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Abstract

In a recent article, Rapaport showed that the there is no dimension drop for exponentially
separated analytic IFSs on the real line. We show that the set of such exponentially separated
IFSs in the space of analytic IFSs contains an open and dense set in the C2 topology. Moreover,
we give a sufficient condition for the IFS to be exponentially separated which allows us to
construct explicit examples which are exponentially separated. The key technical tool is the
introduction of the dual IFS which we believe has significant interest in its own right. As an
application we also characterise when an analytic IFS can be conjugated to a self-similar IFS.

1 Introduction and main results

The geometric properties of attractors of iterated function systems have been extensively studied
in recent decades. An iterated function system (IFS) Φ is a finite collection of strictly contracting
self-maps (fi)i∈I on a complete separable metric space X. By a result of Hutchinson [19], there
exists a unique non-empty compact set Λ satisfying the invariance

Λ =
⋃
i∈I

fi(Λ). (1.1)

Similarly, one can consider measures invariant under this relation in the following sense. Given an
IFS and a non-degenerate probability vector p = (pi)i∈I , i.e.

∑
i∈I pi = 1 and all pi > 0, there

exists a unique Borel probability measure µp supported on Λ such that

µp =
∑
i∈I

pi · µp ◦ f−1
i . (1.2)

The size of such sets and measures, as measured through dimension, is one of the main focus points
of fractal geometry. Answering questions in such generality is generally unfeasible and one often
restricts to the simpler setting of X = Rd and where the fi are simpler mappings such as similarities,
affinities, or conformal maps.

Hutchinson [19] considered the Hausdorff dimension of the attractor of IFSs consisting of simi-
larities on Rd under a separation condition, the open set condition (OSC), and provided a formula
for the dimension of the sets depending solely on the contraction ratios of the similarities. In par-
ticular, the OSC holds under the stronger assumption of the strong separation condition (SSC).
We say that the IFS Φ = (fi)i∈I satisfies the SSC if

fi(Λ) ∩ fj(Λ) = ∅ whenever i 6= j.
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Hutchinson also showed that this value provides an upper bound for the dimension regardless of the
overlaps of images of Λ under the fi. Bowen [10] and Ruelle [27] extended this result to attractors
of C1+α conformal mappings, with the natural upper bound known as the conformality dimension.
Similar question can be asked for the measure, see Cawley and Mauldin [11], and Patschke [22], for
the self-similar and self-conformal setting.

The actual value of the Hausdorff dimension of the attractor may drop below this natural upper
bound. This occurs, for instance, when the maps have exact overlaps and it is an open problem
(the dimension drop conjecture) whether this is the only mechanism for a dimension drop to occur,
see Simon [31]. It was since verified that the conformality dimension coincides with the Hausdorff
dimension, at least typically, for several notions of typicality.

Simon, Solomyak, and Urbański [29, 30] considered parametrised families of C1+α IFSs and
showed that under some technical assumptions (transversality condition) there is no dimension
drop for the set and measure for almost every parameter with respect to the Lebesgue measure.
Relying on transversality methods, Simon and Solomyak [32] showed that for self-similar sets the
set of exceptions where a dimension drop occurs is a meagre set in the Baire category sense.

Other approaches, involving different notions of dimension or separation conditions were also
considered, see Zerner [36]; Lau and Ngai [20]; Ngai and Wang [21]; Fraser, Henderson, Olson, and
Robinson [15]; and Angelevska, Käenmäki, and Troscheit [4]; and references therein.

A major breakthrough was made by Hochman [16] who showed that no dimension drop occurs
for self-similar sets and measures on the line under the assumption of the exponential separation
condition (ESC). The ESC is a condition that is satisfied under many natural assumptions and also
holds for many typical systems including those described above. For instance, it was shown in [16]
that if the parameters defining the self-similar IFS Φ are algebraic and Φ has no exact overlaps
then the ESC holds. The algebraic condition has since been relaxed in certain settings, see [14, 24,
25, 35]. Generalisations have also been made to higher dimensions by Hochman [17] and for special
non-linear maps, Möbius transformations, by Hochman and Solomyak [18].

Recently, Rapaport [23] extended the concept of the exponential separation condition to general
analytic self-conformal iterated function systems. Furthermore, under this condition, Rapaport
showed that the dimension of the set and the measure does not drop. For analytically parametrised
systems of analytic self-conformal IFSs, Rapaport verified that the ESC holds for almost every
choice of parameter in the sense of Hausdorff dimension. However, he could not provide any concrete
examples other than those already known.

The main purpose of this article is to provide verifiable sufficient conditions that guarantee
that the ESC holds. Further, we show that this property holds for an open and dense set of IFSs
with respect to the C2 topology. We will also explore when analytic self-conformal IFS can be
conjugated to self-similar systems. The methods involve constructing a dual IFS, which we believe
is of independent interest.

Acknowledgements. BB acknowledges support from grant NKFI K142169, and grant NKFI
KKP144059 Fractal geometry and applications Research Group. IK is supported by the European
Research Council Marie Skłodowska-Curie Actions Postdoctoral Fellowship #101109013 and the
Hungarian NRDI Office grant K142169. ST acknowledges funding from the Lisa & Carl-Gustav
Esseens Mathematics Fund.

2



1.1 Notations and main results

For convenience we write I = [0, 1]. Throughout, we fix ε > 0 and we define the class Sωε (I)
consisting of maps f : R → R with the following properties:

(A) f is complex analytic in the open ε complex neighbourhood B2ε of I,

(B) f(I) ⊆ I and f(Bε) ⊆ Bε,

(C) 0 < |f ′(x)| < 1 for all x ∈ Bε.

We write
d2(f, g) = sup

x∈I
|f(x)− g(x)|+ sup

x∈I
|f ′(x)− g′(x)|+ sup

x∈I
|f ′′(x)− g′′(x)|

for the C2 metric and equip the space Sωε (I) with the C2 topology induced by d2. We note that this
space is Polish, i.e. a complete and separable space. We also consider the space SN of cardinality
N IFSs Φ = (fi)

N
i=1 of maps fi ∈ Sωε ([0, 1]). With slight abuse of notation, let

d2((fi)
N
i=1, (gi)

N
i=1) := max

i∈I
d2(fi, gi)

be the C2 metric on the space of IFSs SN . Note that we consider an IFS to be an ordered tuple of
maps, hence the single maximising index.

From the finite alphabet I := {1, . . . , N} we construct infinite words i = (i1, i2, i3, . . . ) ∈ Σ :=
IN and finite words i = (i1, . . . , ik) ∈ Σk := Ik of length k ∈ N, where Σ0 = {∅} is just the empty
word. The length of i ∈ Σk is |i| = k and for i ∈ Σ it is |i| = ∞. We denote the set of all finite
words by Σ∗ =

⋃∞
k=0Σk. For i 6= j ∈ Σ ∪ Σ∗ we write i ∧ j to denote the longest k ∈ Σ∗ such that

k = (i1, . . . , i|k|) = (j1, . . . , j|k|). For any finite word (i1, . . . , in) ∈ Σ∗, we write

fi1,...,in := fi1 ◦ · · · ◦ fin ,

where by convention f∅ = Id. The natural projection π : Σ → R defined by

π(i) := lim
n→∞

fi1,...,in(0) (1.3)

satisfies π(Σ) = Λ, where Λ is the attractor satisfying the invariance in Eq. (1.1). Following Ra-
paport [23], we formally define the exponential separation condition for analytic self-conformal
IFSs.

Definition 1.1. We say that the IFS Φ = (fi)i∈I satisfies the exponential separation condition
(ESC) if there exists c > 0 such that for infinitely many n ∈ N,

sup
x∈[0,1]

|fi(x)− fj(x)| ≥ cn

for all distinct i, j ∈ Σn. If the ESC does not hold, then we say that Φ has super-exponential
condensation.

Definition 1.2. We say that the IFS Φ = (fi)i∈I satisfies the strong exponential separation condi-
tion (SESC) if there exists c > 0 such that

sup
x∈[0,1]

|fi(x)− fj(x)| ≥ cn
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for all i, j ∈ Σn and n ∈ N, where i 6= j. If the SESC does not hold, i.e. there exist a sequence (ηn)n
and a subsequence n` ∈ N and distinct words i, j ∈ Σn`

such that log(ηn)/n→ −∞ and

sup
x∈[0,1]

|fi(x)− fj(x)| ≤ ηn`
,

then we say that Φ has weak super-exponential condensation

Definition 1.3. We say that the IFS Φ = (fi)i∈I has exact overlaps if there exist distinct i, j ∈ Σ∗
such that fi(x) = fj(x) for every x ∈ Λ.

We remark that the separation conditions satisfy the implications

SSC ⇒ SESC ⇒ ESC ⇒ no exact overlaps.

The main objective of this article is to give generic and explicit conditions under which the
ESC holds for analytic IFSs. Roughly speaking, our first main result says that the property that
an analytic IFS satisfies the SESC is a generic property in a topological sense.

Theorem 1.4. The set of IFSs {Φ: Φ satisfies SESC} ⊆ SN contains an open and dense subset
in the C2 topology.

Our second main result provides a sufficient condition under which an analytic IFS satisfies
the SESC. We demonstrate in Section 1.2.2 that it can be used to construct completely explicit
examples of analytic IFSs that satisfy the SESC. In order to state the result, we introduce more
notation. Since we will often write finite words “backwards”, we adopt the convention that for
n 6= m ∈ N,

inm :=

{
(im, im+1, . . . , in−1, in), if m < n;

(im, im−1, . . . , in+1, in, ) if m > n,

where |i| ≥ max{m,n}. This will most often be used in the form in1 = (i1, . . . , in) or i1n = (in, . . . , i1).
Thus for compositions of maps fi1n = fin ◦ · · · ◦fi1 . Sometimes either m or n is 0. In these cases, the
convention is that both in0 and i0m are the empty word ∅. By default, if we simply write i ∈ Σ∗∪Σ then
the subscripts are understood to be in increasing order starting from 1 until |i|. The concatenation
of two finite words is ij, while slightly abusing notation i∞ ∈ Σ is the infinite word obtained by
concatenating i ∈ Σ∗ infinitely many times. For any i ∈ Σ ∪ Σ∗, we introduce the function

Hi(x) = H
i
|i|
1

(x) :=

|i|∑
n=1

f ′′in
f ′in

(fi1n−1
(x)) · f ′i1n−1

(x), (1.4)

where the order of the indices is important. At this point the motivation for Hi(x) may be unclear,
but will be made apparent in Section 2. We can now state our second main result.

