} 2 Pp{é1+ &2+ -+ & <niDn} 2 Py {ﬂ & < n/len}

=1

=P,{& < n/k|Dn} Pp{& < n/k|Dn, &1 < n/k}
° 'Pp{ﬁk < n/k|Dn) 61 S n/k) sy gk—l < n/k}

We can also show that each of the factors on the right-hand side of (9) is not less than

(1 — alpp(D[n/k]))-
The next lemma follows from Lemma 3.

LEMMA 4. Foranyk <n
(10) EP{N(Dn)|Dn} > k(1- alpp(D[n/kl))k-
The probability P,(D,) does not increase as n increases. Therefore,

on(k) = kPp(Din/k))

for fixed n is an increasing functionof k = 1,...,n. Let k, be determined by the relations
(11) knPp(Din/ka]) < 1, (kn + 1)Pp(Din/kn+11) > 1.

LEMMA 5. There i3 a number d > 0 such that for alln
(12) Ep{N(Dr)|Dn} > dkn.

We put fp(n) = fp(Dn(v)) = 1/P,(Dn(v)).

LEMMA 6. For any c; > 0 there ezist a number a > 0 and a sequence of numbers
{n;}, ni — oo, such that

(13) f5, (n4) 2 a(ni)*.
PLAN OF THE PROOF. We rewrite (8) in a new notation:

(14) o) frumen {a [ By (N DDA} at

For any p’ and p”, p; < 7"’ < p’ <Py, we have
t’

(15) o () 2 Sy (m)exp {a /,

where p(t') = ¢/, p(t") =", t' —t" = (o —p")/ (@ — P1)-
We define recursively three sequences {p;}, {n:}, and { fi},1=0,1,2,..;

E,){N (Dn)an}} dt,

(16)  fi= fu(mi), mip1=milfil, Po=Po, Ai=piy1—pi=clnfi/fi.

Taking account of Lemma 5 and the fact that [fi] is a root of the equation z =
[fpe(nis1/2)], we obtain

(17) EPi{N(Dni+l)lDﬂi+1} = dk‘ni+1 = d[fi];

(18) fir1 2 fp;(ni+1)exP{ad[fi]Ai} > fit,

where by the choice of constant ¢ in (16) we can arrange that ¢; is arbitrarily large,

which leads to the convergence of the series 3 ;- A;, and for sufficiently large no and fo
we have Y.2° A; < By — Py; that is, all p; € (B, Pol-
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From (16) and (18) it follows that

nm = {fm-1] - [fm-2] - [folno, fm 2 fR 055 - fi7 fo.

Taking account of the fact that fz (n) > f,..(n), we prove Lemma 6.

Also, from (13), proved for any c; > 0, we can show that J5, (n) increases faster than
a linear-fractional function. Taking account of this and applying (14) to the interval
At =Py — 3°1° Ay, we prove that fp, (n) increases almost exponentially, from which the
assertion of Theorem 1 follows.

We omit the proof of Theorem 2. Let us turn to the proof of Theorem 3. From
Condition 3 it follows that we can find a o, 0 < 42 < 1, and an N; such that for all
n > Ny we have |yn(v)| < exp{n*} for any v € V. The following chain of inequalities is
obvious:

(19) Pp(Dn(v)) 2 Pop(IW (v)] > lyn) > Pp(IW (v)] > exp{n™}).

Thus, Pp(|W (v)| > 1) < Py(D1a1y1/7a))-
By Theorem 1, for any p < pg and 4, 0 < v < 1, we can find an N; such that for
1> N,
Po(Dyintyr/v)) < exp{—(Inl)*/ 7},

Consequently, for sufficiently large ! we have

(20) P {IW()| > I} < exp{—(Inl)"/"}, /3 >1,
and so for any p < py
(21) Ep{W ()]} = > IP{IW(v)| = 1} < .

=1

From (21) it follows that pr = py.

In (3] we gave an algorithm for obtaining arbitrarily precise estimates for pr- Hence
Theorem 3 makes it possible to obtain arbitrarily precise estimates for pu. In addition,
similar theorems can be formulated for the so-called problem of connections, and also for
many-parameter problems of both vertices and connections.
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ON A METHOD OF SOLVING
THE KOLMOGOROV-FOKKER-PLANCK EQUATIONS
IN THE THEORY OF RANDOM OSCILLATIONS
UDC 517.9

NGUEN DONG AN’ [NGUYEN DONG ANH]

At the present time the study of the joint influence of periodic and random effects on
the oscillations of mechanical systems is of major importance (see [1]-[4]). In this area the
method of Markov processes in combination with the Krylov-Bogolyubov-Mitropol’skii
asymptotic methods [3]-[5] is effective. However, as is known, this approach leads to a
difficult problem: solution of the Kolmogorov-Fokker-Planck (KFP) equations.

1. A sufficient condition for integrability of the KFP equations. We consider
a mechanical system with one degree of freedom whose equation of motion has the form

(1) %+ 12z = ef (¢, 2, &) + VEog(t, o, )E(t),

where £(t) is “white noise” with unit intensity, and f and g are differentiable functions
of their arguments which are periodic in t; ¢,v,0 = const, and ¢ is a small positive
parameter. Making the change

(2) z = acosy, &= —avsiny, P=vt+0,
by means of It&’s formula [6], we transform equation (1) to the standard form [3]

_[_¢ N i o . €9 (E 2, 2)
da-[ Vf(t,a:,a:)smz/)+ 5020

— (VE/v) g(t, z, ) sin e dE(2),
dé = [—E%f(t’ T,%)cosy — E%—%Z—)Sind’cos'ﬁ] dt

— (VE/av) g(t, z, %) cos  dE(2).

The KFP equation formed for the steady-state probability density of the amplitude and
phase W (a, 8) of a solution of system (3), after averaging (3], [7], has the form

1[92 92 o0?
E [—a-—2(K]_1W) + 2_—(K12W) + W(K22W)} !

cos? w] dt

(3)

0 0
(4) %(KIW) + 6—0'(K2W) = 5000

where the drift and diffusion coefficients are computed from the formula
_ 1 L\ e g2 (t’ x, 1) 2
Kl(a,ﬂ)—M{ ;f(t,a:,z)smdz+ o2 8 Pt

Ky(a,0) =M {—éf(t,a:,dz) cos — ﬁ(l%;—i)sim/)cosw} ,
Kii(a,6) = M {(1/*)g*(t,5,4) sin’}
Kiz(a,0) = M {(1/av?)g*(t, z,£) siny cos p} ,
K22(a'1 0) =M {(1/a2u2)g2(t’ T, I) 0082"/)} ]
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