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Abstract. This paper is partly an exposition, and partly an extension of our work [1] to
the multiparameter case. We consider certain classes of parametrized dynamically defined
measures. These are push-forwards, under the natural projection, of ergodic measures for
parametrized families of smooth iterated function systems (IFS) on the line. Under some
assumptions, most crucially, a transversality condition, we obtain formulas for the Haus-
dorff dimension of the measure and absolute continuity for almost every parameter in the
appropriate parameter region. The main novelty of [1] and the present paper is that not
only the IFS, but also the ergodic measure in the symbolic space, whose push-forward we
consider, depends on the parameter. This includes many interesting families of measures,
in particular, invariant measures for IFS’s with place-dependent probabilities and natural
(equilibrium) measures for smooth IFS’s. One of the goals of this paper is to present an
exposition of [1] in a more reader-friendly way, emphasizing the ideas and proof strategies,
but omitting the more technical parts. This exposition/survey is based in part on the series
of lectures by Károly Simon at the Summer School “Dynamics and Fractals” in 2023 at the
Banach Center, Warsaw. The main new feature, compared to [1], is that we consider multi-
parameter families; in other words, the set of parameters is allowed to be multi-dimensional.
This broadens the scope of applications. A new application considered here is to a class of
Furstenberg-like measures, see Section 2.2.3.
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1. Introduction

1.1. Hyperbolic iterated function systems on the line. For the entire note we fix
an m ≥ 2 and a compact non-degenerate interval X ⊂ R. We write A := {1, . . . ,m}.

f1(x)

f2(x
)f3(

x)
X3

X

X2

X1

V

Definition 1.1. For an r > 1 we say that
F = {fi}i∈A is a Cr-smooth hyperbolic
IFS on X (see Figure 1.1) if the following
two assumptions hold:

(1) There exists an open set V ⊃ X

such that for every i ∈ A, fi : V →
fi(V ) ⊂ V is a Cr diffeomorphism ,

(2) fi(X) ⊂ X and 0 < |f ′
i(x)| < 1 for

all i ∈ A and x ∈ X.

Throughout this paper we only consider Cr-smooth hyperbolic IFS for some r > 1 and for
the main part consider r > 2. The attractor Λ = ΛF is the unique non-empty compact set
satisfying the self-conformality equation

(1.1) Λ =
⋃
i∈A

fi(Λ).

The level-1 cylinders are Xi := fi(X) and the level-n cylinders are Xi1...in := fi1...in(X) for
all (i1, . . . , in) ∈ An, where we used the shorthand notation fi1...in := fi1 ◦ · · · ◦ fin . It is easy
to see that

(1.2) Λ =
∞⋂
n=1

⋃
(i1,...,in)∈An

Xi1...in .
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Thus, it follows from the second part of Definition 1.1 that the sequence
{ ⋃

(i1,...,in)∈An

Xi1...in

}∞

n=1

is a nested sequence of compact sets and for every n, {Xi1...in}(i1,...,in)∈An is a cover of Λ. So,

(1.3)
{ ⋃

i∈An

Xi

}∞

n=1

can be considered as the natural covering system of the attractor. If the level-1 cylinders
are disjoint:

(1.4) Xi ∩Xj = ∅, for all i ̸= j,

then the dimension theory of Λ is well understood. Observe that in this case Λ is the repeller
of an expanding map ϕ :

⋃m
i=1Xi → X and ϕ(x) := f−1

i (x) if x ∈ Xi.

Definition 1.2. Let Θ be the set of all Cr-smooth hyperbolic IFS on X consisting of m
functions: F = (f1, . . . , fm). For F ∈ Θ, let L(F) = sup

i∈A
∥f ′′

i ∥∞. Let 0 < γ1 < γ2 < 1. We

introduce

(1.5) Θγ1,γ2 = {F ∈ Θ : γ1 ≤ |f ′
i(x)| ≤ γ2, ∀i ∈ A, x ∈ X} .

For a 1 < q ≤ r and h ∈ Cr(X) we define

(1.6) ∥h∥q :=


∑q

k=0 ∥h(k)∥∞, if q ∈ N ;∑⌊q⌋
k=0 ∥h(k)∥∞ + sup

x ̸=y∈X

|h(⌊q⌋)(x)−h(⌊q⌋)(y)|
|x−y|q−⌊q⌋ , if q ̸∈ N .

Since we will consider families of IFS’s it is useful to define the distance between IFS’s: let
1 < q ≤ r and let F = {f1, . . . fm} ,G = {g1, . . . gm} ∈ Θ. Then their q-distance is

(1.7) ϱq(F ,G) := max
i∈A

∥fi − gi∥q.

Lemma 1.3 (Bounded Distortion Property). Let r = 1 + δ > 1 with δ ∈ (0, 1) and consider
F ∈ Θγ1,γ2.

(a) There exist constants c1, c2 > 0 such that for all n and ωωω ∈ An and for all x, y ∈ X,

(1.8) c1 <
|f ′

ωωω(x)|
|f ′

ωωω(y)|
< c2.

(b) There exists a constant c3 > 0 such that for all G ∈ Θγ1,γ2 with ϱ1+δ(F ,G) ≤ 1 and
n ∈ N, ωωω ∈ An,

(1.9) exp
[
−nc3ϱ1+δ(F ,G)δ

]
<

|f ′
ωωω(0)|

|g′ωωω(0)|
< exp

[
−nc3ϱ1+δ(F ,G)δ

]
The proof is available in [4, Section 14].

1.2. Dimension of the attractor of a hyperbolic IFS. The non-overlapping case.
Let F ∈ Θ. Our objective in this paper is to get a better understanding of what happens in
the overlapping case, like in Figure 1.1 where cylinder intervals X2 and X3 overlap. However,
first we give a brief summary of the dimension theory in the non-overlapping case. Recall
the definition of the Hausdorff dimension:
(1.10)

dimH Λ = inf

{
t ≥ 0 : ∀ε > 0, ∃ {Ai}∞i=1 , Ai ⊂ R such that

∞∑
i

|Ai|t ≤ ε , Λ ⊂
∞⋃
i=1

Ai

}
,

where | · | denotes the diameter. If (1.4) holds, then the system of covers
{ ⋃

i∈An

Xi

}∞

n=1
can

serve as the system of most optimal covers {Ai}i in (1.10). Hence, the Hausdorff dimension
of Λ is given by

(1.11) dimH Λ = sF ,
3



where

(1.12) sF := lim
n→∞

sn, and sn is the solution of
∑
i∈A

|Xi|sn = 1.

(See [7, Chapter 5] and [4, Theorem 14.2.2].) We call sF the conformal similarity
dimension of F , and we can characterize it as the root of the pressure function, which
is

(1.13) PF(t) := lim
n→∞

1

n
log
∑
i∈An

|Xi|t = lim
n→∞

1

n
log
∑
i∈An

∥f ′
i∥t,

where ∥ · ∥ is the supremum norm on X. The second equality follows from the Bounded
Distortion Property (1.8). It is immediate from the definition that the pressure function
PF(·) is continuous, strictly decreasing, PF(0) = logm > 0 and limt→∞ PF(t) = −∞, so it
has a unique zero. It is easy to see (see [4, Chapter 14]) that

(1.14) sF = P−1
F (0).

Formula (1.13) means that in a very loose sense,
∑

i∈An |Xi1...in|t ≈ exp (nPF(t)). Using this,
if we accept that (1.4) implies that

{ ⋃
i∈An

Xi

}
n

is "the most optimal covering system of Λ"

in the sense specified above, then we get from the definition of the Hausdorff dimension that
if the first cylinders do not intersect (i.e. (1.4) holds), then

(1.15) dimH Λ = P−1
F (0) = sF .

If we drop the assumption (1.4), then the last formula does not necessarily remain valid, but
we always have the inequality

dimH Λ ≤ sF .

For example, if

(1.16) F = {f1(x) = x/3, f2(x) = (x+ 1)/3, f3(x) = x/3 + 1} ,
then

(1.17) dimH ΛF ≈ 0.876036 < 1 = sF ,

see [4, Section 4.3]. This is due to the fact that there is an exact overlap: f1 ◦ f3 = f2 ◦ f1.
In general, we say there is an exact overlap for the IFS F ∈ Θ if

(1.18) ∃ i, j ∈
⋃
n

An, i ̸= j, such that fi|Λ ≡ fj|Λ.

The so-called Exact Overlap Conjecture (see [4, Conjecture 14.3.7] ) states:

Conjecture 1 (Exact Overlap Conjecture). If dimH Λ < min
{
1, sF

}
, then F has an exact

overlap.

1.3. Dimension of invariant measures for a hyperbolic IFS. The non-overlapping
case. The definition of the Fourier transform, and definitions of various kinds of dimensions
of measures and connections between them can be found in the Appendix on page 37. Let X
be a compact interval and F = {fi}mi=1 ∈ Θ. Recall that we write A := {1, . . . ,m}, and let

A∗ :=
∞⋃
n=1

An be the set of finite words above the alphabet A. We define a convenient metric

(adapted to the IFS F) on the symbolic space Σ := AN as follows: the distance between
i, j ∈ Σ with i ̸= j is

(1.19) d(i, j) = dF(i, j) := |fi∧j(X)|, where i ∧ j is the common prefix of i and j.

The natural projection Π : Σ → R is

(1.20) Π(i) = ΠF(i) := lim
n→∞

fi|n(x),
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where x ∈ X is arbitrary and i|n := (i1, . . . , in) for i = (i1, i2, . . . ) ∈ Σ. We write σ for
the left shift on Σ, defined as σ(i) := (i2, i3, i4, . . . ). A Borel probability measure µ on Σ is
invariant if for every Borel set H ⊂ Σ we have µ(H) = µ(σ−1H). An invariant probability
measure µ on Σ is ergodic if

σ−1(H) = H =⇒ either µ(H) = 0 or µ(H) = 1.

We write Eσ(Σ) for the collection of ergodic shift invariant measures on Σ. Let µ ∈ Eσ(Σ).
Then the entropy hµ = hµ(σ) is (roughly speaking) the exponential growth rate of the measure
of a typical n-cylinder. That is, let i|n := (i1, . . . , in) for an i ∈ Σ and let the corresponding
n-cylinder be

(1.21) [i|n] := {j ∈ Σ : ik = jk, ∀k ≤ n} .

Then for µ-a.e. i ∈ Σ, the following limit exists and equals to a constant, which is called
entropy (see [4, Corollary 9.5.4]):

(1.22) − lim
n→∞

1

n
log µ([i|n]) =: hµ.

The Lyapunov exponent of µ with respect to (w.r.t.) the IFS F = {fi}mi=1 is the number χµ

such that

(1.23) χµ(F) := −
ˆ

log |f ′
i1
(Π(σi))|dµ(i) = − lim

n→∞

1

n
log |fj1...jn(X)| for µ-a.e. j ∈ Σ.

This follows by applying Birkhoff’s Ergodic Theorem to i 7→ log |f ′
i1
(Π(σi))|, together with

the Chain Rule and the Bounded Distortion Property (see [4, Section 14.2.3]).
Roughly speaking,

(1.24) µ([i|n]) ≈ e−n·hµ , for a µ-typical i ∈ Σ,

and

(1.25) |fi1...in(X)| ≈ e−nχµ for a µ-typical i ∈ Σ.

We want to study push-forward measures

ν := Π∗µ, i.e. ν(H) = µ(Π−1(H)) for Borel H ⊂ R.

Clearly, ν is supported on the attractor Λ; it often exhibits a complicated fractal structure.
Let us begin with the study of the Hausdorff dimension of ν.

Heuristics when (1.4) holds: Assume first that Xk ∩Xℓ = ∅ for k ̸= ℓ. Then for a µ-
typical i ∈ Σ and large n, using (1.24), (1.25), and the fact that (1.4) implies ν(fi1...in(X)) =

µ([i1, . . . , in]), we have

dimH ν ≈ log ν(fi1...in(X))

log |fi1...in(X)| =
log µ([i1, . . . , in])

log |fi1...in(X)| ≈ log e−nhµ

log e−nχµ
=

hµ
χµ(F)

,

where dimH ν is defined in (A.1). Note that if (1.4) fails, then we only have ν(fi1...in(X)) ≥
µ([i1, . . . , in]), leading to a bound

(1.26) dimH ν ≤ hµ
χµ(F)

,

valid for arbitrary C1+δ-smooth systems.
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1.4. Gibbs measures. Let ϕ : Σ → R be a continuous function (for the metric introduced
in (1.19)). Such functions will be called potentials. We define

(1.27) varkϕ := sup {|ϕ(i)− ϕ(j)| : |i ∧ j| ≥ k} .
We say that ϕ is a Hölder continuous potential if there exist α ∈ (0, 1) and b > 0 such
that

(1.28) varkϕ ≤ bαk, for all k > 0.

The set of Hölder continuous potentials is denoted by H . For ϕ ∈ H , i ∈ Σ, and ωωω =

(ω1, . . . , ωn) we write

(1.29) Snϕ(i) :=
n−1∑
ℓ=0

ϕ(σℓi), Snϕ(ωωω) := sup {Snϕ(i) : i ∈ [ωωω]} .

Fix an arbitrary F ∈ Θ. The pressure of the potential ϕ ∈ H is defined by

(1.30) P (ϕ) := lim
n→∞

1

n
log

(∑
ωωω∈An

eSnϕ(ωωω)

)
.

An invariant measure µ is called an equilibrium state for ϕ if

(1.31) P (ϕ) = hµ +

ˆ
ϕdµ.

For a Hölder potential ϕ ∈ H the unique equilibrium state is the Gibbs measure (see [6,
Theorem 1.22] ), whose existence is guaranteed by the following theorem:

Theorem 1.4. Let ϕ ∈ H . Then there exists a unique µ ∈ Eσ(Σ), the Gibbs measure for
the potential ϕ, for which there exist constants c1, c2 > 0 such that for all n and i ∈ Σ we
have

(1.32) c1 ≤
µ([i|n])

exp(−nP (ϕ) + Snϕ(i))
≤ c2.

For the proof of this theorem see [6, Chapter 1]. Among all potentials the so-called geo-
metric potential will be the most important one for us. To define it first we introduce the
potential ϕs

F for all s ≥ 0:

(1.33) ϕs
F(i) := log |f ′

i1
(Π(σi))|s.

Observe that by the Chain Rule and the Bounded Distortion Property,

(1.34) exp (Snϕ
s
F(i)) = |f ′

i1...in
(Π(σni))|s ∼ |Xi1...in|s,

where an ∼ bn means that there exists a constant C ∈ (0,∞) such that C−1 ≤ an
bn

≤ C for
all n. This implies that

(1.35) P (ϕs
F) = PF(s),

where the pressure function PF(·) was defined in (1.13). Now we define the geometric
potential as ϕF := ϕsF

F , where sF was defined in (1.14) as the zero of PF , so that

(1.36) P (ϕF) = 0,

Let µF be the Gibbs measure for the geometric potential ϕF . Putting together (1.22),
(1.23), Theorem 1.4, (1.34), and (1.36), we obtain:

Corollary 1.5. For every F ∈ Θ(X) there exist constants c4, c5 > 0 such that for all ωωω ∈ A∗

we have

(1.37) sF =
hµF

χµF (F)
, and c4 <

µF([ωωω])

|Xωωω|sF
< c5.

Definition 1.6. The natural measure of the IFS F is defined by νF := Π∗(µF).
6



The upper bound (1.26) gives
dimH νF ≤ sF ,

with equality if (1.4) holds. Therefore, we have the following consequence of (1.37) (and
inequality dimH νF ≤ dimH ΛF), which explains the significance of natural measures:

(1.38) dimH νF = min

{
1,

hµF

χµF (F)

}
=⇒ dimH ΛF = min {1, sF} .

In order words, if there is no dimension drop for the natural measure, then there is no
dimension drop for the attractor.

1.5. The self-similar case. In this subsection we always assume that the IFS F is self-
similar, that is,

(1.39) F = {fi(x) = rix+ di}mi=1 , ri ∈ (−1, 1) \ {0} , di ∈ R.

In this case ϕs
F(i) = log |ri1 |s for any i ∈ Σ. So, PF(ϕ

s
F) = log(|r1|s + · · · + |rm|s). Thus, by

(1.12) we get that sF is the solution of the so-called self-similarity equation:

(1.40) |r1|sF︸ ︷︷ ︸
p1

+ · · ·+ |rm|sF︸ ︷︷ ︸
pm

= 1.

