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Abstract

In this paper, we study the smoothness of the density function of absolutely continuous
measures supported on random self-similar sets on the line. We show that the natural pro-
jection of a measure with symbolic local dimension greater than 1 at every point is absolutely
continuous with Hölder continuous density almost surely. In particular, if the similarity di-
mension is greater than 1 then the random self-similar set on the line contains an interior
point almost surely.

1 Introduction

Let Φ = {fi}Ni=1 be an iterated function system on the line, given by the maps fi(x) = λix+ ti.
We denote by Λ the attractor of the IFS, that is the unique nonempty compact set satisfying the
equation

Λ =
N⋃
i=1

fi(Λ),

see Hutchinson [10]. The similarity dimension of the IFS is given by the solution of the equation

N∑
i=1

λsi = 1. (1.1)
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There is a natural way of presenting Λ using the symbolic space Ω = {1, . . . , N}N. Namely,
Λ = Π(Ω), where

Π(ω) = lim
n→∞

fω1 ◦ · · · ◦ fωn(0) =
∞∑
j=0

j−1∏
i=0

λωi · tωj .

We will also denote

λωj =

j−1∏
i=0

λωi

for all words ωj = (ω0, . . . , ωj−1) of length j. Using the contraction ratios of the IFS, one can
define a natural metric on Ω, namely,

d(ω, τ) = λω|ω∧τ | ,

where |ω ∧ τ | = min{n ≥ 0 : ωn+1 ̸= τn+1}. Let σ denote the usual left-shift operator on Ω. For
finite words ω ∈ Ω∗ =

⋃∞
n=0{1, . . . , N}n, denote |ω| the length of ω, furthermore, denote [ω] the

corresponding cylinder set, that is,

[ω] = {τ ∈ Ω : ωn = τn for every n ≤ |ω|}.

For the probability vector (p1, . . . , pN ) and the corresponding Bernoulli measure µ0 on Ω, let
ν = Π∗µ0 be the unique compactly supported probability measure such that

ν =

N∑
i=1

pi(fi)∗ν

called self-similar measure. With the choice of the probabilities (λs1, . . . , λ
s
N ), we call the measure

µ the natural measure. Similarly, for any measure µ on Ω we can define its image ν = Π∗µ on
the real line.

Throughout the paper, we will denote by dimH the Hausdorff dimension of sets and measures,
for precise definition and basic properties, see for example [1]. Furthermore, let us denote by L
the Lebesgue measure on the line.

In the recent years, considerable attention has been paid for the dimension theory and ge-
ometric properties of self-similar sets and measures. Hutchinson [10] showed that if the IFS Φ
satisfies the open set condition then

dimH(Λ) = s and dimH(ν) =
−
∑N

i=1 pi log pi

−
∑N

i=1 pi log |λi|
,

where s is the similarity dimension. Hochman [9] generalised this result significantly for the
overlapping situation and showed that if the exponential separation condition holds then

dimH(Λ) = min{1, s} and dimH(ν) = min

{
−
∑N

i=1 pi log pi

−
∑N

i=1 pi log |λi|

}
. (1.2)

In particular, the exponential separation condition holds up to an N − 1-dimensional family of
translation parameters (t1, . . . , tN ) if maxi ̸=j{|λi|+|λj |} < 1, see Fraser and Shmerkin [6]. Jordan
and Rapaport [12] generalized (1.2) for left-shift invariant ergodic measures, and Shmerkin [18]
studied the Lq-dimension of self-similar measures under exponential separation.
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It is a natural question to ask whether s > 1 then L(Λ) > 0 or if
−

∑N
i=1 pi log pi

−
∑N

i=1 pi log |λi|
> 1 then

µ ≪ L at least for typical choice of the natural parameters? This was verified by Saglietti,
Shmerkin and Solomyak [17], namely, for every translation vector (t1, . . . , tN ) such that ti ̸= tj

and for Lebesgue-almost every contraction (λ1, . . . , λN ) with
−

∑N
i=1 pi log pi

−
∑N

i=1 pi log |λi|
> 1, the measure

µ is absolutely continuous with respect to the Lebesgue measure. In particular, if s > 1 then
L(Λ) > 0 for typically.