Theorem 1.5. Let Φ ∈ SN . If for all distinct i, j ∈ Σ ∪ Σ∗ with |i| = |j| we have

sup
x∈[0,1]

|Hi(x)−Hj(x)| > 0, (1.5)

then Φ satisfies the SESC.
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Apart from its practical use, Theorem 1.5 is also a crucial step in proving Theorem 1.4 and
shows that the C2 topology is the natural choice for typicality. This is because Eq. (1.5) cannot
be satisfied for linear maps, having f ′′i = 0, and the C2 is the finest topology for which we can
distinguish strictly conformal maps sufficiently, see also Section 1.2.3.

We shall see in Theorem 2.2 that Eq. (1.5) has an elegant interpretation as an analog of the
SSC on a larger space of IFSs which we further elaborate on in Section 2. Theorem 1.5 is proved
in Section 3, while the proof of Theorem 1.4 is postponed until Section 4.

1.2 Discussion

We give further context to our main results. We first discuss the dimension theoretic implications
of our main results and give explicit examples of IFSs that satisfy the SESC. We end the section
by discussing a link to conjugation with self-similar IFSs.

1.2.1 Dimension theoretic consequences

Given a non-degenerate probability vector p and a self-conformal IFS Φ ∈ SN , we define the
entropy of p by

H(p) := −
∑
i∈I

pi log pi;

the Lyapunov exponent associated to p and Φ by

χ = χ(Φ,p) := −
∑
i∈I

pi

∫
log
∣∣f ′
i (x)

∣∣dµp(x),
where µp is the self-conformal measure defined in Eq. (1.2). For t ≥ 0, we define the pressure
function

P (t) = PΦ(t) := lim
n→∞

1

n
log

∑
i∈In

(
sup
x∈[0,1]

∣∣(fin1 )′(x)∣∣)t,
which is well defined by sub-additivity. It is convex, strictly decreasing and continuous, moreover,
there exists a unique real s(Φ) for which P (s(Φ)) = 0. Following [9, Chapter 14], we call s(Φ) the
conformality dimension associated to Φ.

For any self-conformal set and self-conformal measure supported on it, the bounds

dimH Λ ≤ min{1, s(Φ)} and dimµp ≤ min{1,H(p)/χ} for every p, (1.6)

hold, regardless of possible overlaps between the pieces fi(Λ). Here, we denote by dimH the Hausdorff
dimension of a set and measure, see [13] for definitions and basic properties.

Rapaport’s main result of [23] can be stated in the following way.

Theorem 1.6 ([23]). Let Φ ∈ SN be such that its attractor is not a singleton. If Φ satisfies the
ESC, then there is equality in Eq. (1.6).

We note that the assumption that the attractor is not a singleton is equivalent to the existence
of f, g ∈ Φ with distinct fixed points. Combining our Theorem 1.4 with Theorem 1.6 immediately
gives the following corollary.
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Corollary 1.7. The set {Φ: Φ satisfies equality in Eq. (1.6)} ⊆ SN contains an open and dense
subset in the C2 topology.

This can be interpreted as follows; a typical analytic self-conformal IFS, in a strong topological
sense, has no dimension drop.

Another potential direction to consider is that of Lq dimensions, a more fine-grained notion that
captures the measure’s regularity. Building on the methods of [16], Shmerkin [28] showed that a
natural analogue of Theorem 1.6 exists for the Lq dimension of self-similar measures. Our typicality
result does not extend to the Lq dimension of self-conformal measures in general. Below, we give an
explicit example of an IFS that satisfies the SESC, but the natural measure exhibits a dimension
drop of the Lq dimension for large q.

1.2.2 Concrete examples

Similar to the self-similar setting, it would be desirable to have conditions under which one could
determine whether a concrete IFS or a parametrised family of IFSs satisfies the (S)ESC or not also in
the analytic setting. Rapaport [23, Corollary 1.4], based on a result of Solomyak and Takahashi [34],
showed that under a mild non-degeneracy condition, given a one-parameter family of analytic IFSs,
the set of parameters for which the ESC fails has zero Hausdorff dimension. Concrete families of
IFSs can be constructed to which this result applies, however, it still does not explicitly say whether
an IFS is in the exceptional set of parameters or not. In the following, we give an easy to verify
sufficient condition and demonstrate on an explicit analytic IFS that it satisfies the SESC.

Given an IFS Φ = (fi)i∈I ∈ SN let

cmin := inf
x∈[0,1]
i∈I

|f ′i(x)| and cmax := sup
x∈[0,1]
i∈I

|f ′i(x)|. (1.7)

We note that by compactness arguments, 0 < cmin ≤ cmax < 1.

Proposition 1.8. Let Φ = (fi)i∈I ∈ SN be an IFS. Suppose that there exists α > 0 such that for
each i 6= j ∈ I there exists xi,j ∈ [0, 1] with∣∣∣∣∣f ′′i (xi,j)f ′i(xi,j)

−
f ′′j (xi,j)

f ′j(xi,j)

∣∣∣∣∣ ≥ α.

Let
β := sup

x∈[0,1]
i∈I

∣∣∣∣f ′′i (x)f ′i(x)

∣∣∣∣ .
Then β > 0 and if α > 2β · cmax/(1− cmax), we have supx∈[0,1] |Hi(x)−Hj(x)| > 0 for all distinct
i, j ∈ Σ ∪ Σ∗ with |i| = |j|. In particular, Φ satisfies the SESC by Theorem 1.5.

Proof. First, let us show that for every i, j ∈ Σ∪Σ∗ with i1 6= j1 we have for every non-degenerate
closed interval J ⊆ [0, 1]

sup
x∈J

|Hi(x)−Hj(x)| > 0. (1.8)

Since i1 6= j1, for the particular choice of xi1,j1 , we can bound

|Hi(xi1,j1)−Hj(xi1,j1)| ≥

∣∣∣∣∣f ′′i1(xi1,j1)f ′i1(xi1,j1)
−
f ′′j1(xi1,j1)

f ′j1(xi1,j1)

∣∣∣∣∣− 2

∞∑
n=k+2

sup
x∈[0,1]

∣∣f ′i1n−1
(x)
∣∣ · sup

x∈[0,1]

∣∣∣∣f ′′in(x)f ′in(x)

∣∣∣∣
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≥ α− 2
cmax

1− cmax
· β > 0

by our assumption. Hence, Hi 6≡ Hj and using the analyticity of the maps (which will be verified
later in Lemma 2.4) Eq. (1.8) follows.

Now, let i, j ∈ Σ∪Σ∗ be distinct words such that |i| = |j| and |i∧j| = k. It follows from Eq. (1.4)
that

Hi(x)−Hj(x) = f ′i1k
(x) ·

(
H

i
|i|
k+1

(fi1k
(x))−H

j
|j|
k+1

(fi1k
(x))

)
for every x ∈ [0, 1]. As a result,

|Hi(x)−Hj(x)| ≥ ckmin ·
∣∣H

i
|i|
k+1

(fi1k
(x))−H

j
|j|
k+1

(fi1k
(x))

∣∣.
Taking supremum over x ∈ [0, 1] in both sides, the claim of the proposition follows by Eq. (1.8).

We demonstrate Proposition 1.8 on an example. Consider the IFS Φ = (f1, f2, f3) with

f1(x) :=
x

8
, f2(x) :=

x

8
+
x2

32
, and f3(x) :=

x

16
+
x2

32
+

29

32
.

Cylinder sets certainly overlap heavily since f1 and f2 have common fixed point at x = 0, while f3
has fixed point at x = 1. Simple calculations show that cmax = 3/16, moreover,

sup
x∈[0,1]
i∈I

∣∣∣∣f ′′i (x)f ′i(x)

∣∣∣∣ ≤ sup
x∈[0,1]

max
{ 1

1 + x
,

1

2 + x

}
= 1 and min

i 6=j∈I

∣∣∣∣∣f ′′i (0)f ′i(0)
−
f ′′j (0)

f ′j(0)

∣∣∣∣∣ ≥ 1

2
.

Since 1/2 − 2 · 1 · 3/13 > 0, it follows from Proposition 1.8 that Φ satisfies the SESC, and by
Corollary 1.7, we obtain dimH Λ = s(Φ), where s(Φ) is the conformality dimension of Φ, and
dimµp = H(p)/χ for every p, defined in the previous section.

Let us note that Solomyak [33] has already given an example of a non-linear conformal IFS of
linear fractional transformations with such a common fixed point structure. However, he studied
the dimension of the attractor via sufficiently large subsystems, and it was not verified that the
IFS itself satisfies the ESC.

We conclude this section by remarking that the Lq dimension of the natural measure in the
example above drops for large q. In particular, one can show that the local dimension at 0 of
the natural measure is strictly smaller than the conformality dimension s(Φ). However, if the Lq
dimension did not drop for every q > 0 then by [28, Lemma 1.7] the local dimension at every point
would be at least s(Φ), which is a contradiction. We leave the details for the interested reader.

1.2.3 Conjugation to self-similar systems

As we remarked above, assumption (1.5) of Theorem 1.5 cannot be satisfied for linear systems since
Hi(x) = 0 for all i ∈ Σ and x ∈ I. Crucially, the functions Hi(x) have a stronger relation to the
linearity and linearisability of an analytic IFS, although the definition may not at first glance reveal
this. The functions Hi can be used to determine whether an analytic IFS can be transformed into a
self-similar one through a change of coordinates. The problem of being conjugated to a linear IFS
played a significant role in the study of Fourier decay of self-conformal measures, see [1, 7] and [3,
Corollary 1.2 part 3.].