In this case the conformal similarity dimension sF is simply called the similarity dimension.
If we define the probability vector p = (p1, . . . , pm) by pi := |ri|sF , then µF := (p1, . . . , pm)

N

is the Gibbs measure for the geometric potential ϕsF
F on Σ = {1, . . . ,m}N. That is, for

ωωω = (ω1, . . . , ωn) ∈ Σn the µF -measure of the cylinder [ωωω] := {i ∈ Σ : i1 = ω1, . . . in = ωn} is
µF([ωωω]) = pω1 · · · pωn . Then the natural measure for F is νF = Π∗µF . In this case

(1.41) hµF = −
m∑
k=1

pi log pi = −sF
m∑
k=1

|ri|sF log |ri|, χµF = −
m∑
k=1

|ri|sF log |ri|.

Hence,

(1.42) sF =
hµF

χµF
.

Self-similar measures are the measures on R, which can be represented in the form νF ,p =

(ΠF)∗µp for a measure µp = pN, where p = (p1, . . . , pm) is a probability vector (pi > 0, and∑m
k=1 pi = 1). The similarity dimension of a self-similar measure ν is dimSim νF ,p :=

hµp

χµp
.

1.5.1. The Exact Overlap Conjecture in the self-similar case. The Exact Overlap Conjecture
is open even in the self-similar case. However, some breakthrough results have been obtained
in the last decade, among which we mention two here. Suppose we are given a self-similar
IFS of the form (1.39). Let ∆n(F) be the minimum of ∆(ωωω,τττ) for distinct ωωω,τττ ∈ Σn, where

∆(ωωω,τττ) =

{ ∞ if f ′
ωωω(0) ̸= f ′

τττ (0)

|fωωω(0)− fτττ (0)| if f ′
ωωω(0) = f ′

τττ (0).

We say that the self-similar IFS S satisfies the Exponential Separation Condition (ESC)
if there exist ε > 0 and a sequence nk ↑ ∞ such that

(1.43) ∆nk
> εnk .

Hochman [10] proved that the ESC holds for “most” self-similar IFS’s. More precisely, a
self-similar IFS of the form (1.39) is determined by 2m parameters (r1, . . . , rm, d1, . . . , dm).
The set of those parameters for which the ESC does not hold form a subset of R2m of packing
dimension at most 2m−1 (in particular: of Lebesgue measure zero). Moreover, M. Hochman
[10] proved the following breakthrough result:
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Theorem 1.7 (Hochman). Assume that the self-similar IFS F satisfies the ESC. Let p be
a probability vector. Then

(1.44) dimH νF ,p = min {1, dimSim νF ,p} .
Using this and (1.38) we obtain that the set of parameters of those self-similar IFS’s of the

form (1.39) for which dimH ΛF ̸= min {1, sF} has packing dimension at most 2m− 1.
A recent result of Rapaport [16] says that the Exact Overlap Conjecture holds when the

contractions ratios r1, . . . , rm are algebraic numbers.

1.6. Linear fractional IFS’s. Fix an m ≥ 2 and a compact parameter interval I ⊂ R.

For every parameter t ∈ I and for every i ∈ A := {1, . . . ,m} we are given At
i =

[
ati bti
cti dti

]
∈

GL2(R). For every i ∈ A the associated linear fractional mapping is f t
i : R∪{∞} → R∪{∞},

f t
i (x) =

atix+bti
ctix+dti

. We say that (F t)t∈I = ({f t
i }mi=1)t∈I is a family of linear fractional IFS if

there exists an open bounded interval V ⊂ R and a γ ∈ (0, 1) such that f t
i (V ) ⊂ V and

|(f t
i )

′(x)| < γ for every i ∈ A and t ∈ I. Moreover we require that for every i ∈ A the
function ϕi : V × I → V , ϕi(x, t) := f t

i (x) is real analytic.

Definition 1.8 (Non-degenerate family of linear fractional IFS’s ). Let (F t)t∈I = ({f t
i }mi=1)t∈I

be a family of linear fractional IFS, let Λt be the attractor for every t ∈ I and let Σ := AN

be the symbolic space. We define the natural projection Πt : Σ → Λt in the usual way
Πt

i(i) := lim
n→∞

f t
i1...in

(x0), where x0 ∈ V is arbitrary. We say that the family (F t)t∈I is a
non-degenerate family of linear fractional IFS’s if

(1.45) i, j ∈ Σ, i ̸= j, =⇒ ∃t0 ∈ I, Πt0(i) ̸= Πt0(j).

Theorem 1.9 (Solomyak, Takahashi [19] ). Let (F t)t∈I be a non-degenerate family of linear
fractional IFS’s and let Λt be the attractor of F t. For every t let st be the root of the pressure
function for the IFS F t. Then for all but a set of zero Hausdorff dimension of t ∈ I we have

(1.46) dimH Λt = min {1, st} .
The proof is based on the adaptation of Hochman’s method to the linear fractional IFS,

see [11].

1.7. Families of Cr-smooth hyperbolic IFS’s. Unfortunately, apart from the linear frac-
tional case, results similar to Hochman’s theorem do not exist for general Cr-smooth hyper-
bolic IFS’s. We need to confine our attention to some families of Cr-smooth hyperbolic IFS’s
which satisfy the so-called transversality condition. We will have assertions which claim that
for a Lebesgue typical parameter the conformal similarity dimension gives the dimension
of the attractor. More importantly, for all parameters λ we consider a measure µλ on Σ

and their push-forward measures νλ := (Πλ)∗µλ. We study the absolute continuity and the
dimension of these measures νλ for Lebesgue typical parameter λ.

Definition 1.10. We say that
{
Fλ =

{
fλ
i

}m
i=1

}
λ∈U is a continuous family of Cr-smooth

hyperbolic IFS’s on the compact interval X if the parameter domain U is the closure
of the open set U ⊂ Rd, there exist 0 < γ1 < γ2 < 1 such that Fλ ∈ Θγ1,γ2 for all λ ∈ U ,
there exists a bounded open interval V ⊃ X such that for all i ∈ A and λ ∈ U we have
that fλ

i : V → V is a Cr diffeomorphism satisfying fλ
i (X) ⊂ X and moreover, λ 7→ Fλ is

continuous in the Cr-topology (i.e. in the metric ϱr as defined in (1.7)).

Example 1.11. Let F = {f1, . . . , fm} be a Cr-smooth hyperbolic IFS on the compact interval
X. Using the notation of Definition 1.1 we assume that

(1.47) |f ′
i(x)| <

1

2
, holds for all i ∈ A, x ∈ V.

8



Let ε > 0 be a sufficiently small number. Set U := (−ε, ε)m and for a λ = (λ1, . . . , λm) ∈ U

let
Fλ =

{
fλ
1 (x), . . . , f

λ
m(x)

}
:= {f1(x) + λ1, . . . , fm(x) + λm} .

We say that Fλ is a vertical translate of F . It is clearly a continuous family of Cr-
smooth hyperbolic IFS’s. ■

1.7.1. Principal Assumptions I. In the main part of this survey (relating to the problem of
absolute continuity) we will assume:

(MA1) For every j ∈ A and λ ∈ U the second derivative (in x) of the map fλ
j exists and is

uniformly Hölder continuous in both x and λ.
(MA2) The maps λ 7→ fλ

j (x) are C1+δ-smooth on U (uniformly w.r.t. x).
(MA3) For every i, j the second partial derivatives d2

dxdλi
fλ
j (x),

d2

dλidx
fλ
j (x) are δ-Hölder (uni-

formly, both in λi and x).
(MA4) The system {fλ

j }j∈A is uniformly hyperbolic and contractive: there exist γ1, γ2 > 0

such that

0 < γ1 ≤ |( d
dx
fλ
j )(x)| ≤ γ2 < 1, ∀x ∈ X, j ∈ A, λ ∈ U.

Note that some of the results (relating to the dimension) will hold under weaker regularity
assumptions - see Sections 3 and 4.

Remark 1.12. Clearly, all the principal assumptions (MA1)-(MA4) hold if we simply assume
(MA4) and

(MA123) for every j ∈ A, all of the third partial derivatives with respect to the d+1 variables
of the map (λ, x) → fλ

j (x) exist and are continuous.

For the precise formulation of the assumptions (MA1)-(MA3) see Appendix B. In the
special case when we have only one parameter (that is, d = 1) the precise formulation can
be found in [1, Section 2].

For ωωω = (ω1, . . . ωn) ∈ A∗, i = (i1, i2, . . . ) ∈ Σ = AN and λ ∈ U we write

fλ
ωωω := fλ

ω1
◦ · · · ◦ fλ

ωn
, and Πλ(i) := lim

n→∞
fλ
i1...in

(x0),

where x0 ∈ X is arbitrary.

1.7.2. Transversality Condition. We only consider families
{
Fλ
}
λ∈U which (like the one in

Example 1.11) satisfy the transversality condition:

(MT) ∃ η > 0 : ∀ i, j ∈ Σ, i1 ̸= j1,
∣∣Πλ(i)− Πλ(j)

∣∣ < η =⇒
∣∣∇(Πλ(i)− Πλ(j))

∣∣ ≥ η,

where ∇ stands here for the gradient with respect to the parameter variable λ in Rd. In the
case d = 1 this condition takes the form:

(T)
∃ η > 0 : ∀λ ∈ U, ∀ i, j ∈ Σ, i1 ̸= j1,

∣∣Πλ(i)− Πλ(j)
∣∣ < η =⇒

∣∣ d
dλ
(Πλ(i)− Πλ(j))

∣∣ ≥ η.

It is easy to check that the transversality condition (MT) is equivalent to any of the
following conditions (T2)-(T3):

(T2) ∃ η > 0 : ∀λ ∈ U, ∀ i, j ∈ Σ, i1 ̸= j1, Π
λ(i) = Πλ(j) =⇒

∣∣∇(Πλ(i)− Πλ(j))
∣∣ ≥ η,

and

(T3) ∃CT > 0 : ∀ r > 0, ∀ i, j ∈ Σ, i1 ̸= j1, Ld
{
λ ∈ U :

∣∣Πλ(i)− Πλ(j)
∣∣ < r

}
≤ CT · r.

9



λ

α
λ→ Πλ(i)

λ→ Π
λ (j)

J

λ0 λ

λ→ Π
λ (i)

λ
→
Π
λ (j

)

J

|Πλ(i) − Πλ(j)| < r

≤ C · r

r

r

Figure 1.1. Conditions (T) and (T3). In the figure on the left, corresponding
to (T), the angle α between the slopes is non-zero.

Transversality conditions (T) and (T3) (for d = 1) are visualized in Figure 1.7.1. The
following was proved in [3, Lemma 2.14].

Lemma 1.13. The family of vertical translates of a Cr-smooth hyperbolic IFS on the compact
interval from Example 1.11 is an important example where the Transversality Condition (MT)
holds.

We will also encounter transversality in another form, namely, the transversality of degree
(or order) β, introduced by Peres and Schlag [14], see Lemma 5.3 and Remark 5.4 below. In
that condition there is no assumption i1 ̸= j1, which sometimes provides more flexibility.

The significance of the transversality condition lies in the fact that it allows one to calculate
the Hausdorff dimension for a typical parameter λ, for general overlapping non-linear systems.
Below is a classical result in this direction, which considers projections of an arbitrary (but
fixed!) ergodic measure on the symbolic space. See e.g. [4, Chapter 14.4] for the proof.

Theorem 1.14. Let {Fλ}λ∈U be a smooth family of Cr-smooth hyperbolic IFS’s on the
compact interval with r > 1, satisfying the transversality condition (MT). Let µ be an ergodic
shift-invariant Borel probability measure on Σ and set νλ = (Πλ)∗µ. Then

(1) dimH νλ = min
{
1, hµ

χµ(Fλ)

}
for Ld-a.e. λ ∈ U ,

(2) νλ ≪ L1 for Ld-a.e. λ ∈ U such that hµ

χµ(Fλ)
> 1.

Moreover, for any Borel probability measure µ on Σ the following hold (below dλ is the metric
on Σ, corresponding to Fλ, defined in (1.19)):

(3) dimcor νλ = min {1, dimcor(µ, dλ)} for Ld-a.e. λ ∈ U ,
(3) νλ ≪ L1 with dνλ

dL1 ∈ L2(R) for Ld-a.e. λ ∈ U such that dimcor(µ, dλ) > 1.

Claim (3) of the above theorem can be seen as a result on the correlation dimension
preservation under (non-linear) projections Πλ. In fact, claim (1) can be seen in the same
way for the Hausdorff dimension, as hµ

χµ(Fλ)
= dimH(µ, dλ). See [18] for a recent survey on

transversality methods for IFS’s, which elaborates on the connections between Theorem 1.14
and Marstrand-Mattila projection theorems for orthogonal projections.

10



2. Parameter-dependent measures

Whilst powerful, Theorem 1.14 is not sufficient for all applications. This includes the
scenario in which one allows the measure on the symbolic space to depend on the same
parameter as the IFS, i.e. studying projections νλ := (Πλ)∗µλ. This requires a non-trivial
extension of Theorem 1.14, and this is the main subject of this note, following [1]. Let us now
elaborate on several situations to which this setting applies. We have already encountered
the first one.

2.1. Natural measures. Recall that a natural measure for an IFS F is νF := Π∗µF , where
µF is the Gibbs measure corresponding to the geometric potential ϕF (see Definition 1.6).
Consider now a parametrized family Fλ and a corresponding family of natural measures
νλ := νFλ , which in this case are projections of Gibbs measures µλ corresponding to the
potentials

ϕλ := ϕFλ = log |(fλ
i1
)′(Πλ(σi))|sFλ .

Clearly, ϕλ depends on λ and so does µλ (except for some very special cases, e.g. when every
Fλ is self-similar with r1 = . . . = rm). Therefore, Theorem 1.14 cannot be directly applied
in this setting (although it can be used to establish typical dimension and positive Lebesgue
measure result for the attractor Λλ of Fλ for almost every λ ∈ U if transversality holds, see
[4, Theorem 14.4.1] and its proof).

2.2. IFS’s with place dependent probabilities. Let F = (f1, . . . , fm) ∈ Θ and p =

(p1, . . . , pm) be a probability vector. Then there exists a unique measure νF ,p such that the
support spt(ν) of ν satisfies spt(ν) = Λ and

(2.1) νF ,p =
m∑
i=1

pi · νF ,p ◦ f−1
i

We call νF ,p the invariant measure corresponding to F and p. We can write (2.1) in an
equivalent form:

(2.2)
ˆ
φdνF ,p(x) =

m∑
i=1

ˆ
pi · φ(fi(x)) dνF ,p(x), ∀φ ∈ C(X),

where C(X) is the set of continuous functions on the compact non-degenerate interval X.
Place dependent invariant measures are obtained by replacing in (2.2) the constant pi by
positive functions pi(x) which add up to 1 everywhere. More precisely, for every i ∈ A let
pi : X → (0, 1) be a Hölder continuous function which is bounded away from zero, so that∑m

i=1 pi(x) ≡ 1. It was proved by Fan and Lau [8] that there exists a unique measure ν,
called the place dependent stationary measure, satisfying

(2.3)
ˆ
φdν(x) =

m∑
i=1

ˆ
pi(x) · φ(fi(x)) dν(x), for every φ ∈ C(X).

Or equivalently,

(2.4) ν(B) =
m∑
i=1

ˆ

f−1
i (B)

pi(x)dν(x), for every Borel set B.

Bárány [2] proved that the measure ν is actually a push-forward measure of a Gibbs measure.
Namely, let φ(i) := log pi1(Π(σi)), where Π : Σ → Λ is the natural projection. Then
φ : Σ → R is a Hölder continuous potential. So, by Theorem 1.4 there exists a unique
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Gibbs measure µ on Σ for the potential φ. It was proved in [2, Lemma 2.2] that there exist
constants a, b > 0 such that for all i ∈ Σ,

(2.5) a <
µ ([i|n])

n∏
k=1

pik(Π(σ
m+1i))

< b and ν = Π∗µ.

The equation defining the place dependent invariant measure ν can be described by the
Ruelle operator TF : C(X) → C(X) defined by

(2.6) (TFg)(x) :=
m∑
i=1

pi(x)g(fi(x)).

Then ν is the fixed point of the adjoint operator T ∗
F : C(X)∗ → C(X)∗, that is,

(2.7) T ∗
Fν = ν.

In this case, the entropy and the Lyapunov exponent are

(2.8) hν = −
ˆ m∑

i=1

pi(x) log pi(x) dν(x) and χν = −
ˆ m∑

i=1

pi(x) log |f ′
i(x)| dν(x).

We will study overlapping cases in which the transversality condition holds, like the fol-
lowing ones.

2.2.1. Application: Place dependent Bernoulli convolutions. Consider an IFS on the compact
interval X = [−1, 1]:

(2.9) Ψλ =
{
ψλ
0 (x) = λx− (1− λ), ψλ

1 (x) = λx+ (1− λ)
}

with place dependent probabilities:{
p0(x) =

1

2
+ ρx, p1(x) =

1

2
− ρx

}
, x ∈ X.