Another natural question to ask whether L(Λ) > 0 then does Λ have a non-empty interior?
The answer for this question is negative on Rd for d ≥ 2, see Csörnyei, Jordan, Pollicott, Preiss
and Solomyak [3], however, it is widely open in R. It is also an open question even for typical
choice of the parameters, that is, whether s > 1 then does Λ have an interior point for typical
choice of parameters?

The main objective of this paper to study the corresponding problem for randomly perturbed
self-similar systems. So let us start by presenting the deterministic situation, which we will then
randomly perturb. Let Θ be a uniformly bounded real-valued random variable on the real line,
which will be our perturbation of the system. We will assume that Θ has a compactly supported
absolutely continuous distribution and that the Fourier transform of its distribution (denoted by
Θ̂ with a slight abuse of notation) satisfies

|Θ̂(x)| ≤ C

(1 + |x|)M
(1.3)

for some constant C > 0 and M > 0 sufficiently large, depending on the deterministic IFS.
For every ω ∈ Ω∗ =

⋃∞
n=0{1, . . . , N}n, let Θω be independent copies of Θ. Write Θ for the

whole collection {Θ∅,Θ1, . . . ,ΘN ,Θ11, . . .}, and we equip the set T of all such sequences with
the usual product topology. We will write P for the probability distribution on RΩ∗ given by
independent probability distribution of Θ on each vortex.

Let us consider the random set ΛΘ = ΠΘ(Ω), given by

ΠΘ(ω) =
∞∑
j=0

λωj · (tωj +Θωj ).

For a measure µ on Ω, denote also
νΘ = (ΠΘ)∗(µ).

In heuristic terms, we apply the perturbation independently at every vortex of the graph Ω∗
consisting of the finite sequences of symbols {1, . . . , N}.

Such randomly perturbed systems has been also studied in the recent years. Jordan, Pollicott
and Simon [11] studied the almost sure value of the dimension and Lebesgue measure of ΛΘ, and
the almost sure value of the dimension and the absolute continuity of νΘ for ergodic left-shift
invariant measures µ. Dekking, Simon, Székely and Szekeres [4] recently showed that if s > 1
then ΛΘ contains and interior point almost surely. Even more recently, Gu and Miao [8] studied
the Lq dimension of randomly perturbed systems.

There are several other type of natural random perturbations of self-similar sets, like perturb-
ing the contraction ratios, see for example Koivusalo [14] and Peres, Simon and Solomyak [16],
which we do not discuss in this paper.

Let us now turn to our main result. We will in general assume that there exist K > 0 and
s′ > 1 such that

µ([ω]) ≤ Kλs
′
ω for every finite word ω ∈ Ω∗, (1.4)
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that is the local dimension of µ is strictly greater than 1 everywhere in Ω. We note that necessarily
s′ ≤ s, where s is the similarity dimension.

Theorem 1.1. Let Φ be a self-similar IFS on the line such that s > 1 defined in (1.1). Let µ be
a measure on Ω such that (1.4) holds with some s′ > 1. Moreover, let Θ be a random variable
such that (1.3) holds with M ≥ s′. Then νΘ is absolutely continuous with respect to the Lebesgue
measure on the line and has Hölder continuous density almost surely.

An easy corollary of Theorem 1.1 is the following:

Corollary 1.2. Let Φ be a self-similar IFS on the line such that s > 1 and let Θ be a random
variable such that (1.3) holds with M ≥ s. Then ΛΘ contains an open interval almost surely.

First, let us discuss the assumptions of Theorem 1.1. Assumption s > 1 is a natural assump-
tion, since s is a natural upper bound on the dimension of ΛΘ for every realisation of Θ, thus, if
s < 1 then ΛΘ has zero Lebesgue measure for every Θ. Also, condition (1.4) is natural and close

to optimal since if there exist ω ∈ Ω and s′ < 1 such that µ([ωn]) > λs
′
ωn for infinitely many n

then

lim sup
n→∞

νΘ(B(ΠΘ(ω), λωn))

2λωn
≥ lim sup

n→∞

µ([ωn])

2λωn
≥ lim sup

n→∞
2−1λs

′−1
ωn = ∞,

which means that µ cannot have bounded density. Moreover, (1.4) is strongly related to the
lower-Lq dimension of µ. We define the lower-Lq dimension D(µ, q) of µ for q > 1 as the unique
solution D of the equation

lim inf
n→∞

−1

n
log

∑
ω∈Ωn

µ([ω])qλD(1−q)
ω = 0.