7



Definition 1.9. We say that the IFS Φ = (fi)i∈I ∈ SN is conjugated to another IFS Ψ if there
exists an analytic, invertible g : [0, 1] → R such that Ψ = (g ◦ fi ◦ g−1)i∈I .

In particular, Φ is conjugated to a self-similar IFS if there exist λi ∈ (−1, 1) \ {0}, ti ∈ R with
i ∈ I such that

fj(x) = g−1(λjg(x) + tj)

for all j ∈ I.

Definition 1.10. We say that the IFS Φ = (fi)i∈I ∈ SN is sub-conjugated to a self-similar IFS if
there exist distinct words i, j ∈ Σ∗ of the same length such that (fi, fj) is conjugated to a self-similar
IFS.

Remark 1.11. Note that we assume the conjugating function g to be analytic in Definition 1.9.
One could impose the weaker condition that f ∈ Cr([0, 1]) for all f ∈ Φ for some 2 ≤ r ≤ ∞
instead. Under this assumption, the authors of [2] show the existence of a Cr-smooth IFS which
is not Cr-conjugate to self-similar even though f ′ ≡ cΦ on Λ and f ′′ ≡ 0 for every f ∈ Φ. This
behaviour is not possible in the analytic setting since the assumption that f ′′(x) = 0 on Λ together
with analyticity already forces f to be an affine function.

We give a characterisation of when an analytic IFS is (sub-)conjugated to a self-similar IFS
using the function Hi introduced in Eq. (1.4).

Theorem 1.12. Any Φ ∈ SN is conjugated to another analytic IFS which has at least one similarity
map. Moreover, assuming that the attractor of Φ is not a singleton then

(a) Φ is conjugated to a self-similar IFS if and only if for every i, j ∈ Σ,

Hi(x) ≡ Hj(x)

for all x ∈ [0, 1];

(b) Φ is sub-conjugated to a self-similar IFS if and only if there exist distinct i, j ∈ Σ∗ of the
same length such that

H(i)∞(x) ≡ H(j)∞(x)

for all x ∈ [0, 1].

Theorem 1.12 is proved in Section 5.
Let us return to the discussion of the dimension drop conjecture. Recall that the ESC implies

that the IFS has no exact overlaps. For some time it was an important open problem whether
there exists a self-similar IFS which has no exact overlaps but has super exponential condensation.
Independently of each other, using different methods, Baker [5] and Bárány–Käenmäki [8] showed
that such examples do exist. The idea of Baker was further developed in [6] and [12]. It follows
from the work of Rapaport [24] that the examples in [5, 6, 12] further support the dimension
drop conjecture. It is natural to ask whether analytic IFSs exist which have super-exponential
condensation but no exact overlaps. We conjecture that this only occurs if the IFS is sub-conjugated
to a self-similar IFS.

Conjecture 1.13. Any analytic IFS which has super-exponential condensation but no exact overlaps
must be sub-conjugated to a self-similar IFS.

We remark that any analytic IFS with an exact overlap is sub-conjugated to a self-similar IFS,
see Theorem 2.3 and Section 5.

8



2 The key idea: the dual IFS induced by analytic functions

The central idea of our work is to construct a ‘dual’ IFS on the space of analytic functions, derived
from the mappings of the original IFS on [0, 1]. We believe this notion is of general interest in its
own right and a systematic study of it could assist in tackling other problems in the future as well.

2.1 Basic definitions and properties

Let Cωε ([0, 1]) be the set of complex analytic maps f on Bε such that f : I → R. We equip Cωε ([0, 1])
with the supremum norm ‖ · ‖∞ over Bε. Given an analytic IFS Φ = (fi)

N
i=1 ∈ SN , we ‘lift’ each

map fi to an operator Fi : Cωε ([0, 1]) → Cωε ([0, 1]) acting on the space of analytic functions by the
formula

(Fih)(x) := f ′i(x) · h(fi(x)) +
f ′′i
f ′i

(x). (2.1)

We call Φ∗ := (Fi)
N
i=1 the dual IFS of Φ. The operator Fi can be considered as a contractive

affinity map and Φ∗ as self-affine IFS on Cωε ([0, 1]). Indeed, Fi is a translation of the linear operator
h 7→ f ′i(x) · h(fi(x)), and each Fi is clearly a strict contraction in the supremum norm since
‖Fig − Fih‖∞ ≤ ‖f ′i‖∞ · ‖g − h‖∞, where ‖f ′i‖∞ < 1 by our assumption (C).

Our objective now is to establish some basic properties about the dual IFS. We first justify
calling Φ∗ an IFS by showing that it has an attractor. We use the convention that if A ⊂ Cωε ([0, 1]),
then

FiA := {Fih : h ∈ A}.

Lemma 2.1. Let Φ∗ be the dual IFS of an analytic IFS Φ ∈ SN . There exists a unique, non-empty,
compact set Λ∗ ⊂ Cωε ([0, 1]), which we call the attractor of Φ∗, that satisfies

Λ∗ =
⋃
i∈I

FiΛ
∗.

Proof. For L > 0, we define

Cωε,L([0, 1]) :=
{
g ∈ Cωε ([0, 1]) : |g(x)| ≤ L for every x ∈ Bε

}
,

and Cωε ([0, 1]) =
⋃∞
L=1 Cωε,L([0, 1]). It is well-known that the space of continuous and bounded maps

is complete with respect to the supremum distance. By applying Morera’s Theorem [26, Theorem
10.17], it follows that Cωε,L([0, 1]) is a complete and separable metric space for every L > 1.

Since ‖Fih‖∞ ≤ ‖f ′′i /f ′i‖∞ + ‖f ′i‖∞‖h‖∞, there exists L > 0 sufficiently large such that
‖Fih‖∞ ≤ L if ‖h‖∞ ≤ L. Hence, the claim of the lemma follows by [19].

Let us recall the strong separation condition (SSC) in the context of dual IFS Φ∗. The SSC
holds if FiΛ∗ ∩ FjΛ∗ = ∅ for every i 6= j in I, that is, there is no h ∈ Λ∗ such that h ∈ FiΛ

∗ and
h ∈ FjΛ

∗. Using the dual IFS Φ∗ and the attractor Λ∗ of the dual IFS, Theorem 1.5 can be restated
in the following elegant form.

Theorem 2.2. An IFS Φ ∈ SN satisfies the SESC if its dual IFS Φ∗ satisfies the SSC.

Theorem 1.12 also has an equivalent formalisation as follows:

9



Theorem 2.3. An IFS Φ ∈ SN can be conjugated to a self-similar IFS if and only if the attractor
of its dual IFS Φ∗ is a singleton.

Moreover, an IFS Φ ∈ SN can be sub-conjugated to a self-similar IFS if and only if its dual
IFS Φ∗ has an exact overlap.

We postpone the explicit proof of Theorem 2.2 until the end of Section 3 and Theorem 2.3 until
Section 5.

For i ∈ Σ∗, an induction argument readily gives that the composition Fih = Fi1 ◦ . . . ◦ Fi|i|h is
equal to

(Fih)(x) = f ′i1|i|
(x) · h(fi1|i|(x)) +

|i|∑
n=1

f ′i1n−1
(x) ·

f ′′in
f ′in

(fi1n−1
(x)).

Observe that for every i ∈ Σ∗, taking h equal to the constant 0 function gives (Fi0)(x) ≡ Hi(x),
which was introduced in Eq. (1.4). Moreover, for every i ∈ Σ

Hi(x) = lim
n→∞

(Fin1
h)(x)

in the uniform sense for every h ∈ Cωε ([0, 1]). With this interpretation the function Hi(x) is an
analog of the natural projection π(i) from Eq. (1.3), and this motivates us to call Hi(x) the dual
natural projection. The following further justifies this nomenclature.

Lemma 2.4. For every i ∈ Σ, we have Hi ∈ Cωε ([0, 1]). Moreover, the map i 7→ Hi is Hölder
continuous, that is, there exists K > 0 such that for every distinct i, j ∈ Σ,

‖Hi −Hj‖∞ ≤ c|i∧j|maxK.

In particular, Λ∗ = {Hi(x) : i ∈ Σ}.

Proof. From the properties in (A) to (C), it follows that the maps

f ′′j
f ′j
, fi, and f ′i

are analytic on B2ε for all i ∈ Σ∗ and j ∈ I. Hence, there exists C > 0 such that∣∣∣∣∣f ′′jf ′j (z)
∣∣∣∣∣ ≤ C and 0 < cmin ≤ |f ′j(z)| ≤ cmax < 1

for all j ∈ I and z ∈ Bε, Hin1
converges uniformly to Hi on Bε and Hi is analytic on Bε by Morera’s

theorem [26, Theorem 10.17]. In particular, there exists K > 0 such that ‖Hi‖∞ ≤ K for every
i ∈ Σ. Hence,

‖Hi −Hj‖∞ ≤ c|i∧j|max2K.

Using the Hölder-continuity, {Hi(x) : i ∈ Σ} is compact, invariant with respect to the dual IFS Φ∗,
and by the uniqueness of the attractor, Lemma 2.1, the last assertion follows.

We now define cylinder sets for the dual IFS. For two real numbers a, b, their convex hull is
the interval conv(a, b) = [min{a, b},max{a, b}]. Slightly abusing notation, a constant k ∈ R also
denotes the constant function on Cωε ([0, 1]). A cylinder set on Cωε ([0, 1]) is given by

(k,K) :=
{
g ∈ Cωε ([0, 1]) : k < g(x) < K for every x ∈ [0, 1]

}
.