The Ruelle operator T acts on a continuous function g ∈ C(X) as follows:

Tg(x) =
(1
2
+ ρx

)
g
(
λx− (1− λ)

)
+
(1
2
− ρx

)
g
(
λx+ (1− λ)

)
.

The fixed point νλ,ρ of the Dual operator T ∗ is a place dependent Bernoulli convolution
measure. Using (2.8) we obtain that the Lyapunov exponent and the entropy of this measure
are

(2.10) χνλ,ρ = − log λ and hνλ,ρ = −
∑

ε∈{−1,1}

ˆ
R

(
1
2
+ ερx

)
log
(
1
2
+ ερx

)
dνλ,ρ(x).

If 0 < λ < 0.5, then the attractor of the IFS is a Cantor set of dimension less than one. So,
we may assume that 0.5 < λ < 1. Shmerkin and Solomyak [17] proved that for the parameter
interval

U := (0.5, 0.6684755)

the transversality condition holds. Using this, Bárány proved [2, Theorem 4.1]

Theorem 2.1. Let A := log 2− 2ρ2(1−λ)2

1+λ(4ρ(1−λ)−λ)
and B := ρ2

3(1−4ρ2)
. Then

A−B

− log λ
≤ dimH νλ,ρ ≤

A

− log λ
, for Lebesgue almost all λ ∈ U.

Moreover, νλ,ρ is absolute continuous with respect to the Lebesgue measure for Lebesgue almost
every λ ∈ U satisfying A−B

− log λ
> 1.
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Using this theorem, based on the work of Bárány [2], it was obtained in [1] that νλ,ρ is
absolutely continuous almost everywhere in the region marked “abs. cont.” in Figure 2.1. In
the region marked as “singular” the measure is singular everywhere; this was shown in [2]
and follows from the fact the Hausdorff dimension of the measure is less than one.

Figure 2.1. The absolute continuity and singularity regions of the measure νλ,ρ.

2.2.2. Application: Slanted baker map. Let 0 < ρ < 1
2

and 1/2 < λ < 1 and let us consider
the following dynamical system fλ,ρ : [−1, 1]× [0, 1] 7→ [−1, 1]× [0, 1], where

fλ,ρ(x, y) =


(
λx− (1− λ), 2y

1+2ρx

)
if 0 ≤ y < 1

2
+ ρx(

λx+ (1− λ), 2y−2ρx−1
1−2ρx

)
if 1

2
+ ρx ≤ y ≤ 1.

For the action of fλ,ρ on the rectangle [−1, 1]× [0, 1] see Figure 2.2.

Figure 2.2. The map f acting on the rectangle [−1, 1]× [0, 1].

It follows from [15] that there exists an fλ,ρ-invariant measure mλ,ρ called Sinai-Bowen-
Ruelle (SBR) measure satisfying

1

n

n−1∑
k=0

L ◦ f−k
λ,ρ → mλ,ρ weakly,

where L is the normalized Lebesgue measure on the rectangle [−1, 1] × [0, 1]. Thus mλ,ρ is
absolutely continuous if and only if νλ,ρ is absolutely continuous.
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2.2.3. Furstenberg-like measures. Another possible application is the family of Furstenberg
measures, or more generally, equilibrium measures induced by locally finite matrix cocycles.
Similar measures were considered by Bárány and Rams [5] to study the dimension of planar
self-affine sets, and in particular, to provide a dimension maximizing measure. Here we
consider a simple special case to demonstrate another direction of possible applications of
our results.

Let A = (A1, . . . , Am) be a tuple ofGL2(R) matrices with strictly positive entries. Similarly
to Subsection 1.6, let us define a family of linear fractional maps induced by the matrices Ai.
That is, let fi : [0, 1] → [0, 1] be

fi(x) =
aix+ bi(1− x)

(ai + ci)x+ (bi + di)(1− x)
for Ai =

(
ai bi
ci di

)
.

The maps fi are different from the maps defined in Subsection 1.6, but they have similar
properties. We chose a different representation here, because it fits better with the case of
matrices having positive entries, since such matrices preserve the positive quadrant.

It is easy to see that ∥f ′
i∥ = | det(Ai)|

⟨Ai⟩2 , where ⟨Ai⟩ = min{ai + ci, bi + di}. Let XA be the
attractor and let ΠA : Σ → [0, 1] be the natural projection of the IFS ΦA = {fi}i∈A as above.

Let v(x) =
(

x

1− x

)
. Then Aiv(x)

∥Aiv(x)∥1 = v(fi(x)), where ∥ · ∥1 is the 1-norm on R2. For every

q ∈ R, the following limit exists:

PA(q) = lim
n→∞

1

n
log

∑
ωωω∈An

∥Aωωω∥q.

Furthermore, there exists a unique ergodic shift invariant probability measure µq such that
for some C > 0 and every ωωω ∈ A∗,

C−1 ≤ µA,q([ωωω])

e−|ωωω|PA(q)∥Aωωω∥q
≤ C,

see Feng [9]. In particular, µA,q is the Gibbs measure, defined in Subsection 1.4, with respect
to the potential i 7→ q log ∥Ai1v(ΠA(σi))∥1.

By Oseledets’ multiplicative ergodic theorem, there exist reals η2 < η1, such that

ηi(A) = lim
n→∞

1

n
logαi(Ai|n) for µA,q-almost every i ∈ Σ,

which we call the Lyapunov exponents of the matrix cocycle A. Here αi(A) denotes the ith
singular value of A. Using (1.31), we get

hµA,q
= PA(q)− qη1(A) and χA = η1(A)− η2(A),

where χA denotes the Lyapunov exponent of the IFS ΦA.

Theorem 2.2. Let U =
{
A = (A1, . . . , Am) ∈ GL2(R+)

m : | det(Ai)| < 1
2
⟨Ai⟩2

}
. Then for

every q ∈ R the measures νA,q = (ΠA)∗µA,q satisfy

(1) dimH νA,q = min
{

PA(q)−qη1(A)
η1(A)−η2(A)

, 1
}

for Lebesgue-a.e. A ∈ U ,
(2) νA,q ≪ L1 for Lebesgue-a.e. A ∈ U , such that PA(q) > (q + 1)η1(A)− η2(A).

Proof. The strategy of the proof is to decompose U into measurable subsets on which the
IFS ΦA satisfies the transversality condition under some natural parametrization, and then
to apply Theorem 3.1.

Let us define an equivalence relation on GL2(R+) as(
a b

c d

)
∼
(
a′ b′

c′ d′

)
if there exists t ∈ R such that

(
a+ t(a+ c) b+ t(b+ d)

c− t(a+ c) d− t(b+ d)

)
=

(
a′ b′

c′ d′

)
.
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Simple algebraic manipulations show that if A ∼ A′ then det(A) = det(A′) and ⟨A⟩ = ⟨A′⟩.
Hence, the relation can be naturally extended to U by (A1, . . . , Am) ∼ (A′

1, . . . , A
′
m) if Ai ∼ A′

i

for every i = 1, . . . ,m. Moreover, if A ∼ A′ then if ΦA = {fi(x)}i∈A then there exists
(t1, . . . , tm) ∈ Rm such that ΦA′ = {fi(x) + ti}i∈A. Hence, by Theorem 3.1, in view of the
claim in Example 1.11, for every fixed A ∈ U and for almost every A′ ∼ A, (1) and (2) hold.
The claim of the theorem then follows by Fubini’s theorem. □

3. Main results: projections of parameter-dependent measures

In this section we state extensions of Theorem 1.14 to the case of projections of parameter-
dependent measures νλ = (Πλ)∗µλ, which cover cases considered in the previous section. The
next result is an extension of [1, Theorems 3.1 and 3.3] to the multiparameter case.

Theorem 3.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions (MA1)

- (MA4) and the transversality condition (MT) on U . Let {µλ}λ∈U be a family of Gibbs
measures on Σ corresponding to a family of uniformly Hölder potentials ϕλ : Σ 7→ R (i.e.
there exists 0 < α < 1 and b > 0 with supλ∈U vark(ϕ

λ) ≤ bαk), such that λ 7→ ϕλ is Hölder
continuous in the supremum norm. Then the measures νλ = (Πλ)∗µλ satisfy

(1) dimH νλ = min
{

hµλ

χµλ
(Fλ)

, 1
}

for Ld-a.e. λ ∈ U ,

(2) νλ ≪ L1 for Ld-a.e. λ ∈ U such that hµλ

χµλ
(Fλ)

> 1.

Recall that instead of conditions (MA1) - (MA4), it suffices to assume (MA123) and (MA4),
see Remark 1.12.

Actually, the above theorem is a consequence of results valid for general measures (not
necessarily Gibbs), satisfying certain regularity properties of the dependence λ 7→ µλ. Let us
introduce now those conditions and state more general versions of the theorem.

Definition 3.2. Let {µλ}λ∈U be a collection of finite Borel measures on Σ. We define the
following continuity conditions for µλ:

(M0) for every λ0 and every ε > 0 there exist C, ξ > 0 such that

C−1e−ε|ω|µλ0([ω]) ≤ µλ([ω]) ≤ Ceε|ω|µλ0([ω])

holds for every ω ∈ Σ∗, |ω| ≥ 1 and λ ∈ U with |λ− λ0| < ξ;

(M) there exists c > 0 and θ ∈ (0, 1] such that for all ω ∈ Σ∗, |ω| ≥ 1, and all λ, λ′ ∈ U ,

e−c|λ−λ′|θ|ω|µλ′([ω]) ≤ µλ([ω]) ≤ ec|λ−λ′|θ|ω|µλ′([ω]).

Note that (M) implies (M0). The following is the dimension part of the result. It is a
multiparameter version of [1, Theorem 3.1]. Recall that dλ is the metric on Σ, corresponding
to Fλ, defined in (1.19).

Theorem 3.3. Let {fλ
j }j∈A be a continuous family of C1+δ-smooth hyperbolic IFS’s on the

compact interval X, satisfying (MA4) and the transversality condition (MT) on U . Let
{µλ}λ∈U be a collection of finite ergodic shift-invariant Borel measures on Σ satisfying (M0).
Then

(1) dimH(νλ) = min
{
1,

hµλ

χµλ
(Fλ)

}
for Ld-a.e. λ ∈ U .

Moreover, the following holds for any family of finite Borel measures on Σ satisfying (M0):
(2) dimcor(νλ) = min {1, dimcor(µλ, dλ)} for Ld-a.e. λ ∈ U .

Note that we assume weaker regularity assumptions on the IFS than in [1, Theorem 3.1]
(C1+δ instead of C2+δ). Moreover, we do not assume continuity of λ 7→ hµλ

and λ 7→ χµ(Fλ).
The most general version of the absolute continuity result is as follows. See Section A.2 for

the definitions of correlation and Sobolev dimensions, denoted dimcor and dimS respectively.
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Theorem 3.4. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions (MA1)

- (MA4) and the transversality condition (MT) on U . Let {µλ}λ∈U be a collection of finite
Borel measures on Σ satisfying (M). Then

(3.1) dimS(νλ) ≥ min {dimcor(µλ, dλ), 1 + min{δ, θ}}
for Lebesgue almost every λ ∈ U , where dλ is the metric on Σ defined in (1.19) corresponding
to Fλ and δ, θ are from assumptions (MA1) - (MA4) and (M) respectively.

Corollary 3.5. Let {fλ
j }j∈A be a parametrized IFS and let {µλ}λ∈U be a collection of finite

Borel measures on Σ satisfying the assumptions of Theorem 3.4. Then (Πλ)∗νλ is abso-
lutely continuous with a density in L2 for Lebesgue almost every λ in the set {λ ∈ U :

dimcor(µλ, dλ) > 1}.

The corollary follows by Theorem 3.4 and the properties of the Sobolev dimension, see
Lemma A.2.

4. Dimension - on the proof of Theorem 3.3

In this section we present the proof of Theorem 3.3. We shall not give all the details (these
can be found in [1]), but discuss the main ideas. In addition, as Theorem 3.3 is formally
stronger than the corresponding result in [1], we shall give a precise description of (minor)
changes which one has to make in the proof of [1, Theorem 3.1] in order to obtain a full proof
of Theorem 3.3. Let us begin with a discussion of the main ideas.

Proofs of transversality-based results for dimension, like Theorem 1.14 or Theorem 3.3,
usually consist of combining two main ingredients - one proves the version of the result for
the correlation dimension (this is where transversality is used), and then extends it to the
Hausdorff dimension by restricting measure on the symbolic space to suitable Egorov sets for
convergences in (1.22) and (1.23). Putting technicalities aside, the main observation behind
the proof of Theorem 3.3 is noting that the correlation dimension behaves continuously with
respect to µλ whenever condition (M0) holds. The following exposition does not lead to a
rigorous proof of Theorem 3.3, but presents this main idea.

Proposition 4.1. Under assumptions of item (2) of Theorem 3.3, the following families of
maps are equicontinuous:

(1)
{
U ∋ λ 7→ dimcor(µλ, dF) : F ∈ {Fλ}λ∈U

}
,

(2) U ∋ λ 7→ dimcor(µλ, dλ) (as a family consisting of a single map),
(3)

{
U ∋ λ 7→ dimcor((Π

F)∗µλ) : F ∈ {Fλ}λ∈U
}
.

Remark 4.2. Note that dimcor((Π
F)∗µλ) is not jointly continuous in (λ,F). Actually, it is

not true that for a fixed ergodic measure, the map λ 7→ dimcor((Π
Fλ

)∗µ) is continuous in the
overlapping case (see e.g. [4, Section 1.6.1] and further discussions). The crucial point of
item (3) of Proposition 4.1 is that dimcor((Π

F)∗µλ) is continuous when one fixes IFS F and
varies measure µλ in the symbolic space. On the other hand, this issue does not appear if
we consider measures in the symbolic space, hence in item (1) we actually do have a joint
continuity of (λ,F) 7→ dimcor(µλ, dF) (with F considered with the C1+δ topology), implying
also continuity in item (2).

Proof of Proposition 4.1. We only consider the family from item (3) — the proof for (1) and
(2) is very similar. It is enough to prove the following: for every λ0 and ε > 0 there exists a
neighbourhood V of λ0 and a constants C1, C2 > 0 such that for every F ∈ {Fλ}λ∈U , setting
Π = ΠF we have

(4.1) C−1
1 Eα−ε(Π∗µλ0)− C2 ≤ Eα(Π∗µλ) ≤ C1Eα+ε(Π∗µλ0) + C2
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for λ ∈ V and α ∈ (0, 1). For simplicity we assume diam(X) ≤ 1. First, note that for any
ω, τ ∈ Σ the following holds:

(4.2) C−1
α

∞∑
n=0

eαn1{|Π(ω)−Π(τ)|≤e−n} ≤ |Π(ω)− Π(τ)|−α ≤
∞∑
n=0

eα(n+1)1{|Π(ω)−Π(τ)|≤e−n}

for a constant Cα > 0. Indeed, if Πλ(ω) = Πλ(τ), then both the left- and right-hand sides are
divergent. Otherwise, there exists n ≥ 0 such that e−(n+1) < |Π(ω)− Π(τ)| ≤ e−n and the
upper bound in (4.2) follows immediately. The lower bound follows by noting additionally

that there exists a constant Cα such that
n∑

j=0

ejα ≤ Cαe
αn holds for all n. As by (MA4), the

family {Fλ}λ∈U consists of uniformly contracting systems, there exists q ∈ N such that

(4.3) |Π(ω)− Π(τ)| ≤ e−n/2 if ω|qn = τ |qn.
Let V be a neighbourhood of λ0 such that inequalities

(4.4) C−1e−ε|ω|µλ0([ω]) ≤ µλ([ω]) ≤ Ceε|ω|µλ0([ω])

hold for ω ∈ Σ∗ and λ ∈ V (it exists by (M0)). Then by (4.2) and (4.3) (below 1∞ denotes
an infinite word constantly equal to 1 ∈ A):

Eα(Π∗µλ) =

ˆ

Σ

ˆ

Σ

|Π(ω)− Π(τ)|−αdµλ(ω)dµλ(τ) ≤ eα
∞∑
n=0

eαnµλ ⊗ µλ({|Π(ω)− Π(τ)| ≤ e−n})

≤ eα
∞∑
n=0

eαnµλ ⊗ µλ({|Π(ω|qn1∞)− Π(τ |qn1∞)| ≤ 2e−n})

≤ Ceα
∞∑
n=0

e(α+2qε)nµλ0 ⊗ µλ0({|Π(ω|qn1∞)− Π(τ |qn1∞)| ≤ 2e−n})

≤ Ceα
∞∑
n=0

e(α+2qε)nµλ0 ⊗ µλ0({|Π(ω)− Π(τ)| ≤ 3e−n})

≤ Ceα+2(α+2qε)

∞∑
n=0

e(α+2qε)nµλ0 ⊗ µλ0({|Π(ω)− Π(τ)| ≤ e−n}) + Ceα(1 + eα+2qε)

≤ C1Eα+2qε(Π∗µλ0) + C2,

where in the 3rd line we have applied (4.4) to the set {|Π(ω|qn1∞) − Π(τ |qn1∞)| ≤ 2e−n}
(which is a union of products of cylinder sets of length qn), while the 5th line uses 3e−n ≤
e−(n−2). This proves the upper bound in (4.1). The lower bound follows in the same manner
(as we have a matching lower bound in (4.4)). □

With the aid of Proposition 4.1 it is easy to deduce item (2) of Theorem 3.3 directly from
item (3) of Theorem 1.14:

Proof of item (2) of Theorem 3.3. Fix ε > 0 and consider a countable cover {Vi}i∈N of U by
open sets such that if λ, λ0 ∈ Vi, then

|dimcor(µλ, dF)− dimcor(µλ0 , dF)| < ε for every F ∈
{
Fλ : λ ∈ U

}
and

|dimcor(Π∗µλ)− dimcor(Π∗µλ0)| < ε for every Π ∈
{
ΠFλ

: λ ∈ U
}
.