It is easy to see that (1.4) holds if and only if lim infq→∞D(µ, q) > 1. In particular, (1.4)
implies that the lower Lq-dimension of νΘ is 1 for every q > 1 almost surely, see Gu and Miao [8,
Theorem 2.9], which is necessary for the existence of continuous (bounded) density function.

Our only technical-like assumption is (1.3) on the distribution of random variables. However,
the random perturbations are usually considered to be relatively smooth absolutely continuous
random variables, so one may expect some kind of Fourier-decay of their distribution.

In a sense, our main result can be considered as an extension of the recent results of Dekking,
Simon, Székely and Szekeres [4] and Gu and Miao [8]. The existence of the interior point is
only a simple corollary of our main result, which was the main theorem in [4], and our proof
uses completely different methods. We rely on the Fourier transform of the density function and
Kolmogorov’s continuity theorem. On the other hand, we complete further smoothness properties
of the projected measure rather than only the Lq-dimension.

Our methods borrows several ideas from the proof of Erraoui and Hakiki [5, Theorem 3.5].
We treat the local density of the random fractal measure at a given point x as a random variable
forming a part of a stochastic process, with x playing the role of time. To do this we must first
know that the random measure is almost surely absolutely continuous (hence the local density
indeed exists almost everywhere, almost surely, and the stochastic process is well defined). We
then estimate the increments of this process using the inverse Fourier transform and apply the
Kolmogorov’s Continuity Theorem. Unfortunately, this step where we use the inverse Fourier
transform is only doable in dimension 1, as we are relying on the Carleson’s Theorem which is
not true in higher dimensions.
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2 Main tools

Now, let us introduce the notation of the Fourier transform. If ν is a Borel probability measure
on R and f : R → R an L1-function then the Fourier transform of ν and f is

ν̂(ξ) =

∫
eixξdν(x) and f̂(ξ) =

∫
eixξf(x)dx.

If ν is absolutely continuous with density function f then ν̂ = f̂ . One of our main tools is
Carleson’s Theorem.

Theorem 2.1 (Carleson). Let f be an L2 function on R. Then

f(x) = lim
n→∞

1

2π

∫ n

−n
e−ixξ f̂(ξ)dξ for Lebesgue-almost every x.

For the proof, see the book of Garafakos [7, Theorem 11.1.1].
Our next tool is Kolmogorov’s Continuity Theorem. We state here the special case we require.

Theorem 2.2 (Kolmogorov’s Continuity Theorem). Let (Ω,F ,P) be a probability space, and let
X = {Xt}t∈T be a stochastic process (i.e. Xt : Ω → R is measurable for every t ∈ T ), where
T ⊂ R is bounded, and suppose that there exists p > 0, C > 0 and α > 1 such that for all a, b ∈ T

E(|Xa −Xb|p) ≤ C|a− b|α.

Then X has a (Hölder) continuous modification. That is, there exists a stochastic process Y =
{Yt}t∈T such that for every t ∈ T , P(Xt = Yt) = 1 and the event

{t 7→ Yt is Hölder-continuous with any exponent smaller than (α− 1)/p}

is measurable and has full measure.

The proof of this version of Kolmogorov’s Continuity Theorem can be found in Khoshnevisan’s
book [13, Theorem 2.3.1 on page 158, Theorem 2.5.1 on page 166]. Note that the formulation
of Theorem 2.3.1 in the book has a typo, in the assumption ii) the term r−1 is missing from the
integral.

Finally, we state a well-known theorem from the theory of random IFS.

Proposition 2.3. Let µ be a measure satisfying (1.4). Then almost surely νΘ is absolutely
continuous with respect to the Lebesgue measure with L2 density.

The proof of the proposition can be found in Jordan, Pollicott and Simon [11, Proposi-
tion 4.4(b)], although it is not stated there that νΘ has L2 density, however, it is clear from the
proof that indeed this is the case.