10



0 1

Fj(k,K)

Fi(k,K)

0 1

Fj(k,K)

Fi(k,K)

Figure 1: Illustration of disjoint cylinders on the left and ones which are not disjoint on the right.

Since each Fi is a contraction, there exists k < K such that

k < min
i∈I

{ min
x∈[0,1]

(Fik)(x), min
x∈[0,1]

(FiK)(x)} and K > max
i∈I

{ max
x∈[0,1]

(Fik)(x), max
x∈[0,1]

(FiK)(x)},

moreover, Fi((k,K)) ⊆ (k,K) for every i ∈ I. The image of any cylinder (k,K) under Fi for any
i ∈ Σ∗ has width

max
x∈[0,1]

|f ′i(x)| · (K − k) < c|i|max(K − k),

where cmax is as in Eq. (1.7).
We say that two cylinder sets Fi(k,K) and Fj(k,K) are disjoint, which we denote by Fi(k,K)∩

Fj(k,K) = ∅, if there exists x ∈ [0, 1] such that

conv
(
(Fik)(x), (FiK)(x)

)
∩ conv

(
(Fjk)(x), (FjK)(x)

)
= ∅. (2.2)

If they are not disjoint, we write Fi(k,K) ∩ Fj(k,K) 6= ∅. See Fig. 1 for an illustration.

Lemma 2.5. The following statements are equivalent:

(a) the dual IFS Φ∗ satisfies the SSC;

(b) there exist k < K and n ≥ 1 such that Fi(k,K) ⊆ (k,K) for every i ∈ I and for every
i, j ∈ Σn with i1 6= j1 we have

Fi(k,K) ∩ Fj(k,K) = ∅;

(c) there exists δ > 0 such that for all i, j ∈ Σ with i1 6= j1 we have supx∈[0,1] |Hi(x)−Hj(x)| > δ;

(d) there exists δ > 0 such that for all i, j ∈ Σ∗ with i1 6= j1 we have supx∈[0,1] |Hi(x)−Hj(x)| > δ.

Proof. (b)⇒(a): Let k < K be such that Fi(k,K) ⊆ (k,K), and so, Λ∗ ⊆ (k,K). Thus, the
implication is clear. For the other direction, (a)⇒(b), let us argue by contradiction. That is, for
every n ≥ 1 there exist i, j ∈ Σn with i1 6= j1 such that Fi(k,K)∩Fj(k,K) 6= ∅. By the compactness
of Σ, there exist a subsequence n` and i, j ∈ Σ with i1 6= j1 such that Fi

n`
1
(k,K) ∩ Fj

n`
1
(k,K) 6= ∅

11



for every ` ≥ 1. In particular, Eq. (2.2) implies that for every x ∈ [0, 1] there exists y ∈ R such that
y ∈ conv

(
(Fi

n`
1
k)(x), (Fi

n`
1
K)(x)

)
∩ conv

(
(Fj

n`
1
k)(x), (Fj

n`
1
K)(x)

)
. Hence,

|Fi
n`
1
K(x)− Fj

n`
1
K(x)| ≤ |Fi

n`
1
K(x)− y|+ |y − Fj

n`
1
K(x)| ≤ 2cn`

max(K − k).

Thus, Hi = lim`→∞ Fi
n`
1
K = lim`→∞ Fj

n`
1
K = Hj uniformly, which contradicts to SSC.

The implications (a)⇔(c) and (a)⇔(d) follow by the compactness of Λ∗ Lemma 2.1 and the
Hölder continuity of the dual natural projection Lemma 2.4. We leave the details for the reader.

Lemma 2.6. Let Φ∗ be the dual IFS of an analytic IFS Φ ∈ SN such that Φ∗ satisfies the SSC.
Then there exists ε > 0 such that for every Ψ ∈ SN with d2(Φ,Ψ) < ε, the dual IFS Ψ∗ of Ψ
satisfies the SSC.

Proof. Let Φ = (fi)
N
i=1 ∈ SN . Let cmin and cmax as in Eq. (1.7) for Φ. Moreover, let C > 0 be such

that |f ′′i (x)| <
∣∣∣f ′′if ′i (x)∣∣∣ < C and

∣∣∣f ′′′i (x)f ′i(x)−f ′′i (x)
f ′i(x)

∣∣∣ < C for every i ∈ I and x ∈ [0, 1]. By using the
continuity of the maps and its derivatives, one can choose ε > 0 sufficiently small such that for
every Ψ = (gi)

N
i=1 ∈ SN with d2(Φ,Ψ) < ε,

cmin ≤ |g′i(x)| ≤ cmax and |g′′i (x)| <
∣∣∣∣g′′ig′i (x)

∣∣∣∣ < C

for every i ∈ I and x ∈ [0, 1]. Moreover, for every x ∈ [0, 1]∣∣∣∣f ′′if ′i (x)− g′′i
g′i
(x)

∣∣∣∣ ≤ cmax + C

c2min

d2(Φ,Ψ). (2.3)

Observe that for every i ∈ Σ∗ and x ∈ [0, 1]

|fi(x)− gi(x)| ≤ ‖f ′i1‖∞ · |f
i
|i|
2

(x)− g
i
|i|
2

(x)|+ sup
y∈[0,1]

|fi1(y)− gi1(y)|.

Thus,
sup
x∈[0,1]

|fi(x)− gi(x)| ≤
1

1− cmax
d2(Φ,Ψ). (2.4)

On the other hand, for every i ∈ Σ∗ and x ∈ [0, 1]

|f ′i(x)− g′i(x)| ≤ cmax|f ′
i
|i|
2

(x)− g′
i
|i|
2

(x)|+ c|i|−1
max |f ′i1(fi|i|2

(x))− g′i1(gi|i|2

(x))|

≤ cmax|f ′
i
|i|
2

(x)− g′
i
|i|
2

(x)|+ c|i|−1
max

(
d2(Φ,Ψ) + C|f

i
|i|
2

(x)− g
i
|i|
2

(x)|
)

≤ cmax|f ′
i
|i|
2

(x)− g′
i
|i|
2

(x)|+ c|i|−1
max

C + 1

1− cmax
d2(Φ,Ψ).

Thus, by induction
sup
x∈[0,1]

|f ′i(x)− g′i(x)| ≤ c|i|−1
max

C + 1

1− cmax
d2(Φ,Ψ). (2.5)
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Combining Eqs. (2.3) to (2.5), we get that for every i ∈ Σ∗∣∣∣∣∣f ′i1|i|−1
(x) ·

f ′′i|i|
f ′i|i|

(fi1|i|−1
(x))− g′i1|i|−1

(x) ·
g′′i|i|
g′i|i|

(gi1|i|−1
(x))

∣∣∣∣∣
≤ C|f ′i1|i|−1

(x)− g′i1|i|−1
(x)|+ c|i|−1

max

∣∣∣∣∣f
′′
i|i|

f ′i|i|
(fi1|i|−1

(x))−
g′′i|i|
g′i|i|

(gi1|i|−1
(x))

∣∣∣∣∣
≤ C|f ′i1|i|−1

(x)− g′i1|i|−1
(x)|+ c|i|−1

max

(
C
∣∣∣fi1|i|−1

(x)− gi1|i|−1
(x)
∣∣∣+ ∣∣∣∣f ′′if ′i (gi1|i|−1

(x))− g′′i
g′i
(gi1|i|−1

(x))

∣∣∣∣)
≤
(
C(C + 1) + C

1− cmax
+
cmax + C

cmin

)
c|i|−1
max d2(Φ,Ψ).

In particular, there exists C ′ > 0 depending on Φ such that

|Hi(x)− Ĥi(x)| ≤ C ′d2(Φ,Ψ), (2.6)

where Hi denotes the dual projection of Φ∗ and Ĥi denotes the dual projection of Ψ∗.
Now, if the dual IFS Φ∗ of Φ = (fi)

N
i=1 ∈ SN satisfies the SSC then by Lemma 2.5 there exists

δ > 0 such that supx∈[0,1] |Hi(x) −Hj(x)| ≥ δ for every i, j ∈ Σ with i1 6= j1. Hence, by Eq. (2.6)
and Lemma 2.5, for every Ψ with d2(Φ,Ψ) < δ/(3C ′) the dual Ψ∗ satisfies the SSC.

2.2 Further analysis of the dual natural projection Hi

After establishing that Hi is analytic, we wish to obtain bounds on its derivatives. To simplify
notation we write f (k) to refer to the k-th derivative of f . For any i ∈ Σ∗, using the chain rule we
get f ′

i1|i|
(x) =

∏|i|
n=1 f

′
in
(fi1n−1

(x)). From here, a simple calculation yields that for every finite word
i ∈ Σ∗, Hi reduces to

Hi(x) = H
i
|i|
1

(x) =
f ′′
i1|i|
(x)

f ′
i1|i|
(x)

. (2.7)

Another way of writing Hi for i ∈ Σ ∪ Σ∗ is

Hi(x) =

|i|∑
n=1

(φin ◦ fi1n−1
)′(x), (2.8)

where φik(x) := log |f ′ik(x)|. Recall that the k-th derivative of the composition of two functions can
be calculated using Faà di Bruno’s formula:

(f ◦ g)(k)(x) =
∑
π∈Πk

f (|π|)(g(x)) ·
∏
B∈π

g(|B|)(x), (2.9)

where Πk is the set of all partitions of {1, . . . , k}, and B ∈ π refers to the elements, or blocks, of
the partition π. Finally, let gk : Rk → R be a k-variable polynomial such that g1(y1) = y1 and the
next one is given by the formula

gk+1(yk+1, . . . , y1) :=
k∑
`=1

∂gk
∂y`

(yk, . . . , y1) · y`+1 + gk(yk, . . . , y1) · y1.