Fix λ0 ∈ Vi. The above inequalities give for every λ ∈ Vi:

(4.5)

∣∣ dimcor((Π
λ)∗µλ)−min{1, dimcor(µλ, dλ)}

∣∣ ≤∣∣ dimcor((Π
λ)∗µλ0)−min{1, dimcor(µλ0 , dλ)}

∣∣+ 2ε.
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By the item (3) of Theorem 1.14 applied to the measure µ = µλ0 we have

dimcor((Π
λ)∗µλ0) = min{1, dimcor(µλ0 , dλ)} for Ld-a.e. λ ∈ Vi,

hence by (4.5) and as {Vi}i∈N is a countable cover of U ,∣∣ dimcor((Π
λ)∗µλ)−min{1, dimcor(µλ, dλ)}

∣∣ ≤ 2ε for Ld-a.e. λ ∈ U.

As ε > 0 is arbitrary, taking a countable intersection over ε↘ 0 finishes the proof. □

Let us now discuss how one obtains the Hausdorff dimension part of Theorem 3.3. The first
main ingredient is the inequality dimH(µ) ≥ dimcor(µ), which holds for arbitrary measures.
Unfortunately, in general we have hµλ

χµλ
(Fλ)

≥ dimcor(µ, dλ) for shift-invariant measures, and
the inequality is often strict, so it is not enough to invoke item (2) of Theorem 3.3. In the
case of Theorem 1.14, with a fixed measure µ in the symbolic space, one restricts µ to the
set

A =
{
ω ∈ Σ : C−1e−n(h(µ)+ε) ≤ µ([ω|n]) ≤ Ce−n(h(µ)−ε) and

C−1e−n(χµ(Fλ0 )+ε) ≤ |fλ0

ω|n(X)| ≤ Ce−nχµ(Fλ0−ε)
}

(note that by the Egorov theorem, for every ε > 0 we have that µ(A) → 1 as C → ∞).
A simple calculation shows that dimcor(µ|A, dλ) ≥ h(µ)−ε

χµ(Fλ0 )+ε
and one can apply the already

established item (3) of Theorem 1.14 to µ|A, obtaining the Hausdorff dimension part of the
result by letting ε→ 0 (and using continuity of λ 7→ χµ(Fλ)). The same strategy essentially
works for Theorem 3.3 with parameter dependent measures µλ. The difficulty is that now we
have to consider parameter-dependent Egorov sets Aλ and study the measures µλ|Aλ

. In order
to apply item (2) of Theorem 3.3 directly, we would have to choose Aλ in a fashion which
guarantees that the family λ 7→ µλ|Aλ

satisfies condition (M0). A convenient alternative
solution is to fix a small neighbourhood V of parameters and consider a common Egorov
set A for all λ ∈ V . Then one can combine the standard transversality argument with an
adaptation of the method from the proof of Proposition 4.1 for the family µλ|A. This leads
to the following proposition, which is an adaptation of [1, Proposition 5.1] to our case.

Proposition 4.3. Under the assumptions of item (1) of Theorem 3.3, there exists a number
L>0 (depending only on the family {Fλ : λ ∈ U}) with the following property. Fix ε > 0.
For every λ0 ∈ U there exists an open neighbourhood U ′ of λ0 such that

(4.6) dimH(νλ) ≥ min

{
1,

hµλ0

χµλ0
(Fλ0 )

}
− Lε

holds for Ld-a.e. λ ∈
{
λ ∈ U ′ : |hµλ

− hµλ0
| < ε and |χµλ

(Fλ)− χµλ0
(Fλ0)| < ε

}
.

We will not give a full proof of this proposition. Instead, we will present first a sketch
explaining the main idea and then give a discussion of the precise changes one has to make
in the proof of [1, Proposition 5.1] in order to obtain a rigorous proof of Proposition 4.3.

For the sketch of the method, fix λ0 ∈ U and a small ε > 0. For D > 0 consider the set

AD :=

{
ω ∈ Σ : ∀

n≥1
D−1e

−n(hµλ0
+2ε) ≤ µλ0([ω|n]) ≤ De

−n(hµλ0
−2ε) and

D−1e
−n(χµλ0

(Fλ0 )+2ε) ≤
∣∣∣∣(fλ0

ω|n

)′
(Πλ0(σnω))

∣∣∣∣ ≤ De
−n(χµλ0

(Fλ0 )−2ε)

}
.

By the Egorov theorem applied to the convergences in (1.22) and (1.23) for the measure µλ0 ,
we have lim

D→∞
µλ0(AD) = 1. Let U ′ be a neighbourhood of λ0 such that for λ ∈ U ′ one has

(by (M0)):

(4.7) C−1e−ε|ω|µλ0([ω]) ≤ µλ([ω]) ≤ Ceε|ω|µλ0([ω]),
18



and (by the Bounded Distortion Property) for every λ ∈ U ′ and ω ∈ Σ, x, y ∈ X,n ≥ 1,

(4.8) C−1e−εn
∣∣∣(fλ

ω|n

)′
(y)
∣∣∣ ≤ ∣∣∣∣(fλ0

ω|n

)′
(x)

∣∣∣∣ ≤ Ceεn
∣∣∣(fλ

ω|n

)′
(y)
∣∣∣

for some constant C (depending on U ′). Applying Egorov theorem once more to (1.22) and
(1.23) for µλ and combining it with the above inequalities, we see that for every λ ∈ U ′ such
that |hµλ

− hµλ0
| < ε and |χµλ

(Fλ) − hµλ0
(Fλ0)| < ε, we have µλ(AD) > 0 provided that

D is large enough (depending on λ). As in order to obtain the statement of Proposition
4.3 we are allowed to take countable intersections over λ, in what follows we can fix a large
D > 0 and consider only λ ∈ U ′

D := {λ ∈ U ′ : µλ(AD) > 0}. Set µ̃λ := µλ|AD
and

An = {u ∈ An : [u]∩AD ̸= ∅}. As dimH(Π
λ)∗µλ ≥ dimH(Π

λ)∗µ̃λ ≥ dimcor(Π
λ)∗µ̃λ, it suffices

to prove that
(4.9)

I =

ˆ

U ′
D

ˆ

Σ

ˆ

Σ

|Πλ(ω)− Πλ(τ)|−αdµ̃λ(ω)dµ̃λ(τ)dλ <∞ for α > min

{
1,

hµλ0

χµλ0
(Fλ0 )

}
− Lε.

Fix s > 0. Splitting the double integral over Σ × Σ into cylinders corresponding to longest
common prefixes and applying the definition of AD together with (4.8) one obtains

I =

ˆ

U ′
D

∞∑
n=0

∑
u∈An

∑
a,b∈A
a̸=b

¨

[ua]×[ub]

∣∣fλ
u

(
Πλ(σnω)

)
− fλ

u

(
Πλ(σnτ)

)∣∣−α
dµ̃λ(ω) dµ̃λ(τ) dλ

≤ CαDα

ˆ

Uε′

∞∑
n=0

e
nα(χµλ0

(Fλ0 )+3ε)
∑
u∈An

∑
a,b∈A
a̸=b

¨

[ua]×[ub]

∣∣Πλ(σnω)− Πλ(σnτ)
∣∣−α

dµ̃λ(ω) dµ̃λ(τ) dλ.

Using (4.2) and applying the same argument as in the proof of Proposition 4.1, we obtain
from (4.7) (recall that q ∈ N is chosen so that (4.3) holds) for u ∈ An:
¨

[ua]×[ub]

∣∣Πλ(σnω)− Πλ(σnτ)
∣∣−α

dµ̃λ(ω) dµ̃λ(τ)

≤
∞∑
j=0

eαj
¨

[ua]×[ub]

1{|Π(σnω)−Π(σnτ)|≤e−j} dµ̃λ(ω) dµ̃λ(τ)

≤
∞∑
j=0

eαjµ̃λ ⊗ µ̃λ

(
[ua]× [ub] ∩

{
|Π((σnω)|qj1∞)− Π((σnτ)|qj1∞)| ≤ 2e−j

})
≤ C

∞∑
j=0

e(α+2εq)j+εnµλ0 ⊗ µλ0

(
[ua]× [ub] ∩

{
|Π((σnω)|qj1∞)− Π((σnτ)|qj1∞)| ≤ 2e−j

})
≤
¨

[ua]×[ub]

(
C1e

εn
∣∣Πλ(σnω)− Πλ(σnτ)

∣∣−(α+2qε)
+ C2

)
dµλ0(ω) dµλ0(τ) + C2.

By [4, Lemma 14.4.4], the transversality condition guarantees that for every (ω, τ) ∈ [ua]×
[ub], we have

ˆ

U ′
D

∣∣Πλ(σnω)− Πλ(σnτ)
∣∣−(α+2qε)

dλ ≤ Cα+2qε <∞ if α + 2qε < 1.
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Consequently, combing all the calculations so far and applying Fubini’s theorem and the
definition of AD:

I ≤ CαDαCα+2qε

∞∑
n=0

e
nα(χµλ0

(Fλ0 )+3ε)
∑
u∈An

∑
a,b∈A
a̸=b

µλ0([ua])µλ0([ub]) (C1e
εn + C2)

≤ CαDαCα+2qε

∞∑
n=0

e
nα(χµλ0

(Fλ0 )+3ε)
∑
u∈An

µλ0([u])
2 (C1e

εn + C2)

≤ CαD(α+1)Cα+2qε

∞∑
n=0

e
n(α(χµλ0

(Fλ0 )+3ε)−(hµλ0
−2ε))

(C1e
εn + C2) .

The last sum is finite for every α > 0 satisfying

α <
hµλ0

− 3ε

χµλ0
(Fλ0) + 3ε

and α + 2qε < 1.

This establishes (4.9) and finishes the sketch of the proof of Proposition 4.3.

Proof of Proposition 4.3. We explain the changes one has to make in the proof of [1, Propo-
sition 5.1] in order to obtain the result in our case. First note the differences between the
assumptions with respect to [1, Proposition 5.1]: we assume weaker regularity conditions on
the IFS and the multiparameter trasnversality condition (MT). Moreover, unlike in [1], we
do not assume continuity of the maps λ 7→ hµλ

and λ 7→ χµλ
(Fλ). An inspection of the proof

in [1] shows the following.
• The transversality condition with d = 1 is used in the proof only via inequality (T3).

In the case of a multiparameter family (d > 2), the assumed condition (MT) implies
an analogous inequality

Ld
({
λ ∈ U : |πλ(i)− πλ(j)| ≤ r

})
≤ CT r

for all r > 0, i, j ∈ Σ such that i1 ̸= j1, with a constant CT depending only on the
system. Therefore, the switch from d = 1 to d > 1 does not require any changes in
the application of the transversality condition.

• Uniform hyperbolicity and contraction condition (A4) in [1] is the same as our condi-
tion (MA4). The other conditions (A1)− (A3) from [1] are used in the proof only via
the parametric Bounded Distortion Property [1, Lemma 4.2]. Weaker assumptions of
Theorem 3.3 guarantee its weaker form [4, Lemma 14.2.4.(ii)], which is sufficient for
the needs of the proof of [1, Proposition 5.1]. Indeed, it is used only via inequalities
(needed for Aλ ⊂ A and inequality (5.4) in [1])

Ce−ε|i| ≤
∣∣∣∣fλ0

i (x)

fλ
i (y)

∣∣∣∣ ≤ Ceε|i|,

which have to hold on an open neighbourhood U ′ of λ0 (depending on ε). The
version of the Bounded Distortion Property from [4, Lemma 14.2.4.(ii)] suffices for
that purpose (while the stronger statement of [1, Lemma 4.2] gives an explicit bound
on how small U ′ has to be, not needed here).

• Continuity of λ 7→ hµλ
and λ 7→ χµ(Fλ) is used only to choose a neighbourhood U ′ of

λ0 in such a way that inequalities |hµλ
−hµλ0

| < ε and |χµλ
(Fλ)−hµλ0

(Fλ0)| < ε hold
for λ ∈ U ′. In our case, we simply assume that in the statement of the proposition.

Applying the above changes to the proof of [1, Proposition 5.1], one can repeat the proof and
conclude as on p. 17 of [1] that there exists an open neighbourhood U ′ of λ0 such that

dimH νλ ≥ min

{
1−Q′ε,

hµλ0
− 4ε

χµλ0
(Fλ0 ) + 3ε

}
,
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for Ld-a.e. λ ∈ U ′ satisfying |hµλ
− hµλ0

| < ε and |χµλ
(Fλ)− hµλ0

(Fλ0)| < ε, where Q′ is an
explicit constant depending on γ2 in (MA4). This finishes the proof. □

Now we can finish the proof of Theorem 3.3. It is convenient to do so in a slightly different
manner than in [1].

Proof of item (1) of Theorem 3.3. As the inequality dimH νλ ≤ min
{
1,

hµλ

χµλ
(Fλ)

}
holds for

every λ (see e.g. [4, Theorem 14.2.3]), it suffices to prove the opposite inequality for almost
every λ ∈ U . Fix ε > 0 and consider a cover {Vi,j}∞i,j=1 of U by sets of the form

Vi,j = {λ ∈ U : iε ≤ |hµλ
| ≤ (i+ 1)ε, jε ≤ |χµλ

(Fλ)| ≤ (j + 1)ε}.
Furthermore, consider an open cover {U ′(λ0) : λ0 ∈ U} of U , where U ′(λ0) is the neighbour-
hood of λ0 from Proposition 4.3 corresponding to ε. Finally, choose a countable subcover
{Uk(λk)}∞k=1 of {U ′(λ0) : λ0 ∈ U} and set

V = {Vi,j ∩ Uk(λk) : 1 ≤ i, j, k <∞}.
Fix V := Vi,j ∩ Uk(λk) ∈ V . By Proposition 4.3, the inequality

dimH νλ ≥ min

{
1,

hµλk

χµλk
(Fλk )

}
− Lε

holds for Ld-a.e. λ ∈ V . As λ, λk ∈ Vi,j and V is a countable cover of U , this implies also

dimH νλ ≥ min

{
1,

hµλ
− ε

χµλ(Fλ) + ε

}
− Lε

for Ld-a.e. λ ∈ U . As ε > 0 is arbitrary, this finishes the proof. □

5. Absolute continuity - on the proof of Theorem 3.4

At first we consider the 1-parameter case, as in [1], and let U ⊂ R be a bounded open
interval. The multiparameter case is then deduced by “slicing” the d-dimensional set of
parameters; this is done at the end of the section.

5.1. First approach. Let us explain now why the approach from the proof of Theorem 3.3
does not work for absolute continuity and hence the proof of Theorem 3.4 requires stronger
assumptions (most notably: condition (M) instead of (M0)). The standard approach to
proving typical absolute continuity of (Πλ)∗µλ would be to use the following characterization
of absolute continuity for a finite measure ν on R (see [12, Theorem 2.12]):

ν ≪ L1 if and only if D(ν, x) := lim inf
r→0

ν(B(x, r))

2r
<∞ for ν-a.e. x ∈ R.

Therefore, in order to prove that (Πλ)∗µλ ≪ L1 for almost every λ ∈ U , it suffices to show

(5.1)
ˆ

U

ˆ

R

D(Πλ
∗µλ, x) dΠ

λ
∗µλ(x) dλ <∞.

By Fatou’s lemma one has

(5.2)
ˆ

U

ˆ

R

D(Πλ
∗µ, x) dΠ

λ
∗µλ(x) dλ ≤ lim inf

r→0

1

2r

ˆ

U

ˆ

R

Πλ
∗µλ(B(x, r)) dΠλ

∗µλ(x) dλ.