Finally we state a measurability lemma, which we need for the proof of the main theorem.

Lemma 2.4. Let (X,µ) and (Y, ν) be compact separable metric spaces equipped with Borel mea-
sures. Assume a function f : X × Y → R satisfies

• for ν-almost every y ∈ Y f(·, y) is continuous,

• there exist a dense sequence (xi)i ∈ Z ⊂ X such that for every xi f(xi, ·) is measurable.

Then f is measurable.
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Proof. By Luzin Theorem for every xi we can write Y =
⋃

n∈N Hn(xi) ∪ Y1(xi), where f(xi, ·)
is continuous in every (measurable) Hn(xi) and ν(Y1(xi) = 0. By Egorov Theorem we can
present Y =

⋃
n∈NGn ∪ Y0, where Gn is the measurable set of y ∈ Y for which the function

f(·, y) is continuous with some uniform modulus of continuity δn, and ν(Y0) = 0 (observe that by
continuity we only need to check the modulus of continuity on Z×Y , and there it is a measurable
function of y, hence we can indeed use the Egorov Theorem).

Let I ⊂ R be an open interval and consider the set A = f−1(I). For any point (xi, y) ∈
A ∩ Z × Y ; y ∈ Gn1 ∩Hn2(xi) let a(xi, y, I) be the distance from f(xi, y) to the endpoints of I.
For any α ∈ (0, 1) we define

B(xi, y, I, α, n1, n2) = B(xi, a1)× (B(y, a2) ∩Gn1 ∩Hn2(xi)),

where a2 = a2(xi, a, n2, α) is such that |f(xi, y) − f(xi, z)| < αa(xi, y, I) for all z ∈ B(y, a2) ∩
Hn2(xi) and a1 = a1(xi, a, n1, α) is such that |f(xi, z) − f(w, z)| < (1 − α)a(xi, y, I) for all
w ∈ B(xi, a1) and z ∈ Gn1 . We define

A′ =
⋃

n1,n2

⋃
(xi,y)∈A∩Z×Y ;y∈Gn1∩Hn2 (xi)

⋃
α∈(0,1)

B(xi, y, I, α, n1, n2)

and observe that A′ ⊂ A.
Note now that A′ is a countable union (over n1, n2, xi) of intersections of an open set⋃

αB(xi, a1) × B(y, a2) with a measurable set X × (Gn1 ∩ Hn2(xi)). Thus, A′ is measurable.
Observe also that taking α↘ 0 we see that the whole interval (xi − δn1(a), xi + δn1(a))× {y} is
contained in A′ – what’s important here is that the length of this interval does not depend on n2.

Let us now consider the set A \A′. We will claim that

A \A′ ⊂ X × (Y0 ∪
⋃
xi∈Z

Y1(xi)).

As this set has zero measure, the assertion would follow from this claim.
Assume that the claim is not true, and let (x, y) ∈ A \ A′ be such that y ∈ Gn1 and that for

every xi ∈ Z y ∈ Hn2(xi)(xi). Let a′ be the distance from f(x, y) to the endpoints of I. As Z is
dense in X, there exist a subsequence xmi → x. As y ∈ Gn1 , f(xmi , y) → f(x, y), in particular
a(xmi , y) → a′ > 0. This means that from some moment on a(xmi , y) > a′/2, hence the whole
interval (xmi − δn1(a

′/2), xmi + δn1(a
′/2))×{y} will be contained in A′. As this interval contains

the point (x, y) for mi large enough, we get a contradiction. This proves the claim, and hence
the lemma follows.

3 Absolute continuity with Hölder density

Let us denote the density function of νΘ by ϑΘ. By [15, Theorem 2.12], for ψ-almost every t

ϑΘ(x) = lim
r→0

νΘ(B(x, r))

2r
for Lebesgue-almost every x. (3.1)

Lemma 3.1. The function ϑΘ(x) is a measurable function of (x,Θ).