In particular, g2(y2, y1) = y2 + y21, g3(y3, y2, y1) = y3 + 3y1y2 + y31 and so on. We are now ready to
give a formula for H(k)

i , the kth derivatives of Hi.
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Lemma 2.7. For any i ∈ Σ ∪ Σ∗, the k-th derivative of Hi is given by

H
(k)
i (x) =

∑
π∈Πk+1

|i|∑
n=1

φ
(|π|)
in

(fi1n−1
(x)) · (f ′i1n−1

(x))|π| ·
∏
B∈π

g|B|−1

(
H

(|B|−2)

in−1
1

(x), . . . , Hin−1
1

(x)
)
.

Proof. We first show by induction that for any i ∈ Σ∗,

f
(k)

i1|i|
(x)

f ′
i1|i|
(x)

= gk−1

(
H

(k−2)
i (x), . . . , Hi(x)

)
. (2.10)

Indeed, for k = 2, Eq. (2.10) is the same as Eq. (2.7). Differentiating both sides of Eq. (2.10) we
get

f
(k+1)

i1|i|
(x)

f ′
i1|i|
(x)

−
f
(k)

i1|i|
(x)

f ′
i1|i|
(x)

·
f ′′
i1|i|
(x)

f ′
i1|i|
(x)

=
k−2∑
`=0

∂gk−1

∂y`

(
H

(k−2)
i , . . . , Hi(x)

)
·H(l+1)

i (x).

We use the induction hypothesis Eq. (2.10) in the second term on the left hand side for k and
Eq. (2.7) to see that

f
(k)

i1|i|
(x)

f ′
i1|i|
(x)

·
f ′′
i1|i|
(x)

f ′
i1|i|
(x)

= gk−1(H
(k−2)
i (x), . . . , Hi(x)) ·Hi(x).

Substituting this back, after rearranging the inductive step is proved for k + 1:

f
(k+1)

i1|i|
(x)

f ′
i1|i|
(x)

= gk−1(H
(k−2)
i (x), . . . , Hi(x)) ·Hi(x) +

k−2∑
`=0

∂gk−1

∂y`

(
H

(k−2)
i , . . . , Hi(x)

)
·H(l+1)

i (x)

= gk(H
(k−1)
i (x), . . . , Hi(x)).

We can now derive the formula for H(k)
i :

H
(k)
i (x)

(2.8)
=

|i|∑
n=1

(φin ◦ fi1n−1
)(k+1)(x)

(2.9)
=

∑
π∈Πk+1

|i|∑
n=1

φ
(|π|)
in

(fi1n−1
(x)) ·

∏
B∈π

f
(|B|)
i1n−1

(x)

(2.10)
=

∑
π∈Πk+1

|i|∑
n=1

φ
(|π|)
in

(fi1n−1
(x)) · (f ′i1n−1

(x))|π| ·
∏
B∈π

g|B|−1

(
H

(|B|−2)

in−1
1

(x), . . . , Hin−1
1

(x)
)
.

Lemma 2.8. For every integer k ≥ 0 there exists Ck such that for all x ∈ I and all i ∈ Σ ∪ Σ∗,∣∣H(k)
i (x)

∣∣ ≤ Ck.
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Proof. We proceed by induction. Let

Dk := max
i∈Σ1

max
x∈[0,1]

|φ(k)i (x)|.

From Eq. (2.8) we see that |Hi(x)| ≤ D1/(1− cmax) =: C0. Suppose that the statement is true for
k and define

Ek := sup
yj+1∈[−Cj ,Cj ]
0≤ j≤ k−1

gk(yk, . . . , y1). (2.11)

By Lemma 2.7,

∣∣H(k)
i (x)

∣∣ ≤ ∑
π∈Πk+1

|i|∑
n=1

D|π| · c(n−1)|π|
max ·

∏
B∈π

E|B|−1 =
∑

π∈Πk+1

D|π| ·
∏
B∈π E|B|−1

1− c
|π|
max

and the statement follows.

Corollary 2.9. For all k ≥ 1, for all x, y ∈ I and for all i ∈ Σ ∪ Σ∗,∣∣H(k)
i (x)−H

(k)
i (y)

∣∣ ≤ Ck+1 · |x− y|,

where Ck > 0 are as defined in Lemma 2.8.

We show the following useful Hölder type bound.

Lemma 2.10. For all integers k ≥ 0, x ∈ I and i, j ∈ Σ ∪ Σ∗ with |i ∧ j| < min{|i|, |j|},∣∣H(k)
i (x)−H

(k)
j (x)

∣∣ ≤ 2Ck · c|i∧j|max,

where the Ck > 0 are as defined in Lemma 2.8.

Proof. Let m = |i ∧ j|. Again, by Lemmas 2.7 and 2.8,

|H(k)
i (x)−H

(k)
j (x)|

=

∣∣∣∣∣∣
∑

π∈Πk+1

|i|∑
n=m+1

φ
(|π|)
in

(fi1n−1
(x)) · (f ′i1n−1

(x))|π| ·
∏
B∈π

g|B|−1

(
H

(|B|−2)

in−1
1

(x), . . . , Hin−1
1

(x)
)

−
∑

π∈Πk+1

|j|∑
n=m+1

φ
(|π|)
jn

(fj1n−1
(x)) · (f ′j1n−1

(x))|π| ·
∏
B∈π

g|B|−1

(
H

(|B|−2)

jn−1
1

(x), . . . , Hjn−1
1

(x)
)∣∣∣∣∣∣

≤
∑

π∈Πk+1

∞∑
n=m+1

2D|π| · cn|π|max ·
∏
B∈π

E|B|−1 ≤ 2Ck · cmmax.
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3 Proof of the sufficient condition for SESC

We need one auxiliary lemma before we can proceed with the proof of Theorem 1.5.

Lemma 3.1. Let f and g be real analytic maps on J and let η > 0 with 2
√
η < |J |. Denote

Q := max

{
sup
x∈J

|f ′′(x)|, sup
x∈J

|g′′(x)|
}
.

If supx∈J |f(x)− g(x)| ≤ η, then supx∈J |f ′(x)− g′(x)| ≤ (2 +Q)
√
η.

Proof. Let x ∈ J be arbitrary and take y ∈ J such that |x− y| = √
η. By assumption max{|f(x)−

g(x)|, |f(y)− g(y)|} ≤ η. Using the second order Taylor approximation

f(y) = f(x) + f ′(x)(y − x) +
f ′′(ξ1)

2
(y − x)2,

where ξ1 ∈ (x, y), and similarly for g(y) around x we get

η ≥ |f(y)− g(y)| =
∣∣∣∣f(x)− g(x) + (f ′(x)− g′(x))(y − x) + (f ′′(ξ1)− g′′(ξ2))

(y − x)2

2

∣∣∣∣
≥ |f ′(x)− g′(x)| · |y − x| − |f(x)− g(x)| − (|f ′′(ξ1)|+ |g′′(ξ2)|)

(y − x)2

2
.

Thus,
|f ′(x)− g′(x)| ≤ η + η +Qη

√
η

= (2 +Q)
√
η

as required.

Proof of Theorem 1.5. We prove the theorem by contradiction. Recall Definition 1.2 and suppose
that Φ has weak super-exponential condensation, i.e. there exists a sequence (ηn)n such that
log(ηn)/n→ −∞ and there exist a subsequence n` ∈ N and i 6= j ∈ Σn`

such that

sup
x∈[0,1]

|fi(x)− fj(x)| ≤ ηn`
. (3.1)

We need to show that there exist i∗ 6= j∗ ∈ Σ∪Σ∗ with |i∗| = |j∗| for which Hi∗(x) ≡ Hj∗(x) for all
x ∈ [0, 1], thus contradicting our main assumption. For the remainder of the proof we work with the
sequence ηn`

and i 6= j ∈ Σn`
provided by Eq. (3.1). Let m = m(n`) := max{k ≤ n` : ik 6= jk} and

u(n`) := in`
m+1 ∈ Σn`−m, then j = jm1 u(n`). Let us also denote i(n`) := i1m ∈ Σm and j(n`) := j1m ∈ Σm,

so (i(n`))1 6= (j(n`))1. We first show that there exists a sequence η′′n`
with log(η′′n`

)/n` → −∞ such
that for every x ∈ I,

|Hi(n`)(fu(n`)(x))−Hj(n`)(fu(n`)(x))| ≤ η′′n`
. (3.2)

For any i ∈ Σ∗, recall from Eq. (2.7) that

Hi(x) =
f ′′
i1|i|
(x)

f ′
i1|i|
(x)

or equivalently, Hi1|i|
(x) =

f ′′i (x)

f ′i(x)
.

Using (2.7), we get
|f ′′i (x)| =

∣∣Hi1|i|
(x) · f ′i(x)

∣∣ ≤ C0 · c|i|max
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by Lemma 2.8. Moreover,

|f ′′′i (x)| =
∣∣g2(H ′

i1|i|
(x),Hi1|i|

(x)) · f ′i(x)
∣∣ ≤ E2 · c|i|max

by the definition of Ek in Eq. (2.11). Together with Lemma 3.1 these bounds imply that for the
particular choice of i, j in Eq. (3.1) we have

sup
x∈[0,1]

|f ′i(x)− f ′j(x)| ≤ (2 + C0c
n`
max)

√
ηn`

;

sup
x∈[0,1]

|f ′′i (x)− f ′′j (x)| ≤ (2 + E2c
n`
max)

√
2 + C0c

n`
max · η1/4n`

.

We deduce∣∣∣∣∣f ′′i (x)f ′i(x)
−
f ′′j (x)

f ′j(x)

∣∣∣∣∣ ≤ |f ′′i (x)|
|f ′i(x)||f ′j(x)|

· |f ′i(x)− f ′j(x)|+
1

|f ′j(x)|
· |f ′′i (x)− f ′′j (x)|

≤ C0

cn`
min

(2 + C0c
n`
max) · η1/2n`

+
1

cn`
min

(2 + E2c
n`
max)

√
2 + C0c

n`
max · η1/4n`

=: η′n`
.