If µλ ≡ µ for some fixed measure µ, the classical approach is to use the transversality
condition (MT) and Fubini’s theorem in order to show that if dimcor(µ, dλ) > 1 on U , then
(see e.g. [4, Theorem 6.6.2.(iv)] and its proof)

(5.3)
ˆ

U

ˆ

R

Πλ
∗µ(B(x, r)) dΠλ

∗µ(x) dλ ≤ Cr,
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obtaining (5.1). Condition dimcor(µ, dλ) > 1 is then improved to hµ

χµ(Fλ)
> 1 with the use of

the Egorov theorem, similarly to the previous section.
In the case of the parameter dependent measure µλ in the symbolic space, combining the

above approach with the strategy from proof of Theorem 3.3 does not seem to work anymore.
In particular, one could repeat the calculation from the proof of Proposition 4.1 in order to
bound integral

´
RΠ

λ
∗µλ(B(x, r)) dΠλ

∗µλ(x) with the integral
´
R Π

λ
∗µλ0(B(x, r)) dΠλ

∗µλ0(x) for
λ in a small neighbourhood U ′ of λ0 (so that (5.1) can be invoked for a fixed measure µ = µλ0).
This, however, leads to a bound

(5.4)
ˆ
R
Πλ

∗µλ(B(x, r)) dΠλ
∗µλ(x) ≤ r−ε

ˆ
R
Πλ

∗µλ0(B(x, r)) dΠλ
∗µλ0(x) + const

on a neighbourhood U ′ of λ0 (depending on ε). The error r−ε is too large in order to combine
(5.2) with (5.4) and (5.3) for µ = µλ0 in order to obtain (5.1).

5.2. Sobolev dimension. A more refined approach, which leads to the proof of Theorem
3.4 and is the main part of [1], is adapting the technique of Peres and Schlag [14], who worked
with the Sobolev dimension dimS rather than the correlation dimension. This is a notion of
dimension extending the correlation dimension to values greater than 1 (for finite measures
on R) with the crucial property that ν ≪ L1 whenever dimS ν > 1. See Section A.2 for the
definition and more details. Peres and Schlag were able to prove that under the assumptions
of Theorem 3.4, if one considers the fixed measure µλ ≡ µ case, then

dimS νλ ≥ min{dimcor(µλ, dλ), 1 + δ} for Lebesgue a.e. λ ∈ U,

see [14, Theorem 4.9 (4.22)]. If one could prove an analog of Proposition 4.1 for the Sobolev
dimension, then we could repeat the proof of item (2) of Theorem 3.3 in order to conclude The-
orem 3.4. Unfortunately, here we face another complication: the map λ 7→ dimS((Π

F)∗µλ),
in general, is not continuous, even under the stronger regularity condition (M).

Example 5.1. Let A = {1, 2} and consider an IFS F = {f1, f2} on [0, 1] where f1(x) = x/2

and f2(x) = x/2 + 1/2. Let Π = ΠF : Σ → [0, 1] be the corresponding natural projection
map on Σ = {1, 2}N. For λ ∈ (0, 1), let µλ = (λ, 1 − λ)N be the corresponding Bernoulli
measure on Σ. Let U ⊂ (0, 1) be a compact interval containing 1/2. It is straightforward
to see that the family {µλ}λ∈U satisfies (M) with θ = 1. As Π∗µ1/2 = L1|[0,1], we have
dimS(Π∗µ1/2) = 2 (this follows directly from the definition of the Sobolev dimension and
the formula |L̂1

[0,1](ξ)| =
|eiξ−1|

|ξ| ). On the other hand, dimH(Π∗µλ) ≤ hµλ

χµλ
(F)

= H(λ)
log 2

, where
H(λ) = −λ log λ − (1 − λ) log(1 − λ). Therefore dimcor(Π∗µλ) ≤ dimH(Π∗µλ) < 1 for
λ ̸= 1/2, hence by Lemma A.2 also dimS Π∗µλ < 1. This shows that λ 7→ dimS((Π

F)∗µλ) is
not continuous in this case. ■

This makes it necessary for us to “dive” into the Peres-Schlag proof in [14] and modify it
in a way that suits our needs. First, note that [14] contains results in two versions: the C∞

case and the limited regularity case. It is the latter one that concerns us here. It is treated
in [14] with less detail, often referring to a list of modifications needed, compared with the
C∞ case. It is worth mentioning that [14] also contains results on the Hausdorff dimension
of exceptional parameters for absolute continuity, which we do not address here.

5.3. The 1-parameter case. Theorem 3.4 in the 1-parameter case is deduced from the
following result, modelled after [14, Theorem 4.9].

Theorem 5.2. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions (MA1)

- (MA4) and the transversality condition (MT) on U ⊂ R, a bounded open interval. Let
{µλ}λ∈U be a collection of finite Borel measures on Σ satisfying (M). Fix λ0 ∈ U , β > 0,
γ > 0, ε > 0 and q > 1 such that 1 + 2γ + ε < q < 1 + min{δ, θ}. Then, there exists a
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(sufficiently small) open interval J ⊂ U containing λ0, such that for every smooth function
ρ on R with 0 ≤ ρ ≤ 1 and supp(ρ) ⊂ J there exist constants C̃1 > 0, C̃2 > 0 such thatˆ

J

∥νλ∥22,γρ(λ) dλ ≤ C̃1Eq(1+a0β)(µλ0 , dλ0) + C̃2,

where a0 = 8+4δ
1+min{δ,θ} .

The use of a smoothing kernel ρ, replacing a characteristic function, is standard in harmonic
analysis; there will be a few more such in the proof. On the other hand, the parameter β in
the statement of the theorem may look mysterious; in fact, is comes from “transversality of
degree β” introduced by Peres and Schlag [14] and defined in (5.5) below. In [1] it is shown
that this condition follows from the “usual” transversality under our smoothness assumptions.
In the derivation of Theorem 3.4 from Theorem 5.2 it will be essential that β > 0 can be
taken arbitrarily small.

Lemma 5.3 (Prop. 6.1 from [1]). Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness

assumptions (MA1) - (MA4) and the transversality condition (MT) on U ⊂ R, a bounded
open interval. For every λ0 ∈ U and β > 0 there exists cβ > 0 and an open neighbourhood J
of λ0 such that

(5.5)
∣∣Πλ(u)− Πλ(v)

∣∣ < cβ · dλ0(u, v)
1+β =⇒

∣∣ d
dλ
(Πλ(u)− Πλ(v))

∣∣ ≥ cβ · dλ0(u, v)
1+β.

holds for all u, v ∈ Σ and λ ∈ J .

The proof of the lemma is not difficult, but technical, so we leave it to the reader; full
details are given in [1, Prop. 6.1].

Remark 5.4. (i) An IFS satisfying (5.5) is said to satisfy the transversality condition of
degree β on J . Although this is not necessary for the proof, for completeness we discuss
how our definition is related to the definition in [14]. Incidentally, in [14] the interval J is
called an interval of transversality of “of order β”, but we prefer “of degree β”, as in [13,
Definition 18.10]. Peres and Schlag first define Φλ(u, v) :=

Πλ(u)−Πλ(v)
dλ0 (u,v)

(this is not a typo, the
denominator does not depend on λ). Then [14, Definition 2.7] says that an interval J is an
interval of transversality of order β ∈ [0, 1) if there exists cβ > 0 such that for all λ ∈ J and
u, v ∈ Σ,

|Φλ(u, v)| ≤ cβdλ0(u, v)
β =⇒

∣∣∣ d
dλ

Φλ(u, v)
∣∣∣ ≥ cβdλ0(u, v)

β.

This is, of course, equivalent to (5.5).
(ii) Note that transversality condition of degree β implies our transversality condition (T)

for any β ≥ 0, since in (T) we require that u1 ̸= v1, so that dλ0(u, v) is bounded from below.
The influence of β matters only when the distance dλ0(u, v) may get arbitrarily small. The
most basic example of Bernoulli convolutions shows that (T) does not imply transversality
of order β = 0 in any neighborhood of λ0. In general, the length of the interval J tends to
zero as β → 0.

Derivation of Theorem 3.4 assuming Theorem 5.2. It is enough to prove that for an arbitrary
t > 0 the set

A =
{
λ ∈ U : dimS(νλ) < min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − t

}
has Lebesgue measure zero. Assuming the opposite, let λ0 be a density point of A. If
dimcor(µλ0 , dλ0) ≤ 1, we immediately get a contradiction by Theorem 3.3(ii), in view of
the fact that (M) is stronger than (M0) and the Sobolev dimension equals the correlation
dimension when the latter is less than one. Thus we can assume that dimcor(µλ0 , dλ0) > 1.
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Let ε > 0 be small enough to have

γ :=
min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 4ε− 1

2
> 0.

Let q = 1 + 2γ + 2ε. Then

1 + 2γ + ε < q ≤ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 2ε.

Let β > 0 be small enough to have

q(1 + a0β) ≤ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − ε,

where a0 is as in Theorem 5.2. By Theorem 5.2, there exists a neighbourhood J of λ0
in U , interval I containing λ0 and compactly supported in J and smooth function ρ with
0 ≤ ρ ≤ 1, supp(ρ) ⊂ J and ρ ≡ 1 on I, such thatˆ

I

∥νλ∥22,γ dλ ≤
ˆ
J

∥νλ∥22,γ ρ(λ) dλ ≤ C̃1Eq(1+a0β)(µλ0 , dλ0) + C̃2 <∞

as q(1+a0β) ≤ dimcor(µλ0 , dλ0)−ε. Therefore, ∥νλ∥22,γ <∞ for Lebesgue almost every λ ∈ I,
hence

dimS νλ ≥ 1 + 2γ ≥ min {dimcor(µλ0 , dλ0), 1 + min{δ, θ}} − 4ε

holds almost surely on I. As ε can be taken arbitrary small and the function λ 7→ dimcor(µλ, dλ)

is continuous by Proposition 4.1(1a), we get a contradiction. □

The proof of Theorem 5.2 is rather long and technical, so we only sketch the key steps.
The notation A ≲ B will mean that there exist positive constants C ′

1 and C ′
2 such that

A ≤ C ′
1B + C ′

2. These constants will usually depend on the fixed parameters. Furthermore,
A ≍ B will mean that for some C ′

3 > 1 holds C ′−1
3 A ≤ B ≤ C ′

3B.
The first step is to “decompose the frequency space dyadically,” done with the help of a

Littlewood-Paley decomposition. The next result is the 1-dimensional case of [14, Lemma
4.1], see also [13, Lemma 18.6].

Lemma 5.5. There exists a Schwarz function ψ ∈ S(R) such that
(i) ψ̂ ≥ 0 and spt(ψ̂) ⊂ {ξ : 1 ≤ |ξ| ≤ 4};
(ii)

∑
j∈Z ψ(2

−jξ) = 1 for ξ ̸= 0;
(iii) given any ν ∈ M(R) and any γ > 0, the following decomposition holds:

∥ν∥22,γ ≍
∑
j∈Z

22jγ
ˆ
(ψ2−j ∗ ν)(x) dν(x),

where ψ2−j(x) = 2jψ(2jx).

For the proof of the lemma take an even function η ∈ S(R), non-increasing on R+, such
that 0 ≤ η ≤ 1, it is equal to 1 on (−1, 1) and is supported in (−2, 2). Then there exists a
function ψ ∈ S(R) such that

ψ̂(ξ) = η(ξ/2)− η(ξ), ξ ∈ R.

The properties (i), (ii) are easy to check, and (iii) follows from Parseval’s formula in the formˆ
f dν =

ˆ
f̂ ν̂ dξ for all ν ∈ M(R), f ∈ S(R),

see [13, (3.27)], which implies

(5.6)
ˆ

(ψ2−j ∗ ν)(x) dν(x) =
ˆ
ψ̂(2−jξ)| ν̂(ξ)|2 dξ ≥ 0.

Schwarz functions decay faster than any power, thus for any q > 0 there is Cq > 0 such
that

(5.7) |ψ(ξ)| ≤ Cq(1 + |ξ|)−q.
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We will also use that

(5.8)
ˆ
R
ψ(ξ) dξ = ψ̂(0) = 0.

In fact, all higher moments of ψ also vanish, but this will not be needed for our purposes.
As ψ has bounded derivative on R, there exists L > 0 such that

(5.9) |ψ(x)− ψ(y)| ≤ L|x− y| for all x, y ∈ R.

5.4. Discretization and “adjustment kernel”. In view of Lemma 5.5,

(5.10)
ˆ
R
∥νλ∥22,γρ(λ)dλ ≍

ˆ
R

∞∑
j=−∞

22jγ
ˆ
R
(ψ2−j ∗ νλ)(x)dνλ(x)ρ(λ)dλ,

In order to prove Theorem 5.2, it is enough to consider in (5.10) the sum over j ≥ 0, as
|(ψ2−j ∗ νλ)(x)| ≤ 2j∥ψ∥∞, hence the sum over j < 0 converges to a bounded function. By
definition, for j ≥ 0 we haveˆ

R
(ψ2−j ∗ νλ)(x) dνλ(x) = 2j

ˆ
R

ˆ
R
ψ(2j(x− y)) dνλ(y) dνλ(x)

= 2j
ˆ

Σ

ˆ

Σ

ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
dµλ(ω1) dµλ(ω2)

Let κ = − log2 γ2; we recall that γ2 is the upper bound on the IFS contraction rates, see
(MA4). “Truncating” at some level n = c̃j, for a suitable c̃, that is, replacing ω1 and ω2 by
ω1|n1∞ and ω2|n1∞ respectively, and estimating the error, using (5.9) and (MA4), yields that
the last expression is

≤ 2j
∑
i∈An

∑
k∈An

ψ
(
2j(Πλ(i1∞)− Πλ(k1∞))

)
µλ([i])µλ([k]) + L22j+1−κc̃j = (∗),

The parameter c̃ ≥ 1 will be chosen to guarantee that c̃ ≥ 4/κ. Another key parameter to
choose is the size of the interval J around λ0, which appears in the statement of Theorem 5.2.
Let Q = log2 e and choose ξ > 0 small enough to have 2(4 +Qc)ξ < ε and

(5.11) 0 <
4 + 2γ

κ−Qξ
<

ε

2(4 +Qc)ξ
.

Choose an open interval J containing λ0 so small that 2c|J |θ ≤ ξ (with c, θ as in (M)) and
(5.5) hold. Then choose c̃ ≥ 1 such that

(5.12)
4 + 2γ

κ−Qξ
≤ c̃ ≤ ε

2Q(2 + c)ξ

(it exists due to (5.11)).
Now comes the crucial point, which makes our situation different from that of [14]: we

introduce a kernel ej, which controls parameter dependence of µλ at level n = c̃j. Namely,
we define a map ej : Σ× Σ× J 7→ R by

(5.13) ej(ω1, ω2, λ) :=

{
µλ([ω1|n])µλ([ω2|n])

µλ0
([ω1|n])µλ0

([ω2|n]) , if µλ0([ω1|n])µλ0([ω2|n]) ̸= 0,

1, otherwise.

By the property (M),

(5.14) ej(ω1, ω2, λ) ≤ e2c|λ−λ0|θn ≤ 2Qξc̃j for all ω1, ω2 and λ ∈ J .
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Also by (M), if i ∈ Σ∗ is a fixed finite word, then µλ0([i]) = 0 if and only if µλ([i]) = 0 for all
λ ∈ U ; in other words: supp(µλ0) = supp(µλ). Denote Ãn := {i ∈ An : µλ0([i]) ̸= 0}. We
have, therefore, (note that now the integral is with respect to µλ0),

(∗) = 2j
∑
i∈Ãn

∑
k∈Ãn

ψ
(
2j(Πλ(i1∞)− Πλ(k1∞))

) µλ([i])µλ([k])

µλ0([i])µλ0([k])
µλ0([i])µλ0([k]) + L22j+1−κc̃j

= 2j
ˆ

Σ

ˆ

Σ

ψ
(
2j(Πλ(ω1|n1∞)− Πλ(ω2|n1∞))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) + L22j+1−κc̃j.

Truncating again and estimating the error, similarly to the above, but now integrating with
respect to µλ0 , finally yields:

ˆ
R
(ψ2−j ∗ νλ)(x) dνλ(x) ≤

≤ 2j
ˆ

Σ

ˆ

Σ

ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2) + 4L2(2+Qc̃ξ−c̃κ)j,

(5.15)

where we leave the precise “accounting” in the error estimate to the reader (or see [1, Section
7]). Note that the last additive term is not greater than 4L ·2−2j by (5.12). Now, substituting
(5.15) into (5.10) we obtain, recalling that the sum over j < 0 in (5.10) converges:
ˆ
J

∥νλ∥22,γρ(λ) dλ ≲
ˆ

R

∞∑
j=0

22jγ
ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x) ρ(λ) dλ

=
∞∑
j=0

22jγ
ˆ

R

ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x) ρ(λ) dλ

≤
∞∑
j=0

22jγ
ˆ

R

(
2j
ˆ

Σ

ˆ

Σ

ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) dµλ0(ω1) dµλ0(ω2)

+ 4L · 2−(2γ+2)j
)
ρ(λ) dλ

≲
∞∑
j=0

2j(2γ+1)

ˆ

Σ

ˆ

Σ

∣∣∣∣ˆ
R
ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ

∣∣∣∣ dµλ0(ω1) dµλ0(ω2).