Proof. We can write
ϑΘ(x) = lim

r↘0
Zr(x,Θ),
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where

Zr(x,Θ) =
1

4r3

∫ r(1+r)

r(1−r)
νΘ(B(x, ℓ))dℓ

is a continuous function of (x,Θ).
Indeed, the continuity follows from the definition of ΠΘ. This map is even Hölder continuous

if we equip T with the standard exponentially decreasing metric

ρ(Θ,Θ′) =
∞∑
j=0

∑
ωj∈{1,...,N}j

γj |Θ(ωj)−Θ′(ωj)|

for some γ < 1/N . We then have

(1− r) ·
νΘ(B(x, r(1− r)))

2r(1− r)
=
νΘ(B(x, r(1− r)))

2r

≤ Zr(x,Θ) ≤
νΘ(B(x, r(1 + r)))

2r
=
νΘ(B(x, r(1 + r)))

2r(1 + r)
· (1 + r).

Let us denote the Fourier transform µ̂ of a Borel measure µ by

µ̂(ξ) =

∫
eixξdµ(x).

Since by Proposition 2.3, νΘ ≪ L with L2-density for P-almost every Θ, we get that ν̂Θ = ϑ̂Θ ∈
L2. Then by Carleson’s theorem (Theorem 2.1), for P-almost every Θ

ϑΘ(x) = lim
n→∞

1

2π

∫ n

−n
e−ixξ ν̂Θ(ξ)dξ for Lebesgue-almost every x. (3.2)

Denote by T the set of (x,Θ);x ∈ I,Θ ∈ T for which (3.2) holds.

Lemma 3.2. The set T is Borel and has full (Lebesgue times P) measure. In particular, there
exists a measurable set T ⊂ I with full Lebesgue measure such that for every x ∈ T , Tx is
measurable and has full P -measure.

Proof. It is enough to check the measurability of T and that T has full L|I × P-measure. Then
by Fubini’s theorem (see for example Bogachev’s book [2, Theorem 3.4.1]), for L|I -almost every
x the set Tx = {Θ ∈ T : (x,Θ) ∈ T} is measurable and the map x 7→ P(Tx) is also measurable.
We can then define T = {x ∈ I : Tx is measurable and P (Tx) = 1}.

Denote the integral on the right hand side of (3.2) by

f(n, x,Θ) =
1

2π

∫ n

−n
e−ixξ ν̂Θ(ξ)dξ.

Observe for future reference that f(n, x,Θ) ∈ R for all n, x ∈ R and Θ ∈ T. Since (x,Θ) 7→
f(n, x,Θ) is clearly continuous, the set {(x,Θ) ∈ I × T : |f(n1, x,Θ)− f(n2, x,Θ)| < 1/N} is
clearly a Borel set for every n1, n2 ∈ Q. Then let

T1 =

∞⋂
N=1

∞⋃
m=1

⋂
n1,n2∈Q
n1,n2>m

{(x, t) ∈ I × T : |f(n1, x,Θ)− f(n2, x,Θ)| < 1/N}
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be the set for which the right-hand side of (3.2) converges pointwise, which is clearly Borel.
Similarly, let us define the set for which the right-hand side of (3.1) converges. That is,

T2 =
∞⋂

N=1

∞⋃
m=1

⋂
n1,n2∈Q

0<n1,n2<1/m

{(x,Θ) ∈ I × T : |Zn1(x,Θ)− Zn2(x,Θ)| < 1/N} (3.3)

which is again clearly Borel. Finally, let T3 be the set when the difference converges to zero, i.e.

T3 =

∞⋂
N=1

∞⋃
m=1

⋂
n1,n2∈Q

0<n1<1/m,m<n2

{(x,Θ) ∈ I × T : |Zn1(x,Θ)− f(n2, x,Θ)| < 1/N} .

Since T = T1 ∩ T2 ∩ T3 is exactly the set of points for which (3.2) holds, it is measurable and by
combining Fubini’s, Marstrand’s and Carleson’s Theorem, it has full L|I × P-measure.

Our goal is to show that there is a Hölder-continuous variant of ϑΘ(x) over T .

Proposition 3.3. There exists a function (Θ, x) 7→ gΘ(x) such that

• the map Θ ∈ T 7→ gΘ(x) is measurable for every x ∈ T ,

• set of Θ such that the event {x ∈ T 7→ gΘ(x) is Hölder-continuous} is measurable and has
full P-measure,

• for every x ∈ T , ϑΘ(x) = gΘ(x) for P-almost every Θ.