Now observe that

Hi1n`
(x) =

(fim1 ◦ fu(n`))
′′(x)

(fim1 ◦ fu(n`))
′(x)

= f ′
u(n`)

(x) ·Hi(n`)

(
fu(n`)(x)

)
+
f ′′
u(n`)

(x)

f ′
u(n`)

(x)
,

hence, Hi1n`
(x)−Hj1n`

(x) = f ′
u(n`)

(x) ·
(
Hi(n`)

(
fu(n`)(x)

)
−Hj(n`)

(
fu(n`)(x)

))
, so we can conclude

∣∣Hi(n`)

(
fu(n`)(x)

)
−Hj(n`)

(
fu(n`)(x)

)∣∣ ≤ ∣∣Hi1n`
(x)−Hj1n`

(x)
∣∣∣∣f ′

u(n`)
(x)
∣∣ ≤ c−n`

min · η′n`
=: η′′n`

.

Having established Eq. (3.2), there are two cases to consider: whether |u(n`)| → ∞ or there
exists a constant C > 0 and infinitely many ` such that |u(n`)| ≤ C. Let us first assume the
latter. Since |i(n`)| + |u(n`)| = |j(n`)| + |u(n`)| = n` we conclude, by compactness, that there exists
a subsequence n′` such that i(n

′
`) → i∗ ∈ Σ, j(n

′
`) → j∗ ∈ Σ and u(n′

`) = u∗ ∈ Σ∗ with i∗1 6= j∗1 .
It follows from Lemma 2.10 and Eq. (3.2) that Hi∗(fu∗(x)) ≡ Hj∗(fu∗(x)) for all x ∈ I. Hence,
using the analyticity of Hi from Lemma 2.4 we conclude that Hi∗(x) ≡ Hj∗(x) for all x ∈ I which
contradicts the main assumption.

Now let us assume that |u(n`)| → ∞. Again by compactness, there exists u∗ ∈ Σ as well as
i∗, j∗ ∈ Σ ∪ Σ∗ and a subsequence n′` such that i(n

′
`) → i∗ and j(n

′
`) → j∗ with i∗1 6= j∗1 as well as

f
u
(n′

`
)(x) → π(u∗) for all x ∈ [0, 1]. Note that both |i∗| and |j∗| might be finite or infinite, however,

|i∗| = |j∗| by the construction. Combining Lemma 3.1 and Lemma 2.8 with Eq. (3.2), we deduce
that for all k there exists C̃k > 0 such that for all ` ≥ 1 we have∣∣H(k)

i(n`)
(fu(n`)(x))−H

(k)

j(n`)
(fu(n`)(x))

∣∣ ≤ C̃k ·
1

(f ′
u(n`)

(x))k
·
(
η′′n`

)2−k

≤ C̃k ·
1

ckn`
min

·
(
η′′n`

)2−k

(3.3)

for all x ∈ [0, 1] which still tends to 0 as ` → ∞ since η′′n`
→ 0 super-exponentially fast. Combin-

ing Corollary 2.9 and Lemma 2.10 with Eq. (3.3) we see that H(k)
i∗ (π(u∗)) = H

(k)
j∗ (π(u∗)) for all k.

Since Hi∗ and Hj∗ are analytic by Lemma 2.4, we get Hi∗(x) ≡ Hj∗(x) for all x ∈ [0, 1] which again
contradicts our main assumption, concluding the proof of Theorem 1.5.

Proof of Theorem 2.2. The proof follows by Lemma 2.5 and Theorem 1.5.
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4 Existence of open and dense set of IFSs with SESC

4.1 Preliminaries

Fix an arbitrary n ≥ 1. Let Bn := {(i, j) ∈ Σn × Σn : i1 < j1}. We say that (i, j) ∈ Bn is bad if the
associated cylinders overlap,

Fi(k,K) ∩ Fj(k,K) 6= ∅, (4.1)

recall Eq. (2.2). For any i ∈ Σ∗ and x ∈ [0, 1] define the orbit of i starting from x as the multiset
Oi(x) := {x, fi1(x), fi12(x), . . . , fi1|i|(x)}.

Lemma 4.1. If the IFS (fi)i∈I ∈ SN has no exact overlaps, then there exists a collection of points
{xi,j}(i,j)∈Bn

⊆ [0, 1] such that

(a) conv
(
(Fik)(xi,j), (FiK)(xi,j)

)
∩ conv

(
(Fjk)(xi,j), (FjK)(xi,j)

)
= ∅ if (i, j) is not bad;

(b) all points in Oi(xi,j) and also in Oj(xi,j) are distinct, moreover, Oi(xi,j) ∩ Oj(xi,j) = {xi,j};

(c)
(
Oi(xi,j) ∪ Oj(xi,j)

)
∩
(
Oh(xh,k) ∪ Ok (xh,k)

)
= ∅ for every (i, j) 6= (k,h) ∈ Bn.

Proof. We first establish an order on the elements of Bn by setting

(i(k), j(k)) = (i
(k)
1 , . . . , i(k)n ; j

(k)
1 , . . . , j(k)n ),

where k = 1, . . . ,#Bn. The points are constructed inductively. If (i(1), j(1)) is not bad then by
definition there exists an x̂(i(1),j(1)) for which (a) holds. Since (a) is an open condition, there exists
an x(i(1),j(1)) in the neighborhood of x̂(i(1),j(1)) for which (b) also holds. If this were not the case,
then there would be k, ` such that f(i(1))1` (x) = f(i(1))1k

(x) for infinitely many x, but then analyticity
implies that f(i(1))1` (x) ≡ f(i(1))1k

(x) on [0, 1], which contradicts the no exact overlaps assumption.
If (i(1), j(1)) is bad, then choose x(i(1),j(1)) to satisfy (b) (which is possible by a similar argument).
Thus we have constructed the first point x(i(1),j(1)). Condition (c) trivially holds with just the single
pair (i(1), j(1)).

We continue by induction. Assume that x(i(1),j(1)), . . . , x(i(k),j(k)) have already been constructed
(for some k ≥ 1) so that (a) to (c) all hold. The set

⋃k
m=1 Ô(x(i(m),j(m))) is finite, where we use the

shorthand Ô(xi,j) :=
(
Oi(xi,j) ∪ Oj(xi,j)

)
. Then the set

Ak :=
n⋃
`=0

((
f(i(k+1))1`

)−1
( k⋃
m=1

Ô(x(i(m),j(m)))
)
∪
(
f(j(k+1))1`

)−1
( k⋃
m=1

Ô(x(i(m),j(m)))
))

is also finite since all fi are strictly monotone (for ` = 0 it is defined to be identity map).
If (i(k+1), j(k+1)) is not bad, then using that Ak is finite and the continuity of the maps one

can choose x̂(i(k+1),j(k+1)) ∈ (0, 1) \Ak for which (a) holds. By continuity of the maps, there exists a
small neighbourhood of x̂(i(k+1),j(k+1)) in (0, 1) \Ak where (a) still holds, and by the same argument
as before can be used to pick a x(i(k+1),j(k+1)) from this small neighbourhood for which (a) to (c) all
hold. If (i(k+1), j(k+1)) is bad, then analyticity and the no exact overlaps assumption imply again
the existence of x(i(k+1),j(k+1)) ∈ (0, 1) \Ak that satisfies (b) which completes the induction.

18



Proposition 4.2. Let f ∈ Sωε ([0, 1]). There exists a constant C > 0 such that for any two finite
collections of points Y = {y1 < . . . < yM} ⊆ [0, 1]M and Z = {z1 < . . . < zQ} ⊆ [0, 1]Q with
Y ∩ Z = ∅ we have the following: for every ε > 0 and δ > 0 there exists an analytic function
g ∈ Sωε ([0, 1]) such that

(i) g(zi) = f(zi) for every zi ∈ Z and g(yi) = f(yi) for every yi ∈ Y, moreover,

sup
x∈[0,1]

|g(x)− f(x)| < ε;

(ii) g′(zi) = f ′(zi) for every zi ∈ Z and g′(yi) = f ′(yi) for every yi ∈ Y, moreover,

sup
x∈[0,1]

|g′(x)− f ′(x)| < ε;

(iii) g′′(zi) = f ′′(zi) for every zi ∈ Z, however,∣∣∣∣g′′(yi)g′(yi)
− f ′′(yi)

f ′(yi)

∣∣∣∣ ≥ δ for every yi ∈ Y,

nevertheless, supx∈[0,1] |g′′(x)− f ′′(x)| < C · δ + ε.

We may assume that Y 6= ∅, otherwise there is nothing to prove. Our claim is that with
appropriate choices of a1, . . . , aM > 0 and η1 . . . , ηM > 0 the analytic function

g(x) := f(x) · eϕ(x)·ψ(x)·A(x), (4.2)

where

ϕ(x) =
∏
yi∈Y

(x− yi)
2, ψ(x) =

∏
zi∈Z

(x− zi)
4 and A(x) =

M∑
i=1

ai · e
−(x−yi)

2

ηi

satisfies the conditions of Proposition 4.2. We will often use the following simple fact.

Lemma 4.3. Let us fix constants c, p, ε > 0 and q > −p/2. Then

sup
x∈R

c · σq · |x|p · e
−x2

σ ≤ ε whenever 0 < σ ≤ (2e/p)
p

2q+p · (ε/c)
1

q+p/2 . (4.3)

Proof. It is easy to check that the global maximum of the function is at x2 = pσ/2. Substituting
back this value and using the upper bound on σ gives the claim.

Proof of Proposition 4.2. During the proof we suppress ∞ from the norm ‖ · ‖∞. The argument is
essentially a careful analysis of the function g defined in Eq. (4.2). Let us first observe that g is
complex analytic on B2ε, and so, satisfies the assumption (A).