We have to be careful, since ψ is not a positive function! Exchanging summation and inte-
gration in the 2nd displayed line above is legitimate, since the inner integral is non-negative
by (5.6). After that, exchanging the order of integration is allowed by Fubini’s theorem, as ρ
is compactly supported, so the function is integrable. Strictly speaking, we do not need the
absolute value sign outside of the inner integral in the last line above, since we know that
the left-hand side is positive.

To finish the proof of Theorem 5.2, it is enough to show the following proposition (with
the same notation as in Theorem 5.2).

Proposition 5.6. There exists C3 > 0 such that for any distinct ω1, ω2 ∈ Σ, any j ∈ N we
have
(5.16)∣∣∣∣ˆ

R
ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ

∣∣∣∣ ≤ C3 · c̃j2Q(2+c)ξc̃j
(
1 + 2jd(ω1, ω2)

1+a0β
)−q

,

where C3 depends only on q, ρ, and β, with a0 = 8+4δ
1+min{δ,θ} and d(ω1, ω2) = dλ0(ω1, ω2), the

metric defined in (1.19).
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Indeed, if (5.16) holds, then, recalling the definition of energy (A.4), we obtainˆ
J

∥νλ∥22,γ ρ(λ) dλ

≲ C3 · c̃
∞∑
j=0

j2j[2γ+1+Q(2+c)ξc̃−q]Eq(1+a0β)(µλ0 , dλ0)

≤ C3 · c̃
∞∑
j=0

j2−
ε
2
jEq(1+a0β)(µλ0 , dλ0) <∞,

and Theorem 5.2 is proved. Here we used that 2γ+Q(2+c)ξc̃ ≤ ε/2 by (5.12) and 1+2γ+ε <

q by the assumption of the theorem.

Remark 5.7. The last proposition is [1, Prop. 7.2]; however, in [1] we omitted the absolute
value signs around the integral. The actual proof was for the absolute value. Strictly speaking,
taking the absolute value is unnecessary, since in the end we are estimating a positive quantity
from above.

5.5. Proof sketch of Proposition 5.6. The proof is similar to that of [14, Lemma 4.6] in
the case of limited regularity; however, some technical issues were treated in [1] differently
and in more detail, especially since [14] leaves much to the reader. (In fact, our natural
projection is 1, δ-regular in the sense of [14, Section 4.2], so we have L = 1 in the Peres-
Schlag notation. Note that equation [14, (4.32)] applies only when L ≥ 2 and has a little
typo; the case L = 1 is special.)

Fix distinct ω1, ω2 ∈ Σ and denote r = d(ω1, ω2). To simplify notation, let ej(λ) :=

ej(ω1, ω2, λ). Denote I = supp(ρ) ⊂ J . Since J is open, there exists K = K(ρ) ≥ 1 such
that the (2K−1)-neighborhood of I is contained in J .

We can assume without loss of generality that j is sufficiently large to satisfy 2jr1+a0β >

1 for a fixed a0 (note that r ≤ 1). Indeed, the integral in (5.16) is bounded above by
|J | · ∥ψ∥∞ · 2Qξc̃j, in view of (5.14), hence if 2jr1+a0β ≤ 1, then the inequality (5.16) holds
with C3 = |J | · ∥ψ∥∞ · 2q.

Let
ϕ ∈ C∞(R), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on [−1/2, 1/2], supp(ϕ) ⊂ (−1, 1),

and denote

Φλ = Φλ(ω1, ω2) :=
Πλ(ω1)− Πλ(ω2)

d(ω1, ω2)
=

Πλ(ω1)− Πλ(ω2)

r
.

The idea, roughly speaking, is to separate the contribution of the zeros of Φλ, which are
simple by transversality. Outside of a neighborhood of these zeros, we get an estimate using
the rapid decay of ψ at infinity, and near the zeros we linearize and use the fact that ψ has
zero mean. We haveˆ
R
ρ(λ)ψ

(
2j[Πλ(ω1)− Πλ(ω2)]

)
ej(λ)dλ =

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)ϕ(Kc

−1
β r−βΦλ) dλ

+

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)

[
1− ϕ(Kc−1

β r−βΦλ)
]
dλ

=: A1 + A2,

where cβ is the constant from (5.5). The integrand in A2 is constant zero when |Kc−1
β r−βΦλ| ≤

1
2
, hence we have |Φλ| > 1

2
K−1Cβr

β in A2. The inequalities (5.7) and (5.14) yield

|A2| ≤ Cq

ˆ
|ρ(λ)||ej(λ)|

(
1 + 2jr · 1

2
K−1cβr

β)−q dλ ≤ const·2Qξc̃j
(
1 + 2jr1+β

)−q
,

for some constant depending on q, ρ and β, and we obtained an upper bound dominated by
the right-hand side of (5.16). Thus it remains to estimate A1.
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Next comes a lemma where transversality is used. It is a variant of [14, Lemma 4.3] and
is similar to [13, Lemma 18.12]. Let cβ be the constant from Proposition 5.3.

Lemma 5.8. Under the assumptions and notation above, let

J :=
{
λ ∈ J : |Φλ| < K−1cβr

β
}
,

which is a union of open disjoint intervals. Let I1, . . . , INβ
be the intervals of J intersecting

I = supp(ρ), enumerated in the order of R. Then each Ik contains a unique zero λk of Φλ

and

(5.17) [λk − dβr
2β, λk + dβr

2β] ⊂ Ik,

for some constant dβ > 0. For every interval Ik holds

(5.18) 2dβ · r2β ≤ |Ik| ≤ 2K−1,

hence

(5.19) Nβ ≤ 2 + 1
2
d−1
β |J | · r−2β.

Moreover,

(5.20) |Φλ| ≤ 1
2
K−1cβr

β for all λ ∈ [λk − 1
2
dβr

2β, λk +
1
2
dβr

2β].

Partial proof of Lemma 5.8. This is a “classical” transversality argument. Clearly, λ 7→ Φλ

is continuous, so the intervals Ik are well-defined. Since K ≥ 1, on each of the intervals we
have | d

dλ
Φλ| ≥ cβr

β by the transversality condition (5.5) of degree β. Thus Φλ is strictly
monotonic on each of the intervals. Let λ ∈ Ik∩I, where I = supp(ρ). Then |Φλ| < K−1cβr

β,
and using the lower bound on the derivative we obtain that there exists unique λk ∈ Ik, such
that Φλk

= 0, and it satisfies |λ− λk| ≤ K−1. For the rest of the proof, see [1, Lemma 7.3].
The inequality (5.19) follows from the lower bound in (5.18). The proof of the claims (5.17),
(5.20) and the lower bound in (5.18) use the inequality

(5.21)
∣∣∣∣ ddλΦλ

∣∣∣∣ ≤ Cβ,1r
−β ⇐⇒

∣∣∣∣ ddλ(Πλ(ω1)− Πλ(ω2))

∣∣∣∣ ≤ Cβ,1dλ0(ω1, ω2)
1−β,

which is somewhat technical, proven in [1, Appendix C] (one can take dβ = K−1C−1
β,1 · cβ).

This is the place where it is important that β > 0, since for β = 0 we cannot expect (5.21)
to hold in the entire neighborhood. □

In order to separate the contribution of the zeros of Φλ we again use a smoothing bump
function and let χ ∈ C∞(R) be such that supp(χ) ⊂ (−1

2
dβ,

1
2
dβ), 0 ≤ χ ≤ 1, and χ ≡ 1 on

[−1
4
dβ,

1
4
dβ]. By Lemma 5.8 we can write

A1 =

ˆ
ρ(λ)ψ

(
2jrΦλ

)
ej(λ)ϕ(Kc

−1
β r−βΦλ) dλ

=

Nβ∑
k=1

ˆ
ρ(λ)χ

(
r−2β(λ− λk)

)
ψ(2jrΦλ)ej(λ)ϕ(Kc

−1
β r−βΦλ) dλ

+

ˆ
ρ(λ)

1− Nβ∑
k=1

χ
(
r−2β(λ− λk)

) ej(λ)ψ(2jrΦλ)ϕ(Kc
−1
β r−βΦλ) dλ

=

Nβ∑
k=1

A
(k)
1 +B.
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The integral B is estimated similarly to A2 above. Using Lemma 5.8 and transversality, one
can check that |Φλ| ≥ 1

4
dβcβr

3β on the support of the integrand in B. It follows that on this
support,

(5.22) |ψ(2jrΦλ)| ≤ Cq

(
1 + (dβcβ/4) · 2jr1+3β

)−q
,

by the rapid decay of ψ, and using (5.14) we obtain

|B| ≤ const · 2Qξc̃j
(
1 + 2jr1+3β

)−q

for some constant depending on q and β.
It remains to estimate the integrals A(k)

1 . Without loss of generality, we can assume k = 1

and let λ = λ1. In view of the bound (5.19) on the number of intervals, the desired inequality
will follow from this. First one can check that, by construction, ϕ ≡ 1 on the support of
χ
(
r−2β(λ− λ)

)
, and hence the ϕ-term in A(1)

1 can be ignored, that is,

A
(1)
1 =

ˆ
ρ(λ)χ

(
r−2β(λ− λ)

)
ej(λ)ψ(2

jrΦλ) dλ.

It is convenient to make a change of variable, so we define a function H via

(5.23) Φλ = u ⇐⇒ λ = λ+H(u), provided χ
(
r−2β(λ− λ)

)
̸= 0.

Note that χ
(
r−2β(λ − λ)

)
̸= 0 implies |λ − λ| < 1

2
dβr

2β, so λ ∈ I1 by (5.17), and by
transversality,

(5.24)
∣∣∣ d
dλ

Φλ

∣∣∣ ≥ cβr
β if χ

(
r−2β(λ− λ)

)
̸= 0.

Therefore, H is well defined. We have

A
(1)
1 =

ˆ
ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))ψ(2jru)H ′(u) du

=

ˆ
F (u)ψ(2jru) du,

where

(5.25) F (u) = ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))H ′(u).

Observe that H ′(u) = [ d
dλ
Φλ]

−1, hence (5.24) gives |H ′(u)| ≤ c−1
β r−β on the domain of F .

Since ρ and χ are bounded by 1, the inequality (5.14) implies

(5.26) ∥F∥∞ ≤ c−1
β · r−β2Qξc̃j.

Recall that Φλ = 0, so that H(0) = 0. Since
´
R ψ(ξ) dξ = 0 by (5.8), we can subtract F (0)

from F (u) under the integral sign; we then split the integral as follows:

A
(1)
1 =

ˆ
[F (u)− F (0)]ψ(2jru) du

=

ˆ
|u|<(2jr)−1+ε′

[F (u)− F (0)]ψ(2jru) du+

ˆ
|u|≥(2jr)−1+ε′

[F (u)− F (0)]ψ(2jru) du(5.27)

=: B1 +B2,

where ε′ ∈ (0, 1
2
) is a small fixed number. Recall that our goal is to show

|A(1)
1 | ≤ const · c̃j2Q(2+c)ξc̃j ·

(
1 + 2jr1+a0β

)−q
,

for some constants a0 ≥ 1 and const depending only on q, ρ, and β. We can assume that
2jr1+a0β ≥ 1, otherwise, the estimate is trivial by increasing the constant. To estimate B2,
note that for any M > 0 we have by the rapid decay of ψ:

|ψ(2jru)| ≤ CM

(
1 + 2jr|u|

)−M
,
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hence, by (5.26),

|B2| ≤ Cβ,M · r−β · 2Qξc̃j(2jr)−1

ˆ
|x|≥(2jr)ε′

(1 + |x|)−M dx

≤ C ′
β,M · r−β · 2Qξc̃j(2jr)−1(2jr)−ε′(M−1)

≤ C ′′
β,M · 2Qξc̃j · (2jr1+2β)−q,

for M such that 1 + ε′(M − 1) > q. Here we used that 2jr ≥ 2jr1+2β ≥ 1.
In order to estimate B1, we show that the function F from (5.25) is δ-Hölder by our

assumptions; we also need to estimate the constant in the Hölder bound. We can write

F (u) = ρ
(
λ+H(u)

)
χ
(
r−2βH(u)

)
ej(λ+H(u))H ′(u) =: F1(u)F2(u)F3(u)H

′(u),

and then

F (u)− F (0) =
(
F1(u)− F1(0)

)
F2(u)F3(u)H

′(u) + F1(0)
(
F2(u)− F2(0)

)
F3(u)H

′(u)

+ F1(0)F2(0)
(
F3(u)− F3(0)

)
H ′(u) + F1(0)F2(0)F3(0)

(
H ′(u)−H ′(0)

)
.

We have

|F1(u)− F1(0)| = |ρ
(
λ+H(u)

)
− ρ
(
λ+H(0)

)
| ≤ ∥ρ′∥∞ · |H(u)−H(0)|,

and then

(5.28) |H(u)−H(0)| = |H(u)| = |λ− λ| ≤ c−1
β r−β|Φλ − Φλ| = c−1

β r−β|Φλ| = c−1
β r−β|u|,

by transversality, which applies since supp(F ) ⊂ I1. Similarly,

(5.29) |F2(u)− F2(0)| ≤ ∥χ′∥∞ · r−2β|H(u)−H(0)| ≤ C−1
β ∥χ′∥∞ · r−3β|u|.

For F3 it is enough to assume that µλ0([ω1|c̃j])µλ0([ω2|c̃j]) ̸= 0 (hence the same is true for
µλ by (M)), as otherwise ej ≡ 1 and then (5.30), which is the goal of the calculation below,
holds trivially. After some calculations, where we use the full strength of (M)), we obtain

(5.30) |F3(u)− F3(0)| ≤ 2c3j2
c4jc−θ

β r−θβ|u|θ, with c3 = Qcc̃ and c4 = Q(2 + c)c̃ξ.

For the details the reader is referred to [1].
Finally, we need to estimate the term |H ′(u)−H ′(0)|. We have H ′(u) = [ d

dλ
Φλ]

−1, and then
using β-transversality (5.5) and (5.28), but also a technical inequality from [1, Proposition
4.5], we obtain

|H ′(u)−H ′(0)| ≤ c̃βr
−β(3+2δ)|u|δ,

see [1] for details.
Below, writing “const” means constants depending on q, ρ, and β, which may be different

from line to line. Using all of the above and ∥H ′∥∞ ≤ c−1
β · r−β yields

|F (u)− F (0)| ≤ const · c3j2c4j ·
(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
,

hence by (5.27) and recalling that (2jr) ≥ 1 and r ≤ 1, we obtain

|B1| ≤ const · c3j2c4j
ˆ
|u|<(2jr)−1+ε′

(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
du

≤ const · c3j2c4j
(
r−β(3+2δ)(2jr)−(1−ε′)(1+δ) + (2jr)−2(1−ε′)r−4β + (2jr)−(1−ε′)(1+θ)r−β(1+θ)

)
≤ const · c3j2c4jr−β(4+2δ)(2jr)−(1−ε′)(1+min{δ,θ}),

as min{δ, θ} ≤ 1. Therefore,

|B1| ≤ const · c3j2c4j
(
2jr1+a0β

)−(1−ε′)(1+min{δ,θ})
,

for a0 = 8+4δ
1+min{δ,θ} ≥ 4+2δ

(1−ε′)(1+min{δ,θ}) .
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Since ε′ > 0 can be chosen arbitrarily small, we obtain

|B1| ≤ const · c3j2c4j
(
1 + 2jr1+a0β

)−q for any q < 1 + min{δ, θ},

since as already mentioned, we can assume 2jr1+a0β ≥ 1 without loss of generality. This
concludes the proof of Proposition 5.6 and of Theorem 5.2. □

5.6. The multiparameter case. Let us now explain how one can extend the proof of
Theorem 3.4 from the 1-parameter case to the multiparameter one. The main difficulty is
extending Proposition 5.6, which is based on a rather delicate analysis. The crucial ingredient
needed for reducing it to the one-dimensional case technique is the following lemma. It will
allow us to slice d-dimensional balls in the parameter space with one-dimensional intervals,
to which the techniques from the previous sections can be applied.

Lemma 5.9. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions (MA1)

- (MA4) and the transversality condition (MT) on U . Then for every λ0 ∈ U there exists
an open ball B(λ0, ε0) ⊂ U with the following property: for every pair ω, τ ∈ Σ with ω1 ̸= τ1
there exists a unit vector e ∈ Rd such that for every p ∈ B(0, ε0)∩span(e)⊥ the one-parameter
IFS {fλ0+p+te

j : t ∈ Jp, j ∈ A}, where Jp = {t ∈ R : p+ te ∈ B(0, ε0)}, satisfies∣∣Πλ0+p+te(ω)− Πλ0+p+te(τ)
∣∣ < η/2 =⇒

∣∣ d
dt
(Πλ0+p+te(ω)− Πλ0+p+te(τ))

∣∣ ≥ η/2

on Jp.