Proof. First, let us fix constants γ > 0 and α > 1, to be defined later. We also fix an even number
p > 0.

We want to use the Kolmogorov’s Continuity Theorem (Theorem 2.2). What we need is to
check that for α > 1 and some constant C > 0 (to be precised later) we have for every a, b ∈ T ,

Z(a, b) :=

∫
(ϑΘ(a)− ϑΘ(b))

pdP (Θ) ≤ C · |a− b|α. (3.4)

Let us calculate it, using the notation f(n, a,Θ) defined above.

Z(a, b) =
1

(2π)p

∫
lim
n→∞

(f(n, a,Θ)− f(n, b,Θ))pdP(Θ).

Applying the Fatou’s Lemma (which we can do because f(n, a,Θ) ∈ R), we get that

Z(a, b) ≤ lim inf
n→∞

1

(2π)p

∫
(f(n, a,Θ)− f(n, b,Θ))pdP(Θ)

=
1

(2π)p
lim inf
n→∞

∫ ∫ n

−n
. . .

∫ n

−n

p∏
k=1

(e−iaξk − e−ibξk)ν̂Θ(ξk)dξ1 . . . dξpdP(Θ).

Since the integrals are of finite support and the function
∏

k(e
−iaξk − e−ibξk)ν̂t(ξk) is uniformly

bounded, we may apply Fubini’s theorem and we get that

Z(a, b) ≤ 1

(2π)p
lim inf
n→∞

∣∣∣∣∣
∫ n

−n
. . .

∫ n

−n

p∏
k=1

(e−iaξk − e−ibξk)

∫ p∏
k=1

ν̂Θ(ξk)dP(Θ)dξ1 . . . dξp

∣∣∣∣∣
≤ 1

(2π)p
lim inf
n→∞

∫ n

−n
. . .

∫ n

−n

p∏
k=1

|e−iaξk − e−ibξk | ·

∣∣∣∣∣
∫ p∏

k=1

ν̂Θ(ξk)dP(Θ)

∣∣∣∣∣ dξ1 . . . dξp
=

1

(2π)p

∫ ∞

−∞
. . .

∫ ∞

−∞

p∏
k=1

|e−iaξk − e−ibξk | ·

∣∣∣∣∣
∫ p∏

k=1

ν̂Θ(ξk)dP(Θ)

∣∣∣∣∣ dξ1 . . . dξp.
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Using estimation |e−iη − 1| ≤ Cγ |η|γ , we get

Z(a, b) ≤ C|a− b|pγ
∫ ∞

−∞
· · ·

∫ ∞

−∞

p∏
k=1

|ξk|γ ·W (ξ1, . . . , ξp)dξ1 . . . dξp, (3.5)

where

W (ξ1, . . . , ξp) =

∣∣∣∣∣
∫ p∏

k=1

ν̂Θ(ξk)dP(Θ)

∣∣∣∣∣ .
Next we will estimateW . Substituting the definition of the Fourier transform and the formula

for ΠΘ, we get

W (ξ1, . . . , ξp) =

∣∣∣∣∣
∫∫∫ p∏

k=1

eiξkΠΘ(ω(k))dµ(ω(1)) . . . dµ(ω(p))dP(Θ)

∣∣∣∣∣
=

∣∣∣∣∣
∫∫∫ p∏

k=1

eiξ1
∑∞

n=0 λω(k),n (tω(k),n+Θ
ω(k),n )dP(Θ)dµ(ω(1)) . . . dµ(ω(p))

∣∣∣∣∣
=

∣∣∣∣∣
∫∫∫ p∏

k=1

∞∏
n=0

eiξkλω(k),nΘω(k),ndP(Θ)dµ(ω(1)) . . . dµ(ω(p))

∣∣∣∣∣ .
As every Θω(k),n has the same distribution Θ, we can write

W (ω(1), . . . , ω(p))(ξ1, . . . , ξp) :=
∞∏
n=0

∏
τn

Θ̂(λτn ·
∑

k∈N
ω(1),...,ω(p) (τ

n)

ξk)

where Nω(1),...,ω(p)(τn) is the set of k’s for which ω(k),n = τn. We have thus

W (ξ1, . . . , ξp) =

∫
W (ω(1), . . . , ω(p))(ξ1, . . . , ξp)dµ

p(ω(1), . . . , ω(p)).