Let us now calculate the derivatives of g. Clearly,

g′ = f ′ · eϕ·ψ·A + f · eϕ·ψ·A
(
ϕ′ · ψ ·A+ ϕ · ψ′ ·A+ ϕ · ψ ·A′),

where

ϕ′(x) =
M∑
i=1

2(x− yi)
∏

yj∈Y\{yi}

(x− yj)
2,
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ψ′(x) =

Q∑
i=1

4(x− zi)
3

∏
zj∈Z\{zi}

(x− zj)
4,

A′(x) = −2 ·
M∑
i=1

ai
x− yi
ηi

e
−(x−yi)

2

ηi .

Moreover,

g′′ = f ′′eϕψA + 2f ′eϕψA
(
ϕ′ψA+ ϕψ′A+ ϕψA′)+ feϕψA

(
ϕ′ψA+ ϕψ′A+ ϕψA′)2

+ feϕψA
(
ϕ′′ψA+ ϕψ′′A+ ϕψA′′ + 2ϕ′ψ′A+ 2ϕ′ψA′ + 2ϕψ′A′),

where

ϕ′′(x) = 2

M∑
i=1

∏
yj∈Y
yj 6=yi

(x− yj)
2 + 4

M∑
i=1

(x− yi)

M∑
k=1
k 6=i

(x− yk)
∏
yj∈Y

yj /∈{yi,yk}

(x− yj)
2,

ψ′′(x) = 12

Q∑
i=1

(x− zi)
2
∏
zj∈Z
zj 6=zi

(x− zj)
4 + 16

Q∑
i=1

(x− zi)
3

Q∑
k=1
k 6=i

(x− zk)
3

∏
zj∈Z

zj /∈{zi,zk}

(x− zj)
4,

A′′(x) = 2 ·
M∑
i=1

ai

(2(x− yi)
2

η2i
− 1

ηi

)
e

−(x−yi)
2

ηi .

By construction ϕ(yi) = ϕ′(yi) = 0 for every yi ∈ Y and ψ(zi) = ψ′(zi) = ψ′′(zi) = 0 for every
zi ∈ Z, hence,

g(yi) = f(yi) and g′(yi) = f ′(yi) for every yi ∈ Y,

furthermore,

g(zi) = f(zi), g
′(zi) = f ′(zi) and g′′(zi) = f ′′(zi) for every zi ∈ Z.

Since ϕ′′(yi) 6= 0, let us evaluate

g′′(yi) = f ′′(yi) + f(yi)ϕ
′′(yi)ψ(yi)A(yi)

= f ′′(yi) + 2f(yi)
∏
yj∈Y
yj 6=yi

(yi − yj)
2
∏
zj∈Z

(yi − zj)
4

(
ai +

M∑
j=1
j 6=i

aj · e
−(yi−yj)

2

ηj

)
.

Dividing both sides by f ′(yi) = g′(yi) and rearranging we get∣∣∣∣g′′(yi)g′(yi)
− f ′′(yi)

f ′(yi)

∣∣∣∣ ≥ 2ai ·
|f(yi)|
|f ′(yi)|

∏
yj∈Y\{yi}

(yi − yj)
2
∏
zj∈Z

(yi − zj)
4 ≥ δ

for all yi ∈ Y as required if we choose

ai :=
δ · |f ′(yi)|
2 · |f(yi)|

( ∏
yj∈Y\{yi}

(yi − yj)
2 ·
∏
zj∈Z

(yi − zj)
4
)−1

. (4.4)
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It remains to bound the norms ‖g − f‖, ‖g′ − f ′‖ and ‖g′′ − f ′′‖. Using that |x − zi| ≤ 1, we
have the trivial bounds

‖ψ‖ ≤ 1, ‖ψ′‖ ≤ 4Q and ‖ψ′′‖ ≤ 16Q2 + 12Q.

Similarly, using that |x− yi| ≤ 1, we also have

‖ϕ‖ ≤ min
yi∈Y

|x− yi|2, ‖ϕ′‖ ≤ 2M · min
yi∈Y

|x− yi|

and

‖ϕ′′‖ ≤ 4M2 · min
yi∈Y

|x− yi|+
∥∥∥∥2 M∑

i=1

∏
yj∈Y
yj 6=yi

(x− yj)
2

∥∥∥∥.
Choose ηi so small such that

ηi ≤ min

{
2e ·

(
ε

2M2(16Q2 + 12Q)ai

)2

︸ ︷︷ ︸
(C1)

,

(
ε · e3/2

8MQai(3/2)3/2

)2

︸ ︷︷ ︸
(C2)

}
.

Several norms can be handled simultaneously:

max{‖ϕψA‖, ‖ϕ′ψA‖, ‖ϕψ′A‖, ‖ϕψ′′A‖, ‖ϕ′ψ′A‖}

≤
M∑
i=1

2M(16Q2 + 12Q)ai|x− yi| · e
−(x−yi)

2

ηi ≤ ε

by Eq. (4.3) and (C1) (with the choice p = 1, q = 0 and c = 2M(16Q2 +12Q)ai). Two more norms
can be handled together:

max{‖ϕψA′‖, ‖ϕψ′A′‖} ≤
M∑
i=1

8Qai
|x− yi|3

ηi
· e

−(x−yi)
2

ηi ≤ ε

by Eq. (4.3) and (C2) (with the choice p = 3, q = −1 and c = 8Qai). These bounds already imply
that ‖g− f‖ ≤ (eε− 1) · ‖f‖ and ‖g′− f ′‖ ≤ (eε− 1) · ‖f ′(x)‖+3εeε · ‖f(x)‖. Also, by choosing the
values of ηi possibly smaller, one can ensure that g(Bε) ⊆ Bε and 0 < |g′(x)| < 1 for every x ∈ Bε,
hence, g satisfies (B) and (C), and in particular, g ∈ Sωε ([0, 1]).

The remaining three norms, ‖ϕ′′ψA‖, ‖ϕψA′′‖ and ‖ϕ′ψA′‖ require additional care. The trivial
bounds can not be blindly used in some of the expressions when x is too close to one of the yi.
We demonstrate this on ‖ϕ′′ψA‖ and leave the other two to the reader since the arguments are
analogous.

Besides ηi ≤ min{(C1), (C2)}, we need further restrictions on ηi. Assume that

ηi ≤ min

{( ε√2e

4M3ai

)2
︸ ︷︷ ︸

(C3)

,
εe

2M2ai︸ ︷︷ ︸
(C4)

}
, η

1/3
i <

1

2
min

{
yi+1 − yi, yi − yi−1

}
(4.5)

and
M∑
i=1

2ai · e−η
−1/3
i < ε. (4.6)
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Clearly all these conditions can be simultaneously satisfied. Using the bound on ‖ϕ′′‖,

∣∣ϕ′′(x) · ψ(x) ·A(x)
∣∣ ≤ ∣∣∣∣2ψ(x) ·A(x) · M∑

i=1

∏
yj∈Y
yj 6=yi

(x− yj)
2

∣∣∣∣+ 4M2 ·
M∑
i=1

ai|x− yi| · e
−(x−yi)

2

ηi .

The second term is ≤ ε because we can apply Eq. (4.3) and (C3). The first term is a double sum
which we split into two parts

2ψ(x) ·
M∑
i=1

aie
−(x−yi)

2

ηi

∏
yj∈Y
yj 6=yi

(x− yj)
2

︸ ︷︷ ︸
=:I(x)

+2

M∑
k=1

ake
−(x−yk)2

ηk

M∑
i=1
i 6=k

∏
yj∈Y
yj 6=yi

(x− yj)
2

︸ ︷︷ ︸
≤M(x−yk)2

.

We can apply Eq. (4.3) again to the second term and then (C4) to see that the second term is
bounded above by ε. What remains is to bound I(x). This is where we distinguish whether x is
close to a yi or not. Recall, we assume Eq. (4.5). If x is not too close to any of the yi in the sense
that x ∈

⋂M
i=1(yi − η

1/3
i , yi + η

1/3
i )C , then we use the trivial bounds

I(x) ≤
M∑
i=1

2aie
−η−1/3

i
(4.6)
< ε.

So assume x ∈ (yi − η
1/3
i , yi + η

1/3
i ) for some yi ∈ Y. Since x is still far enough from the other yj ,

we just use the same bound there:

I(x) ≤ 2aiψ(x)
∏

yj∈Y\{yi}

(x− yj)
2 +

M∑
j=1
j 6=i

2aje
−η−1/3

j
(4.6)
< ε+ 2aiψ(x)

∏
yj∈Y\{yi}

(x− yj)
2.

In the final term, we substitute the value of ai from Eq. (4.4) and ψ(x) to get

I(x) ≤ ε+ δ · |f
′(yi)|

|f(yi)|
∏
yj∈Y
yj 6=yi

(x− yj)
2

(yi − yj)2

∏
zj∈Z

(x− zj)
4

(yi − zj)4

(4.5)
≤ ε+ δ · |f

′(yi)|
|f(yi)|

∏
yj∈Y
yj 6=yi

(
1 +

η
1/3
i

|yi − yj |

)2 ∏
zj∈Z

(
1 +

η
1/3
i

|yi − zj |

)4
.

We may assume by choosing ηi even smaller if necessary that the product of the final two products
is at most say 2. Since we also assume that f([0, 1]) ⊂ (0, 1) and 0 < |f ′(x)| < 1 for every x, we
have shown that I(x) ≤ C · δ + ε for some constant C > 0 depending only f . This completes the
bound for ‖ϕ′′ψA‖.

4.2 Proof of Theorem 1.4

The main idea of the proof of Theorem 1.4 is to apply Proposition 4.2 to each map fi of the IFS
with appropriately chosen collections of points Yi and Zi using Lemma 4.1 to get the maps (gi)i∈I .
We then lift the IFS (gi)i∈I as in Eq. (2.1) to obtain the dual IFS (Gi)i∈I and show that this IFS
satisfies the SSC. Then Theorem 1.4 follows immediately from Theorem 2.2 and Lemma 2.6.
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Proof of Theorem 1.4. By Theorem 2.2, it is enough to show that {Φ ∈ SN : Φ∗ satisfies the SSC}
is open and dense in SN with respect to the metric d2. The set is open by Lemma 2.6 and so it is
enough to show that it is dense.