Proof. Fix λ0 ∈ U and let ε0 > 0 be small enough to ensure B(λ0, ε0) ⊂ U ,

(5.31)
∣∣Πλ0(ω)− Πλ(ω)

∣∣ < η/4,
∣∣∇ (Πλ0(ω)− Πλ0(τ)

)
−∇

(
Πλ(ω)− Πλ(τ)

)∣∣ < η/2,

and ∣∣∣∣〈 ∇(Πλ(ω)− Πλ(τ))

|∇(Πλ(ω)− Πλ(τ))| ,
∇
(
Πλ0(ω)− Πλ0(τ)

)
|∇ (Πλ0(ω)− Πλ0(τ))|

〉∣∣∣∣ ≥ 1

2

if
∣∣∇(Πλ(ω)− Πλ(τ))

∣∣ ≥ η

2
and

∣∣∇ (Πλ0(ω)− Πλ0(τ)
)∣∣ ≥ η

2

(5.32)

for λ ∈ B(λ0, ε0) and all ω, τ ∈ Σ. Fix ω, τ ∈ Σ with ω1 ̸= τ1. We can assume that∣∣Πλ(ω)− Πλ(τ)
∣∣ < η/2 for some λ ∈ B(λ0, ε0) (as otherwise the assertion of the lemma holds

trivially with any choice of e). Then (5.31) implies
∣∣Πλ0(ω)− Πλ0(τ)

∣∣ < η, hence by (MT)

we have
∣∣∇ (Πλ0(ω)− Πλ0(τ)

)∣∣ ≥ η. We define e =
∇(Πλ0 (ω)−Πλ0 (τ))
|∇(Πλ0 (ω)−Πλ0 (τ))| . Assume now that∣∣Πλ0+p+te(ω)− Πλ0+p+te(τ)
∣∣ < η/2

holds for some p ∈ B(0, ε0) ∩ span(e)⊥ and t ∈ Jp. Then by (MT),

(5.33)
∣∣∇ (Πλ0+p+te(ω)− Πλ0+p+te(τ)

)∣∣ ≥ η,

and hence by (5.31) we also have
∣∣∇ (Πλ0(ω)− Πλ0(τ)

)∣∣ ≥ η/2. Therefore, (5.33) and (5.32)
give∣∣ d
dt
(Πλ0+p+te(ω)− Πλ0+p+te(τ))

∣∣ = ∣∣〈∇(Πλ0+p+te(ω)− Πλ0+p+te(τ)), e
〉∣∣

=

∣∣∣∣∣
〈
∇(Πλ0+p+te(ω)− Πλ0+p+te(τ)),

∇
(
Πλ0(ω)− Πλ0(τ)

)
|∇ (Πλ0(ω)− Πλ0(τ))|

〉∣∣∣∣∣
≥ 1

2

∣∣∇ (Πλ0+p+te(ω)− Πλ0+p+te(τ)
)∣∣

= η/2.

□
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Using the above lemma, one can prove multiparameter versions of each of the main steps
of the proof of Theorem 3.4 presented in the previous section. As the proofs are essentially
the same as in the 1-dimensional case (one only has to check that the constants can be
controlled uniformly with respect to ω, τ and p), we only present sketches commenting on
the appropriate changes to be made with respect to the full proofs in [1], leaving details to
the reader. The first step is extending Lemma 5.3 on transversality of degree β.

Proposition 5.10. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions

(MA1) - (MA4) and the transversality condition (MT) on U . For every λ0 ∈ U and β > 0

there exists cβ > 0 and an open neighbourhood J = B(λ0, ε0) of λ0 with the following property:
for every ω, τ ∈ Σ there exists a unit vector e ∈ Rd such that for every p ∈ B(0, ε0)∩span(e)⊥

for all t ∈ Jp = {t ∈ R : p+ te ∈ B(0, ε0)} the following holds:∣∣Πλ0+p+te(ω)− Πλ0+p+te(τ)
∣∣ < cβ · dλ0(ω, τ)

1+β

=⇒
∣∣ d
dt
(Πλ0+p+te(ω)− Πλ0+p+te(τ))

∣∣ ≥ cβ · dλ0(ω, τ)
1+β.

Sketch of the proof. As we have referred to [1] for the proof of Lemma 5.3 ([1, Proposition
6.1]), we shall explain changes one has to perform in the proof of [1, Proposition 6.1] in order
to obtain the above statement. The idea is to repeat the proof of [1, Proposition 6.1] on each
interval Jp, with the application of Lemma 5.9 instead of (T). More precisely, in the point of
the proof in [1] where (T) is applied to the pair σnω, σnτ with n = |ω ∧ τ |, we apply Lemma
5.9 instead, with the choice of e as corresponding to the pair σnω, σnτ . We also use the
observation that (MA1) – (MA4) imply that the one-parameter IFS {fλ0+p+te

j : t ∈ Jp}j∈A
satisfies assumptions (MA1) – (MA4) with the one-dimensional parameter t and constants
independent of p and ω, τ (we use here the fact that e is a unit vector). Consequently, all
the regularity lemmas of [1, Section 4] hold for each such one-parameter IFS, uniformly in
p, ω, τ , and the proof of [1, Proposition 6.1] can be applied to each of them. Therefore, even
though e depends on ω and τ , all the final constants in the proposition are independent of
ω, τ and p. □

Now we are ready to explain how to modify the proof of Theorem 3.4 in order to ob-
tain its multiparameter version. It suffices to prove the following multiparameter version of
Proposition 5.2, which then can be used in the same manner as before to prove Theorem 3.4.

Proposition 5.11. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions(MA1)

– (MA4) and the transversality condition (MT) on U ⊂ Rd. Let {µλ}λ∈U be a collection of
finite Borel measures on Σ satisfying (M). Fix λ0 ∈ U , β > 0, γ > 0, ε > 0 and q > 1

such that 1 + 2γ + ε < q < 1 + min{δ, θ}. Then, there exists a (small enough) open ball
J = B(λ0, ε0) ⊂ U such that for every smooth function ρ on Rd with 0 ≤ ρ ≤ 1 and
supp(ρ) ⊂ J there exist constants C̃1 > 0, C̃2 > 0 such thatˆ

J

∥νλ∥22,γρ(λ) dλ ≤ C̃1Eq(1+a0β)(µλ0 , dλ0) + C̃2,

where a0 = 8+4δ
1+min{δ,θ} .

To prove it, note first that we can follow the proof of Proposition 5.2 exactly as before up
to Proposition 5.6, since only conditions (MA1) – (MA4) and (M) are used in that part (in
particular: the transversality condition is not invoked). We can define the functions ej on
Σ×Σ×U by the same formula (5.13). Inspecting the part of the proof following Proposition
5.6, we see that the proof of Proposition 5.11 will be concluded once the following extension
of Proposition 5.6 is established.
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Proposition 5.12. There exists C7 > 0 such that for any distinct ω1, ω2 ∈ Σ, any j ∈ N we
have
(5.34)∣∣∣∣∣∣
ˆ

Rd

ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ

∣∣∣∣∣∣ ≤ C7 · c̃j2Q(2+c)ξc̃j
(
1 + 2jd(ω1, ω2)

1+a0β
)−q

,

where C7 depends only on q, ρ, and β, and a0 = 8+4δ
1+min{δ,θ} , and d(ω1, ω2) = dλ0(ω1, ω2) is the

metric defined in (1.19).

Sketch of the proof. Fix distinct ω1, ω2 ∈ Σ, and let e be the corresponding unit vector from
Proposition 5.10. We can decompose the integral as follows (recall that J = B(λ0, ε0) and
supp(ρ) ⊂ J):ˆ

Rd

ψ
(
2j(Πλ(ω1)− Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ

=

ˆ

B(0,ε0)∩span(e)⊥

ˆ

Jp

ψ
(
2j(Πλ0+p+te(ω1)− Πλ0+p+te(ω2))

)
ej(ω1, ω2, λ0 + p+ te) ρ(λ0 + p+ te)dtdp.

Note that (M) implies that the family of measures t 7→ µλ0+p+te satisfies (M) on the interval
Jp, with constants independent of p. This fact, together with Proposition 5.10, allows us to
repeat the proof of Proposition 5.6 on each interval Jp and obtain a corresponding upper
bound for it. The crucial observation is that we obtain the upper bound (5.34) for the
inner integral above for every fixed p ∈ B(0, ε0) ∩ span(e)⊥, with constants independent of
p. Integrating with respect to p finishes the proof (note that even though the direction e in
which we "slice" the ball B(λ0, ε0) depends on ω1, ω2, the final upper bound on the integral
in 5.34 does not, as the constants in Proposition 5.10 do not depend on ω, τ). □

6. Families of Gibbs measures have property (M) – on the proof of
Theorem 3.1

Finally, we will show how Theorem 3.1 follows from Theorem 3.3 and Theorem 3.4. More
precisely, we will give a sketch of the proof how Gibbs measures with parameter dependent
potential satisfy (M).

Let U ⊂ Rd be an open and bounded set, and let ϕλ : Σ → R be a family of Hölder-
continuous potentials with the following properties:

(H1) there exists 0 < α < 1 and b > 0 such that

sup
λ∈U

sup
ω,τ :|ω∧τ |=k

|ϕλ(ω)− ϕλ(τ)| ≤ bαk;

(H2) there exists c > 0 and 0 < θ < 1 such that

sup
ω∈Σ

|ϕλ(ω)− ϕλ′
(ω)| ≤ c|λ− λ′|θ for every λ, λ′ ∈ U.

Clearly, for every λ ∈ U there exists a unique Gibbs measure µλ satisfying (1.32). It is
an easy exercise to show that the assumptions (H1)–(H2) imply (M0), and so the dimension
part of Theorem 3.1 easily follows by Theorem 3.3.

It is reasonably more challenging to show that the family of measures µλ also satisfies (M)
for some 0 < θ′ < θ and c′ > 0; however, it still uses standard methods from operator theory.
But this is not the main difficulty here. In general, the correlation dimension dimcor(µλ, dλ)

is significantly smaller than the ratio hµλ

χµλ
(Fλ)

. Hence, to show the absolute continuity part of
Theorem 3.1 by applying Theorem 3.4, one needs to restrict µλ to an appropriate subset of
Σ of large measure. However, with such a restriction we might loose the property (M). The
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main proposition of this section says that this can be done in a careful way, so that continuity
properties are not harmed.

Proposition 6.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness assumptions

(MA1) - (MA4). Let {µλ}λ∈U be a family of shift-invariant Gibbs measures with potentials
ϕλ : Σ → R satisfying (H1) and (H2). Then for every λ0 ∈ U , ε > 0, δ > 0 and θ′ ∈ (0, θ)

there exist ξ = ξ(λ0, ε, δ) > 0 and c > 0 and a subset A ⊆ Σ such that for every λ ∈ Bξ(λ0):
(1) µλ(A) > 1− δ;
(2) dimcor(µλ|A, dλ) ≥ hµλ

χµλ
(Fλ)

− ε;
(3) and for every ω ∈ Σ∗,

e−c|λ−λ0|θ
′ |ω|µλ|A([ω]) ≤ µλ0|A([ω]) ≤ ec|λ−λ0|θ

′ |ω|µλ|A([ω]).

First, we sketch the proof of Theorem 3.1, assuming the proposition. For every λ0 ∈ U ,
ε > 0 and δ > 0, one can apply Theorem 3.3 and Corollary 3.5 for the measure µλ|A on
U = Bξ(λ0), where the set A is given by Proposition 6.1, and so, for almost every λ ∈ Bξ(λ0),

hµλ

χµλ
(Fλ)

≥ dimH µλ ≥ dimcor(µλ|A, dλ) ≥
hµλ

χµλ
(Fλ)

− ε

and
µλ|A ≪ L for Lebesgue a.e. λ ∈ Bξ(λ0) ∩

{
λ : hµλ

> χµλ
(Fλ)(1 + ε)

}
.

Since λ0 ∈ U , ε > 0 and δ > 0 were arbitrary, one can finish the proof of Theorem 3.1 by a
standard density theorem argument.

Now, let us turn to the discussion of the proof of Proposition 6.1. First, we need to get
more involved into [6, Chapter 1] for a more sophisticated version of Theorem 1.4. Let Lλ be
the Perron operator on the Banach space of continuous real-valued maps on Σ, defined by

(Lλh)(ω) =
∑
i∈A

eϕ
λ(iω)h(iω).

Let
Λ =

{
f : Σ → R+ : f(ω) ≤ exp

(∑∞
k=|ω∧τ |+1 2bα

k
)
f(τ) for every ω, τ ∈ Σ

}
.

Then for every λ ∈ U there exist a unique function hλ ∈ Λ and a unique probability measure
νλ on Σ such that

Lλhλ = eP (ϕλ)hλ, L
∗
λνλ = eP (ϕλ)νλ, and

ˆ
hλ(ω)dνλ(ω) = 1,

where P (ϕλ) is the pressure defined in (1.30). Furthermore, there exist 0 < β < 1 and A > 0

such that for every g : Σ → R with varr(g) = 0 for some r ≥ 0 and for every λ ∈ U ,

(6.1)
∥∥∥e−(n+r)P (ϕλ)Ln+r

λ g −
ˆ
gdνλ · hλ

∥∥∥ ≤ Aβn

ˆ
gdνλ.

These claims follow by [6, Chapter 1] with the uniform bound α in (H1).
It clearly follows from the definition of the pressure and (H2) that for every λ, λ′ ∈ U ,

(6.2) |P (ϕλ)− P (ϕλ′
)| ≤ c|λ− λ′|θ.

Lemma 6.2. For every 0 < θ′ < θ there exists cθ′ > 0 such that for every λ, λ′ ∈ U

hλ(ω)

hλ′(ω)
≤ ecθ′ |λ−λ′|θ′ for every ω ∈ Σ and

νλ([ω])

νλ′([ω])
≤ ecθ′ |λ−λ′|θ′ |ω| for every ω ∈ Σ∗.

The first part of the lemma follows by (6.1), that is, the eigenfunction hλ can be uniformly
approximated by Ln

λ1. Similarly, the second part follows from the observation that νλ([ω])
can be uniformly approximated by Ln+|ω|

λ 1[ω]. For details, see [1, Section 8.1].
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Now, the Gibbs measure µλ (defined in Theorem 1.4) is µλ(A) =
´
A
hλdνλ. A simple

consequence of Lemma 6.2 is that for every 0 < θ′ < θ there exists cθ′ > 0 such that for every
ω ∈ Σ∗,

(6.3)
µλ([ω])

µλ′([ω])
≤ ecθ′ |λ−λ′|θ′ |ω|.

Now, we wish to show that there exists a common Egorov set A in a sufficiently small
neighbourhood of every λ0 ∈ U to verify Proposition 6.1. So, let λ0 ∈ U and ε > 0 be
arbitrary but fixed. By the large deviation principle, see [20, Theorem 6], there exist C > 0

and s > 0 such that

(6.4) µλ0

({
ω :

∣∣∣∣ 1nSnϕλ0(ω)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > ε/4

})
≤ Ce−ns.

Observe that λ 7→
´
ϕλdµλ is θ′′-Hölder with some 0 < θ′′ < θ′ and with some constant

cθ′′ > 0. Let ξ > 0 be such that αecθ′ξθ
′
< 1, cξθ + cθ′′ξ

θ′′ < ε/4 and cθ′ξ
θ′ < s/2. Our first

claim is that for every λ ∈ Bξ(λ0):

(6.5) µλ

({
ω :

∣∣∣∣ 1nSnϕλ(ω)−
ˆ
ϕλdµλ

∣∣∣∣ > ε

})
≤ C ′ecθ′ |λ−λ0|θ

′
nµλ0

({
ω :

∣∣∣∣ 1nSnϕλ0(ω)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > ε/4

})
≤ C ′′e−sn/2

for every n ≥ 1. Indeed, let τ ∈ Σ be arbitrary but fixed. Then choosing k ≥ 1 such that
bαk < ε/4, we have

µλ

({
ω :

∣∣∣∣ 1nSnϕλ(ω)−
ˆ
ϕλdµλ

∣∣∣∣ > ε

})
≤ µλ

({
ω :

∣∣∣∣ 1nSnϕλ0(ω)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > 3ε/4

})
(by (H2) and cξθ + cθ′′ξ

θ′′ < ε/4)

≤
∑

|ω|=n+k

µλ([ω])1

{∣∣∣∣ 1nSnϕλ0(ωτ)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > 2ε/4

}
(by (H1) and bαk < ε/4)

≤ ecθ′ |λ−λ0|θ
′
(n+k)

∑
|ω|=n+k

µλ0([ω])1

{∣∣∣∣ 1nSnϕλ0(ωτ)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > 2ε/4

}
(by (6.3))

≤ ecθ′ξ
θ′kecθ′ |λ−λ0|θ

′
nµλ0

({
ω :

∣∣∣∣ 1nSnϕλ0(ω)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > ε/4

})
(by (H1) and bαk < ε/4).