As we have p sequences ω(k), we also have, for every n, exactly p words ω(k),n (some of
which can coincide). Thus, for any n, in all the sets Nω(1),...,ω(p)(τn); τn ∈ Ωn every symbol
kℓ ∈ {1, . . . , p} appears exactly once. Moreover, µp-almost surely there exists N0 such that for
n ≥ N0 all the words ω(k),n are different from all words ω(k′),n, k′ ̸= k.

We define a sequence N1, . . . , Np inductively. We take N1 = 0, and then for every k = 2, . . . , p
we define Nk as the smallest natural number such that ω(k),Nk is different from every ω(k′),Nk , k′ <
k. We can write

|W (ξ1, . . . , ξp)| ≤
∑

j1,...,jp

µp(Nk = jk∀k) ·
p∏

k=1

∣∣∣∣∣∣∣Θ̂
λω(k),jk ·

∑
ℓ∈N

ω(1),...,ω(p) (ω
(k),jk )

ξℓ


∣∣∣∣∣∣∣ .

Observe that the setsN(ω(k),Nk) are all different and that the corresponding vectors
∑

ℓ∈N(ω(k),Nk ) eℓ
form a coordinate system in Rp with Jacobian bounded from below by a constant depending only
on p – both those properties follow from 1, . . . , k − 1 /∈ N(ω(k),Nk). Thus, for a given sequence
N1, . . . , Np we have
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∫∫∫ p∏
k=1

|ξk|γ |W (ω(1), . . . , ω(p))(ξ1, . . . , ξp)|dξ1 . . . dξp

≤ C ·
∫∫∫ p∏

k=1

|ξk|γ
1

(1 + λω(k),Nk ·
∑

ℓ∈N
ω(1),...,ω(p) (ω

(k),Nk ) ξℓ)
M
dξ1 . . . dξp

= C ′ ·
p∏

k=2

λ−1−γ

ω(k),Nk
,

where we use the assumption

|Θ̂(x)| < C

(1 + |x|)M

and we also assume M = s′ > 1 + γ.
Coming back to Z(a, b), we get

Z(a, b) ≤ C|a− b|pγ ·
∑
Q

µp(Q)

p∏
k=1

λ−1−γ

ω(k),Nk
, (3.6)

where Q is the collection (N1, ω
(1),N1 , . . . , Np, ω

(p),Np).
The last step is to estimate the sum on the right hand side of (3.6). We denote

Wℓ =
∑
Q

µp(Q)
ℓ∏

k=1

λ−1−γ

ω(k),Nk

and estimate it inductively. For ℓ = 1 we have N1 = 0 and W1 = 1. For ℓ = 2 we have

P(λω(2),N2 < a2|ω(1)) < Kas
′
2 .

Indeed, the event λω(2),N2 < a means that the diameter of the minimal cylinder [ω(1) ∧ ω(2)]
containing both ω(1) and ω(2) is smaller than a. In other words, there is the first cylinder
Ck(ω

(1)) of diameter smaller than a, and ω(2) must belong to it. By our assumption about µ, the
probability µ that ω(2) belongs to this cylinder is smaller than Kas

′
. Note that this estimation

does not depend on ω(1).
For general ℓ there is not one such cylinder but ℓ− 1, one around each ω(i), i < ℓ. Thus,

P(λω(ℓ),Nℓ < aℓ|ω(1), . . . , ω(ℓ−1)) < (ℓ− 1)Kas
′
ℓ ,

again independently of ω(1), . . . , ω(ℓ−1), and as a result

P(
p∏

k=1

λω(k),Nk < a) <
∑

a2·...·ap<a

(p− 1)! ·Kℓ−1 · (a2 · . . . · ap)s
′
. (3.7)

Possible values of ai differ from each other by a factor at least maxj λj < 1, thus the number of
collections (a2, . . . , aℓ) such that

a > a2 · . . . · aℓ ≥ amax
j
λj
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is of order at most (log a/maxj log λj)
p−1. Thus, if 1 + γ < s′ then

Wp <

∞∑
m=1

(max
j
λj)

m(−1−γ)P((max
j
λj)

m <

ℓ∏
k=1

λω(k),Nk

< (max
j
λj)

m−1) <

∞∑
m=1

(max
j
λj)

m(s′−1−γ)O(mp−1) <∞.