Let δ > 0 and Φ = (fi)i∈I ∈ SN be arbitrary but fixed. Choose n ≥ 1 such that cnmax(K − k) <
δ/3, where k < K is chosen such that Fi(k,K) ⊆ (k,K) for every i ∈ I, where Φ∗ = (Fi)i∈I is the
dual IFS of Φ. Recall that, Bn = {(i, j) ∈ Σn × Σn : i1 < j1}. Let {xi,j : (i, j) ∈ Bn} be points as
in Lemma 4.1.

Recall Oi(x) = {x, fi1(x), fi2i1(x), . . . , fi|i|...i1(x)}. For every i ∈ I, we define a partition of⋃
(i,j)∈Bn

(
Oi(xi,j) ∪ Oj(xi,j)

)
consisting of two elements {Yi,Zi} as follows:

• xi,j ∈ Yi1 and xi,j ∈ Zj1 if (i, j) ∈ Bn is bad and

(Fik)(xi,j) ∈ conv ((Fjk)(xi,j), (FjK)(xi,j)) ;

• xi,j ∈ Zi1 and xi,j ∈ Yj1 if (i, j) ∈ Bn is bad and

(Fik)(xi,j) /∈ conv ((Fjk)(xi,j), (FjK)(xi,j)) ;

• xi,j ∈ Zi1 and xi,j ∈ Zj1 if (i, j) ∈ Bn is not bad;

• y ∈ Zi1 and y ∈ Zj1 for every y ∈
⋃

(i,j)∈Bn

(
Oi(xi,j) ∪ Oj(xi,j)

)
\ {xi,j}.

Recall that by Eq. (4.1) either

(Fik)(xi,j) ∈ conv ((Fjk)(xi,j), (FjK)(xi,j)) or (Fjk)(xi,j) ∈ conv ((Fik)(xi,j), (FiK)(xi,j)) .

Hence, the sets Yi and Zi are well defined. We are now ready to apply Proposition 4.2.
To each fi and Yi,Zi we obtain a map gi ∈ Sωε ([0, 1]) which satisfies the properties listed

in Proposition 4.2 with the choice ε = δ, and let Ψ = (gi)i∈I ∈ SN . We construct the dual IFS
Ψ∗ = (Gi)i∈I of Ψ as in Eq. (2.1), i.e.

(Gih)(x) := g′i(x) · h(gi(x)) +
g′′i (x)

g′i(x)
.

By Proposition 4.2, if (i, j) ∈ Bn is not bad then xi,j ∈ Zi1 and xi,j ∈ Zj1 . Hence,

(Gih)(xi,j) = (Fih)(xi,j) and (Gjh)(xi,j) = (Fjh)(xi,j) for every h ∈ Cωε ([0, 1]),

and in particular, conv
(
(Gik)(xi,j), (GiK)(xi,j)

)
∩ conv

(
(Gjk)(xi,j), (GjK)(xi,j)

)
= ∅, or equiva-

lently, Gi(k,K) ∩Gj(k,K) = ∅.
Let us now suppose that (i, j) ∈ Bn is bad. Without loss of generality, we may assume that

xi,j ∈ Yi1 and xi,j ∈ Zj1 . Then

(F
i
|i|
2

h)(fi1(xi,j)) = (G
i
|i|
2

h)(gi1(xi,j)) and (Fjh)(xi,j) = (Gjh)(xi,j) for every h ∈ Cωε ([0, 1]),

and so,

∣∣(Gih)(xi,j)− (Fih)(xi,j)
∣∣ = ∣∣∣∣∣g′′i1(xi,j)g′i1(xi,j)

−
f ′′i1(xi,j)

f ′i1(xi,j)

∣∣∣∣∣ ≥ δ for every h ∈ Cωε ([0, 1]). (4.7)
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Since conv ((Fjk)(xi,j), (FjK)(xi,j)) = conv ((Gjk)(xi,j), (GjK)(xi,j)) has length strictly less than
δ/3, and (Fih)(xi,j) ∈ conv ((Fjk)(xi,j), (FjK)(xi,j)), Eq. (4.7) implies that

dist ((Gik)(xi,j)), conv ((Gjk)(xi,j), (GjK)(xi,j))) > 2δ/3.

On the other hand, |(Gik)(xi,j))− (GiK)(xi,j))| ≤ cnmax(K − k) < δ/3, and so

dist ((GiK)(xi,j)), conv ((Gjk)(xi,j), (GjK)(xi,j))) > δ/3.

This clearly implies that Gi(k,K) ∩Gj(k,K) = ∅. Finally, Theorem 1.4 concludes by Lemma 2.5.

5 Conjugation to self-similar IFS

Let f ∈ Sωε ([0, 1]) be arbitrary but fixed. Along the lines of Eq. (1.4), let us define the map

Ĥf (x) :=
∞∑
k=0

f ′′

f ′
(f◦k(x)) · (f◦k)′(x), (5.1)

where f◦k denotes the self-composition of f k-times. Analogously to the proof of Lemma 2.4,
Ĥ ∈ Cωε ([0, 1]).

Let us begin the proof of Theorem 1.12 with the following observation.
Lemma 5.1. Let f ∈ Sωε ([0, 1]). Then for every a, b ∈ R there exists an invertible map g ∈ Cωε ([0, 1])
such that g′′(x) = Ĥf (x)g

′(x), g(p) = a and g′(p) = b, where p is the unique fixed point of f in
[0, 1] and Ĥf is defined in Eq. (5.1).

Moreover, for every g : [0, 1] → R such that g′′(x) ≡ Ĥf (x)g
′(x)

g(f(x)) = f ′(p)g(x) + g(p)(1− f ′(p)).

Proof. Using the analyticity of Ĥ, we get that the map g(x) = b
∫ x
p e

∫ z
p Ĥ(y)dydz + a is in Cωε ([0, 1])

with g(p) = a and g′(p) = b.
Now, integrating Ĥ∫ x

p
Ĥ(y)dy =

∞∑
k=0

(
log
(
f ′(f◦k(x))

)
− log f ′(p)

)
= log

( ∞∏
k=0

f ′(f◦k(x))

f ′(p)

)
.

Moreover, letting
ĝ(x) :=

∫ x

p
e
∫ z
p Ĥ(y)dydz,

and using the previous equation, we get that

ĝ(x) = lim
n→∞

(f◦n)(x)− p

(f ′(p))n
(5.2)

is also analytic.
Using Eq. (5.2), it is easy to see that ĝ(f(x)) ≡ f ′(p)ĝ(x). Also, for any map g with g′′(x) ≡

Ĥf (x)g
′(x), we have g(x) ≡ g′(p)ĝ(x) + g(p) for every x ∈ [0, 1]. Thus,

g(f(x)) = g′(p) · ĝ(f(x)) + g(p) = g′(p) · f ′(p)ĝ(x) + g(p) = f ′(p) · g(x) + g(p)(1− f ′(p)),

which had to be proven.
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Proof of Theorem 1.12. Let Φ = (fi)i∈I ∈ SN . The first assertion of Theorem 1.12 follows by
applying Lemma 5.1 for f1 and considering the IFS (g ◦ fi ◦ g−1)i∈I .

The assertion (b) of Theorem 1.12 clearly follows by (a), so we finish the proof by showing (a).
Let Φ = (fi)i∈I ∈ SN . First, suppose that H(x) := Hi(x) ≡ Hj(x) for every i, j ∈ Σ, where Hi is

the dual natural projection defined in Eq. (1.4). Then H(x) = H(i)∞ = Ĥfi for every i ∈ I. Hence,
by Lemma 5.1 there exists g : [0, 1] → R analytic such that g′′(x) ≡ H(x)g′(x), and g(fi(x)) =
f ′i(pi)g(x) + g(pi)(1− f ′i(pi)) for every i ∈ I, where fi(pi) = pi.

Finally, let us suppose that Φ = (fi)i∈I ∈ SN is conjugated to a self-similar IFS (x 7→ λix+ti)i∈I
by the invertible analytic map g : [0, 1] → R. Let pi be the fixed point of fi for every i ∈ Σ∗. Then,

g(fi(x)) = λig(x) + ti and g(pi) =
ti

1− λi
.

We have
g′(fi(x)) · f ′i(x) = λig

′(x) and |g′(pi)||f ′i(pi)− λi| = 0.

Since |g′(pi)| > 0 we must have f ′i(pi) = λi. Differentiating again we get

g′′(fi(x)) · f ′i(x)2 + g′(fi(x)) · f ′′i (x) = λig
′′(x) for every x ∈ [0, 1]

and by Using Eq. (2.7), we have that

g′′(pi)

g′(pi)
=

f ′′i (pi)

f ′i(pi)(1− f ′i(pi))
=

Hi1|i|
(pi)

1− f ′i(pi)
.

Now, let i, j ∈ Σ be arbitrary but fixed, and let kn = in1 j
1
n. Then pkn → π(i) as n → ∞, where we

recall that π : Σ → R is the natural projection of Φ defined in Eq. (1.3). Furthermore, by Lemma 2.4
and by f ′kn

(pkn) → 0 as n→ ∞

g′′(pkn)

g′(pkn)
=

Hjn1 i
1
n
(pkn)

1− f ′kn
(pkn)

→ Hj(π(i)) as n→ ∞.

However, the left-hand side converges to g′′(π(i))/g′(π(i)), and so, we get

g′′

g′
(π(i)) = Hj(π(i))

for every i, j ∈ Σ. In particular, Hj(π(i)) = Hk(π(i)) for every i, j,k ∈ Σ. Since the attractor of Φ
is not a singleton (i.e. uncountable), the maps Hj are analytic, we have that Hj(x) ≡ Hk(x) for all
j,k ∈ Σ.

Proof of Theorem 2.3. The claim follows by Theorem 1.12 and Lemma 2.4.
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