There are actually two potentials which play a role in the dimension: ϕλ and φλ(ω) =

− log |(fλ
ω1
)′(Πλ(σω))|, in view of (1.31) and χµλ

(Fλ) =
´
φλdµλ. Observe that we may

assume that φλ also satisfies (H1) and (H2), and so both λ 7→ hµλ
and λ 7→ χµλ

(Fλ) are
θ′′-Hölder with 0 < θ′′ < θ, with some constant cθ′′ > 0. Moreover, (6.5) also holds for φλ.

Now, we construct the common Egorov set as follows: Let

Ωc
n :=

{
ω ∈ An : there exists τ ∈ [ω] such that

∣∣∣∣ 1nSnϕλ0(τ)−
ˆ
ϕλ0dµλ0

∣∣∣∣ > 4ε

}
.

If ω ∈ Ωc
n then for every τ ∈ [ω],∣∣∣∣ 1nSnϕλ(τ)−

ˆ
ϕλdµλ

∣∣∣∣ > ε (by the choice λ ∈ Bξ(λ0)),

and so µλ(Ω
c
n) ≤ Ce−ns/2 for every λ ∈ Bξ(λ0) and n ≥ 1. Let nk := k and mk = n1+. . .+nk.

Finally, for every K ≥ 1 let

AK = ΩmK
× ΩnK+1

× ΩnK+2
× · · · ⊂ Σ.
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Clearly, by (6.5) and the shift invariance of µλ we have

µλ(A
c
K) ≤ µλ(Ω

c
mK

)+
∞∑
k=1

µλ(ΩmK
×ΩnK+1

×· · ·×Ωc
nK+k

) ≤ Ce−mKs/2+
∞∑
k=1

Ce−nK+ks/2 → 0,

as K → ∞, uniformly in λ ∈ Bξ(λ0), which shows (1) in Proposition 6.1. On the other hand,
for every ω ∈ AK and for every n ≥ mK and every λ ∈ Bξ(λ0),

(6.6)
∣∣∣∣ 1nSnϕλ(ω)−

ˆ
ϕλdµλ

∣∣∣∣ ≤ 6ε.

Hence, by (1.31), (1.32) and (6.6)

Eγ(µλ|AK
, dλ) =

∞∑
n=0

∑
|ω|=n

∑
i ̸=j∈A

|fλ
ω (X)|−γµλ|AK

([ωi])µλ|AK
([ωj])

≤
∞∑
n=0

∑
|ω|=n

e−n(hµλ
−6ε−γ(χµλ

+6ε))µλ|AK
([ω]) <∞

if hµλ
−6ε

χµλ
+6ε

> γ. This completes the proof of (2) in Proposition 6.1.
Finally, let ω ∈ AmL for some L ≥ K. We may assume without loss of generality that

ω ∈ ΩmK
× ΩnK+1

× · · · × ΩnL
. Then

µλ([ω] ∩ AK) = µλ([ω])−
∞∑

p=L+1

∑
τ∈ΩmK

×···×Ωc
np

µλ([ωτ ]).

For short, let bp(λ) := 1
µλ([ω])

∑
τ∈ΩmK

×···×Ωc
np
µλ([ωτ ]). By the quasi-Bernoulli property of the

Gibbs measures and µλ0(Ω
c
n) ≤ Ce−ns/2, we have that bp(λ0) ≤ e−nps/2. Hence,

µλ([ω] ∩ AK)

µλ0([ω] ∩ AK)
=
µλ([ω])

µλ′([ω])
·
1−∑∞

p=L+1 bp(λ)

1−∑∞
p=L+1 bp(λ0)

≤ ecθ′ |λ−λ0|θ
′
mL

1−∑∞
p=L+1 e

−cθ′ |λ−λ0|θ
′
(mp+mL)bp(λ0)

1−∑∞
p=L+1 bp(λ0)

(by (6.3))

≤ ecθ′ |λ−λ0|θ
′
mL

1−∑∞
p=L+1 e

−cθ′ |λ−λ0|θ
′
(mp+mL)e−nps/2

1−∑∞
p=L+1 e

−nps/2

≤ ecθ′ |λ−λ0|θ
′
mLe

1−∑∞
p=L+1(mp+mL)e−nps/2

1−∑∞
p=L+1

e−nps/2
cθ′ |λ−λ0|θ

′

(by the Mean Value Theorem)

≤ ecθ′ |λ−λ0|θ
′
mLe

mL
1

1−∑∞
p=1 e−nps/2

cθ′ |λ−λ0|θ
′

=: ec
′|λ−λ0|θ

′
mL .

For general ω ∈ Σ∗ with |ω| ≥ mK , taking L ≥ K such that mL < |ω| ≤ mL+1, we get

µλ([ω] ∩ AK) =
∑

|τ |=mL+1−|ω|

µλ([ωτ ] ∩ AK)

≤ ec
′|λ−λ0|θ

′
mL+1

∑
|τ |=mL+1−|ω|

µλ0([ωτ ] ∩ AK)

≤ e
c′|λ−λ0|θ

′ mL+1
mL

|ω|
µλ0([ω] ∩ AK),

which completes the proof of (3) in Proposition 6.1. □
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Appendix A. Various notions of dimension

In this paper we focus on the absolute continuity and Hausdorff dimension of families of
invariant measures. To do so we frequently use two other dimensions of a measure: the
correlation and Sobolev dimensions.

Definition A.1. Let (X, ρ) be a complete metric space. For a Borel set A ⊂ X we write
M(A) for the collection of Borel measures µ satisfying

(1) The support spt(µ) ⊂ A,
(2) spt(µ) is compact, and
(3) 0 < µ(A) <∞.

Moreover, we denote the set of Borel probability measures on A by P(A).

A.1. The local and Hausdorff dimensions of a measure. Let µ ∈ M(X), where (X, ρ)

is a complete metric space. The Hausdorff dimension of the measure µ is

(A.1) dimH µ := inf {dimHA : µ(X \ A) = 0} , and dimHµ := inf {dimHA : µ(A) > 0} .
This implies that dimH µ ≤ dimHA. One way to give effective bounds for dimH µ is to
estimate the local dimensions of µ. The lower local dimension of µ at x ∈ A is:

(A.2) dim(µ, x) := lim inf
n→∞

log µ(B(x, r))

log r
.

The upper local dimension dim(µ, x) of µ at x, is defined in an analogous way. We say that
the measure µ is exact dimensional if the limit lim

r↓0
log µ(B(x,r))

log r
exists and is constant µ-almost

surely. This constant is denoted by dimµ. A well known characterization of dimH µ is as
follows:

(A.3) dimH µ = esssup
x∼µ

dim(µ, x) and dimHµ = essinf
x∼µ

dim(µ, x).

Another effective way to give lower bound on dimH µ is to estimate the so-called correlation
dimension of µ.

A.2. Correlation and Sobolev dimensions of a measure. Let (X, ρ) be a complete
metric space, let µ be a Borel measure on X, and α > 0. Define the α-energy as

(A.4) Eα(µ, d) =
¨

ρ(x, y)−αdµ(x)dµ(y).

Define the correlation dimension of µ with respect to the metric ρ as

dimcor(µ, ρ) = sup{α > 0 : Eα(µ, d) <∞}.
If µ is a Borel measure on Rd with the Euclidean metric, then the correlation dimension and
the α-energy of µ are denoted by dimcor(µ) and Eα(µ). In this case we have

(A.5) dimcor(µ) ≤ dimHµ ≤ dimH µ.

Moreover, for a Borel set A ⊂ Rd we have

(A.6) dimHA = sup {s : ∃ µ ∈ M(A), Es(µ) <∞} .
From now on we assume that ν is a finite Borel measure on R. To define the Sobolev
dimension of ν, first we recall that the Fourier transform of ν is defined by ν̂(ξ) =

´
eiξxdν(x).

The homogenous Sobolev norm of a finite Borel measure ν, for γ ∈ R, is

∥ν∥22,γ =

ˆ
R
|ν̂(ξ)|2|ξ|2γdξ.
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If ∥ν∥22,γ <∞ then we say that ν has a fractional derivative of order γ in L2. The
Sobolev dimension is defined as follows:

(A.7) dimS ν := sup

{
α ∈ R :

ˆ
R
|ν̂(ξ)|2(1 + |ξ|)α−1dξ <∞

}
.

It is well known (see [13, Section 5.2]) that if 0 ≤ dimS ν ≤ ∞, for α > 0, then we have

(A.8)
ˆ
R
|ν̂(ξ)|2(1 + |ξ|)α−1dξ <∞ ⇐⇒

ˆ
R
|ν̂(ξ)|2|ξ|α−1dξ = ∥ν∥2

2,α−1
2
<∞.

The Sobolev energy of the measure ν of degree α is

(A.9) Iα :=

ˆ
R
|ν̂(ξ)|2|ξ|α−1dξ.

Then by (A.7) and (A.8) we have dimS ν = sup {s : Is(ν) <∞}, see [13, p.74]. The con-
nection between the Sobolev energy Is(ν) and the α-energy defined in (A.4) is as follows: If
s ∈ (0, 1) then there exists a constant γ = γ(s) > 0 such that for every finite Borel measure
ν on R we have (see [13, Theorem 3.10])

(A.10) Es(ν) = γ · Is(ν).

This identity does not extend to s = 1 (see [13, p.74] ).

Lemma A.2. Let ν be a finite Borel measure on R1.

(1) If 0 < dimS ν < 1 then dimS ν = dimcor(ν).
(2) If dimS ν = σ > 1 then

(a) ν is absolutely continuous with Radon-Nikodym derivative in L2(R),
(b) ν has fractional derivatives of order σ−1

2
> 0 in L2, see [13, Theorem 5.4].

Appendix B. The precise statements of our assumptions

(MA1) the maps fλ
j are C2+δ-smooth on X with M1 = sup

λ∈U
sup
j∈A

{∥∥∥ d2

dx2f
λ
j

∥∥∥
∞

}
< ∞ and there

exist constants C1, C2 > 0 such that∣∣∣∣ d2dx2fλ
j (x)−

d2

dx2
fλ
j (y)

∣∣∣∣ ≤ C1|x− y|δ and
∣∣∣∣ d2dx2fλ

j (x)−
d2

dx2
fλ′
j (x)

∣∣∣∣ ≤ C2|λ− λ′|δ

hold for all x, y ∈ X, j ∈ A, λ, λ′ ∈ U .

(MA2) the maps λ 7→ fλ
j (x) are C1+δ-smooth on U and there exists a constant C3 > 0 such

that ∣∣∣∣ ∂∂λifλ
j (x)−

∂

∂λi
fλ′
j (x)

∣∣∣∣ ≤ C3|λ− λ′|δ

holds for all x ∈ X, j ∈ A, λ, λ′ ∈ U, 1 ≤ i ≤ d.

(MA3) the second partial derivatives ∂2

∂x∂λi
fλ
j (x),

∂2

∂λi∂x
fλ
j (x) exist and are continuous on U×X

(hence equal) withM2 = sup
1≤i≤d

sup
j∈A

sup
λ∈U

∥∥∥ ∂2

∂λi∂x
fλ
j (x)

∥∥∥
∞
<∞, and there exist constants

C4, C5 > 0 such that∣∣∣∣ ∂2

∂x∂λi
fλ
j (x)−

∂2

∂x∂λi
fλ
j (y)

∣∣∣∣ ≤ C4|x− y|δ and
∣∣∣∣ ∂2

∂x∂λi
fλ
j (x)−

∂2

∂x∂λi
fλ′
j (x)

∣∣∣∣ ≤ C5|λ− λ′|δ

hold for all x, y ∈ X, j ∈ A, λ, λ′ ∈ U and 1 ≤ i ≤ d.
38



References

[1] B. Bárány, K. Simon B. Solomyak and A. Śpiewak: Typical absolute continuity for classes of dy-
namically defined measures. Advances in Mathematics, Volume 399, 2022, 108258, ISSN 0001-8708,
https://doi.org/10.1016/j.aim.2022.108258.

[2] B. Bárány: On iterated function systems with place-dependent probabilities. Proc. Amer. Math. Soc. 143
(2015), no. 1, 419–432.

[3] B. Bárány, I. Kolossváry, M. Rams and K. Simon: Hausdorff measure and Assouad dimension of generic
self-conformal IFS on the line. Proceeding of the Royal Society Edinburgh 151, (2021) no. 6, 2051–2081.

[4] B. Bárány, K. Simon and B. Solomyak: Self-Similar and Self-Affine Sets and Measures., Surv. Monogr.
Providence, RI: American Mathematical Society (AMS), 2023.

[5] B. Bárány and M. Rams: Dimension maximizing measures for self-affine systems. Trans. Amer. Math.
Soc. 370 (2018), no. 1, 553–576.

[6] R. Bowen: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Second revised edition.
With a preface by David Ruelle. Edited by Jean-René Chazottes. Lecture Notes in Mathematics, 470.
Springer-Verlag, Berlin, 2008.

[7] K. J. Falconer:Techniques in Fractal Geometry, Wiley, 1997.
[8] A. H. Fan and K.-S. Lau: Iterated Function System and Ruelle Operator, J. Math. Anal. & Appl. 231

(1999), 319–344.
[9] D.-J. Feng: Lyapunov exponents for products of matrices and multifractal analysis. I. Positive matrices,

Israel J. Math. 138 (2003), 353–376.
[10] M. Hochman: On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. (2)

180 (2014), no. 2, 773–822.
[11] M. Hochman, B. Solomyak: On the dimension of Furstenberg measure for SL2(R) random matrix

products., Invent. Math. 210 (2017), no.3, 815–875.
[12] P. Mattila: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability.Cambridge

Stud. Adv. Math., 44 Cambridge University Press, Cambridge, 1995.
[13] P. Mattila: Fourier analysis and Hausdorff dimension. Cambridge Studies in Advanced Mathematics,

150. Cambridge University Press, Cambridge, 2015. xiv+440 pp. ISBN: 978-1-107-10735-9
[14] Y. Peres and W. Schlag: Smoothness of projections, Bernoulli convolutions, and the dimension of

exceptions. Duke Math. J. 102 (2000), no. 2, 193–251.
[15] Y. Pesin: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological

properties, Erg. Th. and Dyn. Sys. 12 (1992), 123-151.
[16] A. Rapaport: Proof of the exact overlaps conjecture for systems with algebraic contractions. Ann. Sci.

Éc. Norm. Supér. vol. 55, no. 5 (2022) 1357-1377,
[17] P. Shmerkin and B. Solomyak: Zeros of {−1, 0, 1} power series and connectedness loci for self-affine sets.

Experiment. Math. 15 (2006), no. 4, 499–511.
[18] B. Solomyak: Notes on the Transversality Method for Iterated Function Systems. A Survey. Mathematical

and Computational Applications. 2023; 28(3):65. https://doi.org/10.3390/mca28030065
[19] B. Solomyak, Y. Takahashi: Diophantine Property of Matrices and Attractors of Projective Iterated

Function Systems in RP1. International Mathematics Research Notices. 16 (2021), 12639–12669.
[20] L.-S. Young: Large deviations in dynamical systems. Trans. Amer. Math. Soc. 318 (1990), no. 2, 525–543.

39


	1. Introduction
	1.1. Hyperbolic iterated function systems on the line
	1.2. Dimension of the attractor of a hyperbolic IFS. The non-overlapping case
	1.3. Dimension of invariant measures for a hyperbolic IFS. The non-overlapping case
	1.4. Gibbs measures
	1.5. The self-similar case
	1.6. Linear fractional IFS's
	1.7. Families of Cr-smooth hyperbolic IFS's

	2. Parameter-dependent measures
	2.1. Natural measures
	2.2. IFS's with place dependent probabilities

	3. Main results: projections of parameter-dependent measures
	4. Dimension - on the proof of Theorem 3.3
	5. Absolute continuity - on the proof of Theorem 3.4
	5.1. First approach
	5.2. Sobolev dimension
	5.3. The 1-parameter case
	5.4. Discretization and ``adjustment kernel''.
	5.5. Proof sketch of Proposition 5.6
	5.6. The multiparameter case

	6. Families of Gibbs measures have property (M) – on the proof of Theorem 3.1
	Appendix A. Various notions of dimension
	A.1. The local and Hausdorff dimensions of a measure
	A.2. Correlation and Sobolev dimensions of a measure

	Appendix B. The precise statements of our assumptions
	References