We can now do the final choice of constants. We have s′ > 1, we choose γ < s′ − 1, and then
we choose some even p large enough that pγ > 1. We are done.

Proof of Theorem 1.1. Let (x,Θ) 7→ gΘ(x) be te function defined in Proposition 3.3. Then by
Lemma 2.4, (x,Θ) 7→ gΘ(x) is measurable with respect to L|I×P. Hence, by the third observation
of Proposition 3.3 and Fubini’s theorem, for P-almost every Θ

ϑΘ(x) = gΘ(x) for L-almost every x ∈ T .

Since T has full Lebesgue measure and in particular, is dense in I, by redefining ϑΘ(x) on an at
most zero measure set, it is easy to see that for P-almost every Θ

dνΘ(x) = gΘ(x)dL(x),

which completes the proof.

Proof of Corollary 1.2. By Theorem 1.1 applied for the Bernoulli measure µ with probability
vector (λs1, . . . , λ

s
N ), where s is defined in (1.1), νΘ = (ΠΘ)∗µ is absolutely continuous with

Hölder-continuous density P-almost surely. Since νΘ is a probability measure, there has to be a
point x ∈ ΛΘ for which the density ϑΘ(x) > 0. Using the continuity of ϑΘ(x), the support of νθ
(which is ΛΘ) must contain an interior point.
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[4] M. Dekking, K. Simon, B. Székely, and N. Szekeres. The interior of randomly perturbed
self-similar sets on the line. Adv. Math., 448:Paper No. 109724, 43, 2024.

[5] M. Erraoui and Y. Hakiki. Images of fractional Brownian motion with deterministic drift:
positive Lebesgue measure and non-empty interior. Math. Proc. Cambridge Philos. Soc.,
173(3):693–713, 2022.

[6] J. M. Fraser and P. Shmerkin. On the dimensions of a family of overlapping self-affine
carpets. Ergodic Theory Dynam. Systems, 36(8):2463–2481, 2016.

11



[7] L. Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics.
Springer, New York, second edition, 2009.

[8] Y. Gu and J. J. Miao. Generalized q-dimensions of measures on nonautonomous fractals.
Preprint, available at arXiv:2411.17298, 2024.

[9] M. Hochman. On self-similar sets with overlaps and inverse theorems for entropy. Ann. of
Math. (2), 180(2):773–822, 2014.

[10] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713–747, 1981.

[11] T. Jordan, M. Pollicott, and K. Simon. Hausdorff dimension for randomly perturbed self
affine attractors. Comm. Math. Phys., 270(2):519–544, 2007.

[12] T. Jordan and A. Rapaport. Dimension of ergodic measures projected onto self-similar sets
with overlaps. Proc. Lond. Math. Soc. (3), 122(2):191–206, 2021.

[13] D. Khoshnevisan. Multiparameter processes. Springer Monographs in Mathematics. Springer-
Verlag, New York, 2002. An introduction to random fields.

[14] H. Koivusalo. Dimension of uniformly random self-similar fractals. Real Anal. Exchange,
39(1):73–90, 2013/14.

[15] P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals
and rectifiability.

[16] Y. Peres, K. Simon, and B. Solomyak. Absolute continuity for random iterated function
systems with overlaps. J. London Math. Soc. (2), 74(3):739–756, 2006.

[17] S. Saglietti, P. Shmerkin, and B. Solomyak. Absolute continuity of non-homogeneous self-
similar measures. Adv. Math., 335:60–110, 2018.

[18] P. Shmerkin. On Furstenberg’s intersection conjecture, self-similar measures, and the Lq

norms of convolutions. Ann. of Math. (2), 189(2):319–391, 2019.

12


	Introduction
	Main tools
	Absolute continuity with Hölder density

